
  

An Efficient Bayesian Method for Predicting Clinical Outcomes 

from Genome-Wide Data 

Gregory F. Cooper
1
, Pablo Hennings-Yeomans

1
, Shyam Visweswaran

1
, Michael Barmada

2
 

1
Department of Biomedical Informatics, 

2
Department of Human Genetics 

University of Pittsburgh, Pittsburgh, Pennsylvania 

 
Abstract 

This paper compares the predictive performance and 

efficiency of several machine-learning methods when 

applied to a genome-wide dataset on Alzheimer’s 

disease that contains 312,318 SNP measurements on 

1411 cases. In particular, a Bayesian algorithm is 

introduced and compared to several standard 

machine-learning methods. The results show that the 

Bayesian algorithm predicts outcomes comparably to 

the standard methods, and it requires less total 

training time. These results support the further 

development and evaluation of the Bayesian 

algorithm.  

Introduction 

Classification and prediction are key components of 

clinical care, including individual risk assessment, 

diagnosis, and prognosis. Improvements in 

classification and predictive performance have the 

potential to significantly improve patient outcomes 

and reduce healthcare costs.  

 Genome-wide patient-specific data are likely to 

become available to inform clinical care in the 

foreseeable future. In combination with traditional 

clinical data, genome-wide data have the potential to 

improve clinical classification and prediction over 

what is currently possible. However, the sheer 

magnitude of the number of variables in these data (in 

the hundreds of thousands to millions) presents 

formidable computational and modeling challenges. 

Beyond sheer numbers of variables, there is the 

possibility that some of the best predictive models 

may need to include numerous variables that interact 

in non-linear ways to influence the outcome being 

predicted. It is therefore important to explore efficient 

ways to learn highly predictive and potentially 

complex models from genome-wide data. This paper 

introduces and evaluates the predictive performance 

and computational efficiency of a new Bayesian 

method for predicting clinical outcomes  

Background 

This section provides background information about 

Bayesian networks, Alzheimer’s disease, and SNP 

gene chips, because this paper introduces a new 

Bayesian network learning algorithm that is applied 

to predict Alzheimer’s disease using genome-wide 

data that was obtained from SNP gene chips. 

Measuring Single Nucleotide Polymorphisms A 

single base mutation is the commonest genetic 

variation in the human genome. A single base 

mutation is called a single nucleotide polymorphism 

(SNP) when different sequence alternatives (alleles) 

exist in individuals in the population. The human 

genome is estimated to have about 10 million SNPs 

that constitute approximately 0.1% of the genome. 

With the development of gene chips that can measure 

half a million SNPs or more (e.g., the Affymetrix 

500K GeneChip), it is now possible to obtain a 

snapshot of some of the most important information 

in the human genome.   

 The availability of gene-chip technology has led 

to a flurry of genome-wide association studies 

(GWAS). The most common goal of GWASs is to 

identify SNPs (and corresponding genes) that are 

associated with diseases. Fewer studies have 

investigated how well the genotype measurements of 

an individual predict outcomes of clinical interest 

about that individual, such as his or her risk of 

acquiring a disease. It is this latter application that is 

the focus of this paper. 

Bayesian Networks The Bayesian classification 

method that we introduce in this paper is based on 

learning a special class of Bayesian network (BN) 

models.  A BN consists of a directed, acyclic graph 

and a probability distribution for each node in that 

graph given its immediate predecessors (parents) [1]. 

The density of the arcs in a BN is one measure of its 

complexity. Sparse BNs can represent simple 

probabilistic models (e.g., naive Bayes models and 

hidden Markov models), whereas dense BNs can 

capture highly complex models. Thus, BNs provide a 

flexible method for probabilistic modeling.  

 Researchers have developed numerous methods 

for learning BNs from data and prior knowledge [2]. 

Several research efforts have involved learning BNs 

from SNP data, as for example the research reported 

in [3] and in the references cited there. To our 

knowledge, however, BNs have not been learned 

from genome-wide data containing more than 300K 

AMIA 2010 Symposium Proceedings Page - 127



  

SNPs in constructing a classifier to predict a clinical 

outcome, as we report in this paper. Indeed, such a 

task is challenging for any statistical or machine-

learning method, and most approaches depend on first 

performing feature selection [4] before learning a 

model from among those features that are selected. 

Alzheimer’s Disease Late onset Alzheimer’s disease 

(LOAD) is the commonest form of dementia in the 

above 65-year-old age group and affects 50% of those 

over 85 years old [5]. It is a progressive 

neurodegenerative disease that affects memory, 

thinking, and behavior. The cause and progression of 

LOAD are not well understood, and the genetic 

mechanisms of the disease remain largely 

unexplained, although it appears to have high 

heritability. The only genetic risk factor for LOAD 

that has been consistently replicated involves the 

apolipoprotein E (APOE) gene. The ε4 APOE 

genotype increases the risk of development of LOAD, 

while the ε2 genotype is believed to have a protective 

effect. Several GWASs for LOAD have been 

conducted and in this paper we utilize the data from 

one such study [6]. 

Methods 

This section describes the machine-learning 

algorithms that we evaluated, the Alzheimer’s disease 

SNP dataset that we used to evaluate them, and the 

methods we used to perform the evaluation. 

Dataset We obtained LOAD genome-wide data from 

a publically available download website at the 

Translational Genomics Research Institute 

(http://www.tgen.org/). These data were originally 

studied by [6]. The dataset consists of three cohorts 

containing a total of 1411 participants. Of the 1411 

participants, 861 had LOAD and 550 did not, and 644 

were APOE ε4 carriers (one or more copies of the ε4 

genotype) and 767 were noncarriers. We used the 

binary LOAD variable as the target outcome to be 

predicted. The original study investigators used an 

Affymetrix chip to type 502,627 SNPs for each 

participant, from which 312,316 SNPs were analyzed 

after applying quality controls. The average rate of 

missing SNPs per individual in the LOAD dataset is 

about 1.5%. In the present paper, we used those 

312,316 SNPs, plus two additional SNPs whose 

genotypes indicate the ε4 status of the APOE gene 

[6], namely, SNPs rs429358 and rs7412. Our goal 

was to accurately predict LOAD using these 312,318 

SNPs as predictors. 

Control Algorithms As control algorithms, we 

included naive Bayes, logistic regression, and linear 

and non-linear support vector machines [7]. Naive 

Bayes (NB) is a probabilistic classifier that assumes 

the features (predictors) are independent given the 

target variable (e.g., LOAD status). The distribution 

of the features for each target value is learned from 

training data. Although features are often not 

independent, NB has been frequently shown to 

classify well. We implemented the NB algorithm in 

MATLAB (version R2009a) using Laplace 

smoothing. Every SNP feature can have one of 4 

possible nominal states (genotypes), including a 

possible missing-value state; the specific genotype 

values can vary from SNP to SNP. 

 Logistic regression (LR) learns a posterior 

probability distribution for the outcome by fitting a 

logit function to the data. We applied the 

implementation of LR that is in the MATLAB 

statistics toolbox.  

 Support vector machines (SVMs) are binary 

classifiers that classify on the basis of a boundary in 

some feature space. The boundary is a function of a 

few samples (support vectors) of the training data. If 

the boundary is linear, the classifier is a linear SVM; 

otherwise, it is named according to the form of the 

function (kernel) used to map the original feature 

space to the training space. In this paper, we use a 

radial basis function (i.e., an RBF SVM). We applied 

an implementation of SVMs from the SVM-light 

repository [8]. The linear SVM requires only one 

penalty parameter to be specified. In addition, RBF 

SVM requires a parameter that specifies the spread of 

the kernel. These SVM parameters were set using 

standard heuristics. 

 For each of the above control algorithms, the 

process of predicting an outcome involved the 

following steps: data pre-processing, feature 

selection, model learning, and classification. Feature 

selection was necessary before training with the 

control algorithms, which computationally cannot 

handle the 312K+ variables in the LOAD dataset. We 

used the ReliefF algorithm to perform feature 

selection, because the algorithm has worked well 

when applied previously to genomic data [9]. ReliefF 

ranks a set of predictor variables in terms of how well 

they predict the target variable. By using a stratified 

nearest-neighbor-based search, it avoids assuming 

that the predictors are conditionally independent of 

each other.  

The EBMC Algorithm We have developed and 

implemented an efficient Bayesian multivariate 

classification algorithm, which is called EBMC. The 

algorithm searches over a particular class of Bayesian 

network (BN) models [1] to find a model that is 

highly probable given the training data and prior 

probabilities. EBMC emphasizes efficiency, while 

AMIA 2010 Symposium Proceedings Page - 128

http://www.tgen.org/


  

maintaining generality. Due to space limitations, we 

will describe EBMC using an illustrative example, 

which will convey the basic ideas of the general 

algorithm. 

 Figure 1 shows a simple example of EBMC 

searching over BN models. T denotes the target 

variable (e.g., LOAD) and the other nodes denote 

predictor variables (e.g., SNPs). All variables are 

assumed to be discrete or to have been discretized. 

Starting from an empty model, EBMC performs a 

greedy forward-stepping search to find the variable 

(node) that best predicts T, using a scoring measure 

that is described below. Figure 1a shows that H is 

found to be the single best predictor of T. Therefore, 

H is fixed henceforth as a predictor of T. EBMC next 

searches for an additional predictor that in 

conjunction with H best predicts T. Figure 1b shows 

it to be B.  

 Suppose there is no additional predictor that in 

conjunction with H and B predicts T better than does 

H and B. EBMC then converts the BN in Figure 1b to 

the statistically equivalent BN in Figure 1c. These 

BNs are equivalent in the sense that they can 

represent the same distributions, and therefore, they 

receive the same scores. EBMC checks if removing 

one or more of the arcs in Figure 1c would improve 

the prediction of T; suppose it would not, and thus, all 

the arcs are retained. 

 The search now continues as before in seeking 

additional predictors (parents) of T, in light of H and 

B being children of T. Figure 1d shows that Q is the 

single predictor that best improves the prediction of 

T. Suppose there is no additional predictor that in 

conjunction with H, B, and Q predicts T better. Then 

the BN in Figure 1d is converted to the statistically 

equivalent BN in Figure 1e. Finally, suppose there is 

no additional predictor that when added as a parent of 

T improves on the score of the BN in Figure 1e. In 

that case, the search stops and the BN in Figure 1e is 

returned and used to predict the test cases. This BN 

allows both of the included rules to collaboratively 

influence T. 
 

 
Figure 1. An example of EBMC models and EBMC 

search.  

EBMC uses two types of BN models that have been 

previously investigated. The models in Figures 1a and 

1b are effectively Bayesian rules [10] that predict a 

target. The BNs in Figures 1c and 1e are called 

augmented naive Bayes (ANB) networks [11], 

because they each augment a naive Bayes model with 

arcs among the child nodes; if enough arcs are 

included among the children, any distribution of the 

form P(T | children) can be represented. EBMC 

searches over hybrids of these two types of BN 

structures (rules and ANBs), one hybrid of which is 

shown in Figure 1d. It is always looking for an 

additional rule that can improve the prediction of the 

target in light of the predictor variables that are the 

children of the target. We note that EBMC can be 

viewed as a search strategy for locating a high-

scoring Markov blanket BN of the target T. Markov 

blankets have been shown to yield highly effective 

probabilistic classifiers; Aliferis et al. [12] provide an 

excellent review and investigation of this topic.  

 A key advantage of EBMC’s hybrid search 

method is its efficiency. In particular, the time 

complexity of search is O(r·s
2
·m·n), where r is the 

total number of rules incorporated into the model 

(e.g., two in the example above), s is the maximum 

number of parents of target T in any model (e.g., two 

in the example), n is the total number of potential 

predictors, and m is the number of cases (records) in 

the training database. Often r and s will be quite small 

compared to m and n, and thus, the run time will be 

dominated by the size of the training dataset, which is 

m·n. Any algorithm that considers all the data will 

require time that is proportional to m·n or greater. 

 EBMC uses the supervised (prequential) scoring 

method described in [13] in conjunction with the 

BDeu scoring measure described in [14]. This scoring 

approach evaluates how well the predictor variables 

(both parents and children) predict the target, which 

is an appropriate focus when constructing a predictive 

model. The BDeu scoring measure has a prior 

equivalent sample size (pess) parameter that in 

essence controls how much smoothing occurs in 

estimating probability parameters; the higher is pess, 

the greater the smoothing that occurs. EBMC also has 

a parameter enp that controls the probability that any 

given variable should be included as a predictor of T. 

Briefly, we use a binomial distribution to represent 

this structure prior, and enp denotes the expected 

number of predictors of T. The larger we make enp, 

the more predictors that are likely to be included in 

the model M that is output by EBMC. 

 If a predictor variable had a missing value, we 

assigned it a special value (the value MISSING in 

EBMC and -1 in the control algorithms) and treated it 

as being a known value. Thus, we did not assume that 

data were necessarily missing at random.  

AMIA 2010 Symposium Proceedings Page - 129



  

Experimental Methods 

We randomly partitioned the 1411 cases in the LOAD 

dataset into five approximately equal parts such that 

each part had a similar proportion of LOAD cases. 

We used these partitions to perform five-fold cross 

validation. For each machine-learning method, we 

trained a model on four partitions and tested on the 

remaining partition. We repeated this process for 

each possible test partition. In this way, we obtained a 

LOAD prediction for each of the 1411 cases. The 

results below are based on these 1411 predictions. 

This five-fold cross-validation process generated five 

models for each of the machine-learning methods. 

The results reported below about modeling 

characteristics of a method are based on the average 

over the five models produced by the method. 

 We provided each of the control algorithms with 

the n top-ranked SNP features that were produced by 

ReliefF, where n varied over selected values from 1 

to 500; it seemed to us that these values would 

provide a plausible range over which a best model 

would be induced. The control algorithms and 

ReliefF were run on a MacPro (dual quad-core Intel 

Xeon 2.93 GHz processor) with 16 GB of RAM. 

 We ran EBMC with parameter settings in which 

pess = 1, 10, and 20, and enp = 1, 10, and 20, which 

seemed to be reasonable ranges for these parameters. 

EBMC was run on a PC with a 2.33 GHz Intel 

processor and 2 GB of RAM. 

 We evaluated predictive performance using the 

area under ROC curve (AUROC). For methods that 

output probabilities, we evaluated calibration using 

calibration plots.  For each method, we recorded the 

time required for model construction on the training 

cases and for model inference on the test cases. 

Results 

Table 1 shows that all the control algorithms and 

EBMC had a maximum AUROC of 0.72 or 0.73. A 

pairwise comparison of the difference in AUROCs 

between EBMC and each of the control algorithms 

was not statistically significant (p > 0.7; minimum 

95% CI of -0.017 to 0.023). The control algorithms 

each had a maximum AUROC when using the top 10 

variables output by ReliefF.  EBMC had a maximum 

AUROC with pess = 20 and enp = 20, shown as “p20 

e20” in Table 1. Figure 2 shows for each method the 

ROC curve with the highest AUROC. It is visually 

apparent that the methods perform quite similarly. 

The inflection point near 1-specificity = 0.2 is due to 

an APOE SNP that is a strong predictor of LOAD; 

the best EBMC and control models all contained this 

SNP as a predictor. The last row in Table 1 shows 

that the AUROC of EBMC was the most stable over 

the range of models constructed for each method. 

 
Table 1. Area under the ROC curve (AUROC) for 

models induced by the control and EBMC methods. 
 

 
Figure 2. Shown here for each method is the ROC 

curve with the highest AUROC. 

Figure 3 shows a calibration plot for the three models 

from Figure 2 that output posterior probabilities, 

namely, NB, LR, and EBMC. The calibration of LR 

and EBMC appear good, although LR has better 

calibration according to the Hosmer-Lemeshow (HL) 

statistic (0.25 for LR vs 0.04 for EMBC). For the 

other EBMC models listed in Table 1, the HL statistic 

ranged from 0.16 to 0.92. NB had poor calibration 

with a HL statistic below 0.00001, which is consistent 

with NB often being poorly calibrated. 

 In terms of computation time, ReliefF required 

approximately 4400 seconds of CPU time. The best 

control models from Figure 2 were trained in less 

than one second on average, except RBF SVM, which 

required about 8 seconds. Thus, the total time to train 

the control models (feature selection plus model 

induction) was about 4400 seconds. EBMC required 

on average about 1700 seconds to find the best 

model, and it searched approximately 2.7M models to 

find it. EBMC’s best model on average contained 

about 5 predictors.  

 

AMIA 2010 Symposium Proceedings Page - 130



  

The time required to predict all 1411 tests cases was 

less than one second for all methods and models. 

 
Figure 3. Calibration plots for NB, LR, and EBMC. 

Discussion 

The results show that EBMC performed statistically 

indistinguishably from the control algorithms in terms 

of AUROC and almost as well in terms of calibration. 

The predictive performance of all the models was 

strongly influenced by a single APOE SNP that is 

highly predictive of LOAD. EBMC was able to use 

high dimensional genome-wide data without needing 

a feature-selection preprocessing step. On average, 

EBMC was more than twice as fast in learning its best 

model as were the control algorithms, when feature-

selection time is considered.  

 Limitations of this study include that only one 

genome-wide dataset was used, albeit an interesting 

one on an important disease. Also, although the 

control algorithms in the study were standard 

methods of comparison in performing machine 

learning evaluations, additional control methods can 

be applied in future evaluations. Similarly, it will be 

useful to apply additional feature-selection methods. 

 Now that EBMC has been shown to run in an 

acceptable amount of time and perform competitively 

with several standard machine-learning methods, 

directions for future research include (1) providing 

EBMC with informative priors based on knowledge 

from the literature and (2) performing inference using 

model averaging, both of which are natural extensions 

to make within a Bayesian framework. Also, we plan 

to investigate additional genome-wide datasets, as 

well as the prediction of clinical outcomes when 

using as predictors both traditional clinical variables 

and genome-wide variables. 

Acknowledgements 

We thank Mr. Kevin Bui for his help in data 

preparation, feature selection, and the statistical 

analysis of results. The research reported here was 

funded by NLM/NIH grant R01-LM010020 and NSF 

grant IIS-0911032. 

References 

1.  Darwiche A. Modeling and Reasoning with 

Bayesian Networks (Cambridge University Press, 

2009). 

2.  Perrier E, Imoto S, Miyano S. Finding optimal 

Bayesian networks given a super-structure. 

Journal of Machine Learning Research 9 (2008) 

2251-2286. 

3.  Malovini A, Nuzzo A, Ferrazzi F, Puca AA, 

Bellazi R. Phenotype forecasting with SNPs data 

through gene-based Bayesian networks. BMC 

Bioinformatics 10, Suppl 2 (2009)1-9. 

4.  Saeys Y, Inza I, Larranaga P. A review of feature 

selection techniques in bioinformatics. 

Bioinformatics 23 (2007) 2507-2517. 

5.  Goedert M, Spillantini MG. A century of 

Alzheimer's disease. Science 314 (2006) 777-

781. 

6.  Reiman EM et al. GAB2 alleles modify 

Alzheimer's risk in APOE carriers. Neuron 54 

(2007) 713-720. 

7.  Bishop CM. Pattern Recognition and Machine 

Learning (Springer, 2006). 

8.  Joachims T. Making large-scale SVM learning 

practical. In: Advances in Kernel Methods - 

Support Vector Learning. Schölkopf B, Burges 

C, Smola A (eds.) (MIT-Press, 1999).  

9.  Moore JH, White BC. Tuning ReliefF for 

genome-wide genetic analysis. Lecture Notes in 

Comp. Sci. 4447 (Springer, 2007) 166-175. 

10.  Gopalakrishnan V, Lustgarten J, Visweswaran S, 

Cooper GF. Bayesian rule learning for 

biomedical data mining. Bioinformatics 26 

(2010) 668-675. 

11.  Friedman N, Geiger D, Goldszmidt M. Bayesian 

network classifiers. Machine Learning 29 (1997) 

131-163. 

12.  Aliferis CF, Statnikov A, Tsamardinos I, Mani S, 

Koutsoukos XD. Local causal and Markov 

blanket induction for causal discovery and 

feature selection for classification -- Part I: 

Algorithms and empirical evaluation. Journal of 

Machine Learning Research 11 (2010) 171-234. 

13.  Kontkanen P, Myllymaki P, Silander T, Tirri H. 

On supervised selection of Bayesian networks. 

Proceedings of the Conference on Uncertainty in 

Artificial Intelligence (1999) 334-342. 

14.  Heckerman D, Geiger D, Chickering DM. 

Learning Bayesian networks: The combination of 

knowledge and statistical data. Machine 

Learning 20 (1995) 197-243. 

AMIA 2010 Symposium Proceedings Page - 131


