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An Algorithm for Computing Probabilistic Propositions 

Abstract 

Gregory F. Cooper 
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Knowledge Systems Laboratory 

Stanford University 
Medical School Office Building, Room 217 

Stanford, California 94305 

An algorithm for computing probabilistic propositions is presented. It assumes the 
availability a single external routine for computing the probability of one instantiated 
variable1, given a conjunction of other instantiated variables. Although the time 
complexity of the algorithm is exponential in the size of a query, it is polynomial in 
the size of a number of common types of queries. 

1. Introduction 

This paper presents an algorithm for computing the probability of a propositional logic 
sentence in the context of a set of known probabilities. Probability inference algorithms 
have typically been developed to calculate P(S1 I S2), where S1 is either a single 
instantiated variable or a conjunction of instantiated variables, and S2 is a conjunction 
of instantiated variables [Cheeseman 83, Lemmer 83, Cooper 84, Shachter 86, Pearl 
86, Pearl 87]. When S1 is a single instantiated variable, we call these single variable 

(SV) algorithms. 

We will extend probability queries to the case of S1 and S2 being well-formed formulas 
in propositional logic (propositions). Thus, it will be possible to apply disjunction, 
conjunction, and negation to variables in both the conditioning and conditioned part of 
a probability query. The propositional probability query algorithm for performing these 
type calculations, called PPQ, is a simple procedure based on calls to an SV algorithm. 
Thus, past implementations of SV algorithms can be easily augmented to answer more 
general propositional probability queries. Furthermore, PPQ can usually answer queries 
much more efficiently than a brute-force technique which explicitly sums over the 
entire joint probability space of the domain variables. 

PPQ is a specialization of general probabilistic logic algorithms [Nilsson 86]. It handles 

1The term instantiated variable is used to denote a variable wilh a known, assigned vulue. 
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only propositional logic rather than first order predicate logic. It also assumes that the 
background probabilistic information is sufficient for an SV algorithm to compute a 
unique (point) probability, rather than an upper and lower bound (interval) probability. 

2. The Principal Steps in the Algorithm 

The main steps underlying PPQ involve handling conditional probabilities and the 
propositional relations AND (/\) and OR (v). These are shown below. A overbar will 
be used to designate negation. 

Step I. Since P(S1 I S2) can be expressed as P(S1 1\ S2)/P(S2), the task of computing 
conditional propositional probability queries is readily decomposed into computing two 
marginal proposi tiona I probabi I i ties. 

Step 2. The next step is to transform a marginal propositional probability P(S) into a 
form P(S') in which S' contains only conjunctions and negations. This can be done by 
successive applications of de Morgan's law, namely, X1 v X2 ==} X1 1\ X2. 

Step 3. If S' consists only of a conjunction of n instantiated variables of the form 
X1 1\ X2 1\ ... 1\ X11, then by application of the chain-rule of conditional probabilities 
we know that: 

Note that each of these terms can be computed by an SV algorithm. 

Step 4. If S' consists of complex variable groupings, then it is successively simplified. 
Such groupings are due to negation operators. The key to simplifying S' is to remove 
negation operators. Suppose S' equals S'1 1\ S'2 1\ S'3, where each of these three terms is 
a proposition. In order to simplify this expression, the negation operator, which is 
grouping S'1 and S'2, can be removed as follows: 

P(S') P(S'1 1\ S' 2 1\ S'3) 
P(S'1 1\ S' 2 I s I 3) P(S'3) 
( 1 - P(S't 1\ S' 2 I S'3)) P(S'3) 

P(S' . 1 1\ S' 2 1\ S'3) 
( 1 - ----------------- ) P(S'3) 

P(S'3) 
= P(S'3) - P(S'1/\ S'2 1\ S'3) 

The terms P(S'3) and P(S'1 1\ S'2 1\ S'3) in the last line above are the only ones which 
must be computed; the derivation is just to clarify how the final line was obtained. 
Thus, the heart of Step 4 is the use of a simple elementary probability relation, namely, 
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P(X 1\ Y) = P(Y) - P(X 1\ Y), where X and Y are arbitrary propositions. In the above 
example, recursive application of this simplification rule to P(S'3) and P(S'1 1\ S'2 1\ S'3) 
will eventually yield probabilities with terms that consist of only a conjunction of 
instantiated variables. Step 3 can then be applied to determine the value of each of 
these probability terms and thus the value of P(S'). Note that none of the above four 
steps assumes that variables are binary. Thus, PPQ can answer queries that contain 
instantiated multi -valued variables. 

3. An Example 

As an example, consider a query to calculate P(x1 v x2 I x3 v x4). The steps that PPQ 
takes in answering this query are shown below. Note that some probabilities occur more 
than once (e.g., P(x3 1\ x4)), and caching would be useful in such cases. 

�--------------·J��------------, P((x1 v x2) 1\ (x3 v x4)) 
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4. Time Complexity Analysis 

The worst-case computational time complexity of PPQ is O(m 2m g(n)), where m is the 
number of variables in a query, n is the total number of variables in the knowledge 
base, and g(n) is the worst-case time complexity for a given SV algorithm to compute a 
probability using a knowledge base of size n. In the worst-case, the SV algorithm 
calculation, as reflected in g(n), can be quite expensive. For example, using belief 
networks, this inference problem is known to be NP-hard [Cooper 87]. On the other 
hand, there are SV algorithms with an O(n) time complexity for special belief network 
topologies, such as networks with only one pathway between any two nodes [Peart 86]. 
However, the main issue in the analysis of PPQ is the time complexity incurred due to 
calculations other than those of the SV algorithm. This is reflected in the m 2m term 
above. Therefore, the remainder of our complexity analysis will focus on the derivation 
of O(m 2m) as the upper bound on the number of calls to an SV algorithm, for a query 
of size m. 

The derivation of O(m 2m) as a worst-case upper bound is more easily understood in 
terms of the number of negation operators (produced in Step 2) that span two or more 
variables. Suppose there are q such negation operators for a given query. In Step 4, an 
inference problem of size q is reduced to two inference problems, each with size no 
greater than q - 1. Thus, the recurrence relation F(q) = 2 F(q - 1) is an upper bound 
on the time complexity of PPQ. F(O) is upper bounded by m, since the absence of 
negation operators leads to an SV algorithm being called at most m times to compute a 
conjunction of at most m variables (Step 2 above). The solution to this recurrence 
relation is F(q) = m 2Q. The O(m 2m) upper bound result is obtained by substituting m 
for q, since m > q for all queries that contain no redundant (unnecessary) negation 
operators. A query with redundant negation operators can be converted into a non­
redundant query format in O(m + q) time. Although O(m 2m) is an exponential worst­
case upper bound, it is important to note that the m 2m calls to an SV algorithm are 
only exponential in the size of the query, not in the size of the entire knowledge base 
or probability space. 

A lower bound on the number of SV algorithm calls that are required to compute a 
query of the form P(X1 1\ X2 1\ X3 1\ X4 1\ ... 1\ Xm-l 1\ Xm) can be shown to be 
n(m 2m). Thus, in the worst-case, the upper bound time complexity is the same as the 
lower bound time complexity. Therefore, the worst-case time complexity of PPQ is 
exponential, as a function of the query size. 

Although the worst-case time complexity of PPQ may be intractable, there are a 
number of practical type queries which do not require an inordinate number of calls to 
an SV algorithm. For example, suppose P(Y I X) is to be computed, for propositions Y 
and X. Furthermore, suppose that X is a conjunction of instantiated variables; in reality, 
this is often the case� Let m be the combined number of variable references in both Y 
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and X. The number of SV algorithm calls required to compute P(Y I X) will be O(m) 
when Y is of one of the following forms, and Yi and Yij are single instantiated 
variables: 

1. y I 1\ y 2 1\ ... 1\ y k· 
This is a very common type of query. It is calculated by simply using Step 3 
above. This form of query can be used to determine the probability of a 
multi-etiology diagnosis. 

2. Y 1 V Y 2 V ... V Y k· 
This type of query could be used to determine the probability that at least 
one etiology, from among a given set of etiologies, has occurred. 

3. (Y 11 1\ y 12 1\ ... 1\ y 1s ) V (Y 21 1\ y 22 1\ ... 1\ y 2s ) V ... 1 2 
V (Yrl 1\ Yr2 1\ ... A Yrs ), 

r 

where r is bounded from above by some constant. This is a generalization 
of 1 and 2 above. This type query can be used to determine the probability 
that at least one multi-etiology hypothesis is true, from among a given set 
of multi -etiology hypotheses. 

4. (Y 11 V y 12 V ... V y Is ) 1\ (Y 21 V y 22 V ... V y 2s ) 1\ ... 1 2 
1\ (Y r1 V Y r2 V ... V Y rs ), 

r 

where r is bounded from above by some constant. This type query is also a 
generalization of 1 and 2 above. lt can be used to determine the probability 
of a multi-etiology diagnostic hypothesis, where each etiology in the 
hypothesis is an abstract etiological class which is represented by disjunction. 

Thus, although in the worst-case the time complexity of PPQ is exponential in the size 
of a query, it is polynomial in t�e size of a number of common types of queries. This 
pragmatic tractability, plus. the generality and simplicity of PPQ, make it a potentially 
useful algorithm in systems that reason probabilistically. 
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