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1. Introduction 

A particular graphical representa-
tion of probabilistic relationships 
among variables, called a Bayesian 
belief network, has been independent-
ly defined and explored by several 
researchers. This independence is 
manifested in the plethora of syn-

{ .nyms for Bayesian belief networks 
a!( 1]' such as causal nets [2, 3], prob-
'-1bilistic causal networks [4], influence 

diagrams 1 [5, 6], and causal networks 
[7]. We shall use the term belief net-
works in this paper. 

Belief networks show promise as a 
powerful representational framework 
for constructing expert systems that 
reason under uncertainty [8, 9]; they 
provide platforms for knowledge ac-
quisition [10-12] and for probabilistic 
inference [7, 13, 14]. This representa-
tional power is particularly important 
in domains in which conclusions, in-

I A belief network is a special case of an 
intluence diagram. An intluence diagram 
represents decision alternatives and outcome 
values in addition to the probabilistic associa-
tions among variables found in a belief nct-
work. 
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termediate states, and evidence are 
related by complex interactions, mak-
ing knowledge acquisition and knowl-
edge-base maintenance difficult. 

Algorithms for belief-network in-
ference, such as those developed by 
Pearl [13, 14] and Lauritzen and 
Spiegelhalter [7], allow the user to set 
nodes to specific values, after which 
these algorithms compute the pos-
terior distributions over the remaining 
nodes, and thus provide a simple yet 
general mechanism whereby the user 
may enter evidence and determine the 
ensuing implications. Despite the in-
tuitive appeal of this inference para-
digm, the run-time complexity of gen-
eral belief-network inference may be 
too great for solving many complex 
problems in a practical amount of 
time; in fact, Cooper has shown that 
probabilistic inference using belief 
networks is NP-hard [15]. 

In an attempt to increase the tracta-
bility of belief-network inference, re-
searchers have focused their attention 
on developing approximate and spe-
cial-case algorithms for belief-network 
inference [1, 4, 10, 16, 17]. A special-
case algorithm might prove useful, for 
example, where a relatively small sub-
set of possible values of evidence 

nodes in a belief network covers a 
large proportion of all possible values 
typically encountered when using the 
network. 

One special-case algorithm, that of 
precomputing results for future use, 
has been proposed as a foundation for 
planning systems [18]. For belief net-
works that represent a highly skewed 
distribution of joint probabilities of 
evidence, storing a small number of 
precomputed cases to capture a large 
proportion of the likely uses of the 
network may lead to a significant 
increase in the speed of inference in 
many cases. We describe here the 
foundations of belief-network infer-
ence, and report the results of a set of 
algorithms that cache (precompute 
and store) a small subset of a belief-
network cases to decrease the ex-
pected running time for inference. 

2. Belief Networks 

A belief-network structure is a fi-
nite directed acyclic graph in which 
nodes represent the variables of inter-
est, and arcs from parent nodes to 
child nodes represent a probabilistic 
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Squinting Improves 
Vision 

Patient Retinal Reflex 
Complains of Is Undetectable 
Poor Vision 

peA) =0.10 P(G=T I A=n =0.75 P(C=T I A= n = 0.40 

peG = T I A = F) = 0.15 P(C = T I A = F) = 0.01 

peS = T I G = n = 0.80 

pes = T I G = F) = 0.05 
P(V= T I G=T, C =n = 0.95 P(R= TIC = n = 0.75 

P(V = T I G = T, C = F) = 0.75 PeR = TIC = F) = 0.05 

P(V = T I G = F, C = n = 0.40 

P(V = T I G = F, C = F) = 0.05 

Fig.1 An example of a belief network. 

association between the child and its 
parents. Probabilities are attached to 
arcs in a belief-network structure; 
these probabilities capture the uncer-
tainty inherent to the relationships 
among the variables. In particular, for 
each node Xj with a set of parents 7[j, 

there is a conditional probability dis-
tribution P(Xj I 7[j); for each Xj without 
parents, there is a prior probability 
distribution P(x;). 

Fig. 1 contains a belief network 
from the domain of visual disturb-
ances; it has been greatly simplified 
for the purpose of illustration. For 
conciseness, some probabilities are 
not shown in the Figure, but all can be 
computed readily from those pre-
sented. For example, 

P( G = F I A = T) = 1 - P( G = 
= T I A = T) = 1 -0.75 = 0.25. 

Belief-network semantics dictate that 
patient complains of poor vision and 
retinal reflex is undetectable be condi-
tionally independent given patient has 
cataracts; that is, once you know 
whether the patient has cataracts, 
knowing whether a retinal reflex is 
undetectable tells you nothing about 
whether the patient complains of poor 
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v1sIOn. Were this independence as-
sumption invalid, other interrelation-
ships among the variables would re-
quire representation by additional arcs 
in the belief network. In the example, 
patient complains of poor vision is 
associated with eyeglasses improve vi-
sion and patient has cataracts, and 
these associations are symbolized by 
the arcs from eyeglasses improve vi-
sion and from patient has cataracts to 
patient complains of poor vision. 

If a variable is associated with sev-
eral other variables (shown as parent 
nodes in the graph), the person con-
structing the belief network must 
specify the probabilities of each vari-
able's values given each possible com-
bination of that variable's parents' 
values. For example, in Fig. 1, the 
probabilities for V = T are specified 
for each possible combination of val-
ues for this node's parents, G and C. 
Although tables or lists are usually 
used to express probabilistic relation-
ships among variables, closed-form 
functional probabilistic relationships 
can also be used. 

Conditional probabilities in belief 
networks can be used as "if-then" 

rules in the construction of probabilis-
tic expert systems. In this interpreta-
tion, a rule in a belief network is a 
conditional probability of the form 
P(Xj I YIo Yl, ... Yo), where Xj and Yl, Yl, 
... Yo are variables with assigned val-
ues. Each variable has an associated 
rule family, which is the collection of 
conditional probabilities for each pos-
sible combination of values that this 
variable and its parents can assume. 
For example, in Fig. 1, the probability 

P(V = T I G = 1: c = T) = 0.95 
corresponds to the rule "If G = T and 
C = T then V = T (with probability 
0.95)." There are three other rules in 
this rule family corresponding to the 
three other probabilities below 

P(V = T I G = 1: c = T) 
in Fig. 1. In fact, there are a total 0 .. 

eight rules in this family, but half of 
them are redundant, in that they can 
be derived from those rules shown in 
the Figure. 

The prior and conditional prob-
abilities explicitly represented in a 
belief network are sufficient for com-
puting any probability of the form 
P(E> I cfJ), where E> and cfJ are mem-
bers of the power set of this belief 
network's variables. The key feature 
of the belief-network paradigm is its 
explicit delineation of conditional in-
dependence among variables, which in 
turn decreases the number of prob-
abilities required to capture the fU) 
joint distribution. We shall now fo 
mally define the conditional indepen / 
ence that is expressed in the structure 
of a belief network. We need the 
following auxiliary definitions: 

- U is the set of all n nodes in a given 
belief network. 

- A node Xj is a direct predecessor of 
node Xi if there is an arc form Xj to 
Xi· 

- 7[j is the set of all direct predeces-
sors of Xi. 

- A node X k is a successor of node Xi 
if there is a directed path from Xi to 
XI<. 

- Si is the set of all successors of Xi. 
- S;' is the complement of Si, 

excluding Xi itself. Thus, S;' = 
= (U\Sj) \ {Xi}' where \ is the set-
difference operator. 

- Qi is the power set of S;' . 

Melh. Inform. Mell .. Vol. 30. No.2. 1991 

For personal or educational use only. No other uses without permission. All rights reserved.
Downloaded from www.methods-online.com on 2015-06-02 | ID: 1000471717 | IP: 150.212.109.248



LV failure 
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MY 

(-"r.g.2 The ALARM network representing causal relationships, with diagnostic (e), intermediate (0) and evidence (@) nodes. Abbreviations 
, lre explained in Table 3. 

As an example, suppose that Xi = 
G in Fig. 1. In this case, 

U = {A, G, C, V, S, R}, 
JCj = {A}, 
Sj' = {A, S}, 
S/ = {A, C, R}, and 
Qj = {D, {A}, {C}, {R}, {A, C}, 
{A, R}, {C, R}, {A, C, R}}. 
In general, for a given node value 

Xj, a belief network expresses the fol-
lowing conditional independence rela-
tion: 

Vq E Qi: P(Xj I JCj U q) = P(Xj I JCi) (1) 
This relation states that, if the val-

( of the direct predecessors of Xi are 
'I with certainty, then the prob-

of each value of Ai is condition-
ally independent of any subset of the 
nodes in S/ - that is, of any subset of 
the nodes that are not successors of Xi' 
For instance, in the previous example, 
if we know just the value of A then we 
can determine the probability that G 
= T, regardless of the values of C or 
R. As another example of conditional 
independence, the absence of an arc 
from node A to node V is a statement 
that the value of node A is condi-
tionally independent of the value of 
node V, given the values of nodes G 
and C. In general, the absence of an 
arc from a node Xj in S/ to node Xi 
indicates that Xi is conditionally inde-
pendent of Xj , given just the values of 
the nodes in JCj. 

Shachter [19] has shown that, given 
the conditional-independence con-
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straints expressed in equation (1), a 
belief network represents the full 
joint-probability space over the 11 vari-
ables in the network by way of the 
following equation: 

II 

P (Xl> ... , xn) = II P (Xi I JCi) (2) 
i= I 

Therefore, we can compute the 
joint probability of any instantiation2 

of all the variables in a belief network 
as the product of exactly 11 prob-
abilities. 

For example, consider the follow-
ing calculation of the joint probability 
of all the variables in Fig. 1 with values 
instantiated to true (T): 

peA = T, G = T, C = T, S = T, 
V = T, R = T) = 
peA = T) x P( G = T I A = T) x 
P( C = T I A = T) x pes = T I G = 
T) x P(V = T I G = T, c = T) x 
peR = TIC = T) = 0.10 x 0.75 x 
0.40 x 0.80 x 0.95 x 0.75 = 1.7 x 
10-2 (3) 

We can :'ecover the complete joint-
probability space from the belief-net-
work representation by calculating the 
joint probabilities that result from 
every possible instantiation of the 11 

Thc term instantiated variable denotes a vari-
able with a known. assigned value. For 
example. an instantiated propositional vari-
able would have an assigned value of either 
true (T) or false (F). 

variables in the network. Instead of 
representing all 2" probabilities in the 
joint space3 , however, we need repre-
sent only P(Xj I JCj) for each node value 
Xi in the network; this representation 
may require a total of many fewer 
than 2" probabilities. For example, in 
Fig. 1, only 13 probabilities (rather 
than 64) are needed to represent the 
six-node belief network. Algorithms 
have been developed that directly 
manipulate the probabilities in a belief 
network to perform inference, obvi-
ating the need for explicit reconstruc-
tion of the underlying joint-probabil-
ity space. 

In summary, a belief network 
graphically represents the probabilis-
tic relationships among concepts in a 
knowledge base. This representation 
usually reduces the number of prob-
abilities needed (relative to the cardi-
nality of the full joint-probability 
space), and may also reduce the com-
putational time complexity of prob-
abilistic inference for some networks. 
Nonetheless, for belief networks with 
densely interconnected nodes, infer-
ence time can be prohibitively long. 
We now describe the implementation 
and results of a method for precom-
puting part of a belief network to 
increase the expected speed of infer-
ence. 

.' In fact. only 2" - I probabilities are necessary 
for a binary network. as they determine the 
value of the remaining probability. 
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Fig.3 The NetUse network representing causal relationships, with diagnostic (e), intermediate (0) and evidence (®) nodes. Numbering for 
nodes 1-37 is identical to that in Figure 2; labels for non-evidence nodes have been omitted for clarity. See Table 3 for labels and for 
explanations of abbreviations. The prefix Use before a node indicates that the node models the probability that a user will report a 
manifestation given that that manifestation has been observed. (After [19]. with permission.) 

3. Methods 

3.1 The Domain 

Precomputations performed on the 
ALARM belief network [20] served as 
our benchmarks for evaluations, al-

though the algorithm presented here 
could be applied to any belief net-
work. The ALARM network, shown 
in Fig. 2, is a prototype knowledge 
base that models a small subset of the 
medical conditions that anesthesiolo-
gists encounter in an operating room; 

Fig.4 The CaseUtility network representing causal relationships, with diagnostic (e), 
intermediate (0) and evidence (®) nodes, and the noisy-DR-utility node associated with the 
diagnoses. Numbering and labels for nodes 1-37 are identical to those in Figure 2; the labels 
have been omitted for clarity. See Table 3 for labels and for explanations of abbreviations. 
(After [19]. with permission.) 
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the corresponding graph has 37 nodes, 
46 arcs, and approximately 1017 ele-
ments in its joint distribution. Eight of 
the nodes represent a diagnosis, such 
as pulmonary embolus (a blood clot 
obstructing the circulatory system of 
the lungs). All these eight nodes are 
roots of the network; that is, they have 
no parents. Sixteen of the nodes re-
present evidence, such as blOOd, 
pressure, acquired during patient 
evaluation; these nodes have no chil- .' 
dren. The remaining 13 nodes repre-
sent intermediate variables, such as 
the catecholamine level (a measure 
that reflects the degree of physiologic 
and metabolic stress the patient is 
experiencing); these nodes have both 
parents and children. 

3.2 Cache-Construction Algorithms 

Three caching methods were im-
plemented: The BASIC, NETUSE, and 
CASEUTILITY algorithms4. In con-

We implemented the algorithms on" an 
Apple® Macintosh nTM with 2 megabytes of 
random-access memory, a 20-megabyte hard 
disk, and a Motorola® 68881 mathematics 
coprocessor. We used Lightspeed Pascal™, 
version 2.0, for software development. 
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structing the caches, we assumed that 
the developer would have access to 
ample computer time; thus caches 
would be limited strictly by available 
memory. We further assumed that 
inference would be performed in set-
tings in which memory is not limited, 
but in which the time to completion of 
inference is critical. Such would be the 
situation in an acute-care setting, 
where timely diagnoses may make the 
difference between effective treat-
ment and morbidity. 

In implementing these algorithms, 
we further assumed that the user 
would be interested only in instantiat-
ing evidence nodes and in observing 

"\iiagnosis nodes, a common applica-
of diagnostic expert systems. In 

this context, we defined a case as a set 
of evidence and diagnosis, and consi-
dered the joint probability of an evi-
dence set to be a proxy for the relative 
likelihood that a user would enter this 
evidence set during a consultation; 
this requirement was relaxed in the 
NETUSE version of the algorithm. 
These algorithms have in common 
three modules: a case generator, a 
cache builder, and a network 
evaluator, which we will present as the 
components of the BASIC algorithm. 

The ideal case generator would run 
without user intervention and would 
generate cases in order of likelihood. 
One readily apparent candidate al-
'gorithm is based on the exhaustive 
:'::numeration of all possible cases and 

sorting on the joint probability of 
the evidence set. For a belief network 
with a large number of possible evi-
dence sets, exhaustive enumeration of 
the evidence feature space is impracti-
cal; a heuristic method must be em-
ployed to decrease the size of the 
search space. One such method is 
Henrion's logic-sampling algorithm 
[16], which generates cases by instan-
tiating root nodes based on the nodes' 
prior probabilities, and then instan-
tiating nodes whose parents have all 
been instantiated, until all the nodes 
have been instantiated. For example, 
in the belief network in Fig.l, the 
algorithm would instantiate node A 
first; there is a 10% chance that this 
node would be set to True. Next, 
nodes G and C would be instantiated; 
assuming A were set to False, G and C 
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would be set to True with probabilities 
0.15 and 0.01, respectively. Finally, 
nodes V, Sand R would beinstan-
tiated stochastically, based on the val-
ues of G and C. Although this method 
represents a stochastic sampling of the 
space of possible cases, it has two 
desirable properties. First, it has a 
running time that is polynomial in the 
size of the belief network and in the 
number of cases generated. Second, it 
is expected to generate evidence sets 
that have relatively high joint prob-
abilities. In addition, the more likely 
cases tend to be generated earlier, so 
this algorithm performs an approxi-
mate sort on cases by their respective 
probabilities of occurring. 

The second module constructs the 
cache by comparing each generated 
case to those already in the cache. If 
the case is found to be new, this 
algorithm determines the joint prob-
ability of the case's evidence using the 
third module, an implementation by 
Suermondt of the Lauritzen-Spiegel-
halter algorithm [7]. The marginal 
posterior-probability distributions 
over the diagnosis nodes are also de-
termined with the Lauritzen-Spiegel-
halter algorithm, and the values of the 
evidence nodes, the joint probability 
of the evidence set, and the marginal 
posterior-probability distributions for 
the diagnosis nodes are stored in the 
cache. 

There are several possible termina-
tion criteria for the BASIC algorithm, 
including the number of cases gener-
ated, and the time spent on cache 
generation. We incorporated both of 
these criteria in our implementation. 

The NETUSE and BASIC algorithms 
are identical except for the structure 
of the belief network; to construct the 
NETUSE version of ALARM, we de-
fined additional nodes and acquired 
from our expert the corresponding 
conditional probabilities that an-
swered the question: "Given that the 
patient has evidence x, what is the 
probability that the user will in-
stantiate the belief-network node cor-
responding to x?" For example, x 
could be the evidence that squinting 
improves vision, we would then ac-
quire from our expert the probabilities 
that a user would instantiate the vari-
able squinting improves vision, con-

ditioned on whether the patient's vi-
sion improves with squinting. The 
NETUSE version of the ALARM net-
work is shown in Fig. 3. Given that the 
blood pressure is low, for example, 
this node will be instantiated as low, 
with probability 1.0, since we assume 
that, in the operating room, where the 
ALARM network would be used, the 
user always has access to (and always 
reports) the patient's blood pressure. 

In contrast to the NETUSE al-
gorithm, which models expected use 
of a belief network and gives an esti-
mate of how a user will instantiate the 
nodes, the CASEUTILITY algorithm 
supports utility-driven case genera-
tion: It generates those cases for which 
the user places a high utility on rapid 
diagnosis. The CASEUTILITY algorithm 
thus precomputes cases on the basis of 
their expected utilities rather than of 
their expected likelihoods. An ex-
ample of the ALARM network en-
hanced with a utility node is shown in 
Fig. 4. To simplify implementation 
and utility assessment, we im-
plemented a noisy-OR utility model 
[21], which is an analogue of the 
noisy-OR gate used to simplify prob-
abilistic knowledge acquisition and in-
ference [22]. Let P(di I C) be the prob-
ability of the ith diagnosis being true, 
given the current case C, and let t be 
the amount of time required to com-
pute P(di I C) for all diagnoses. We 
assessed one utility for each diagnosis 
in the network by asking the question: 
"What is the probability that a patient 
will die as a direct result of his physi-
cian learning of the system's probabili-
ty distribution for each di only after t 
minutes?" These utilities are assessed 
only for the presence of conditions, 
not for the absence of conditions, 
since the probability of dying from d i , 

given that di is false, is assumed to be a 
(that is, utCdi = False) = a for all d i 
and for all t within the time horizon of 
the system's application). Further-
more, we assume that: 

- Diagnoses occur at discrete points 
in time. 

- For any case, the availability of the 
system's probability distribution 
over the diagnoses always results in 
the patient's physicians making the 
correct diagnosis. 
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Table 1 Utilities for diagnosis nodes, t = 0 
and 2 min* 
Diagnosis (0;) Utility 

Uo(D,) U2 (D,) 

Hypovolemia 0.0020 0.0020 
LV failure 0.0050 0.0050 
Anaphylaxis 0.0050 0.1000 
AlA insufficient 0.0001 0.0010 
Pulmonary embolus 0.7000 0.7500 
Intubation 

Extubated 0.0010 0.0050 
One-sided 0.0000 0.0010 

Kinked tube 0.0001 0.0005 
Disconnection 0.0001 0.0005 

* LV failure: left-ventricular failure; AlA in-
sufficient: insufficient anesthesia or 
analgesia. 

- The physician will immediately ren-
der optimal treatment once the cor-
rect diagnosis is known. 

- For any case, the unavailability of 
the system's probability distribution 
over the diagnoses results in the 
physician treating the patient based 
on evidence alone. 

- Once one or more diagnoses occur, 
those diagnoses, and only those 
diagnoses, persist until they have 
been appropriately treated. 

- Utility is a function only of diag-
nosis-related mortality, and not of 
diagnosis-related morbidity. 
Clearly, these assumptions are 

strong; we can relax them by addition-
ally modeling disease evolution, the 
expected decision-making behavior of 
the physician given the presence or 
absence of particular system recom-
mendations in the context of particu-
lar sets of evidence, and the expected 
outcome of physician actions on long-
and short-term morbidity and mortali-
ty given a diagnosis set. Although we 
acknowledge that many refinements in 
the utility model are both possible and 
desirable, our primary purpose here is 
to demonstrate the fundamental prin-
ciples of caching cases on the basis of 
expected-utility considerations. 

Generally, the time required to re-
trieve a case that is stored in the cache 
is negligible, because it is a simple 
table-lookup operation; therefore, we 
assume it to be instantaneous. Let 
Uld;) represent the utility of inform-
ing the physician of the probability of 
the ith diagnosis l time units after the 
onset of d;. Let U/D) represent the 
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utility of informing the physician of 
the probability of all d;, l time units 
after the beginning of one or more 
diagnoses. We calculate Ul(D) by: 

Ut(D) = 1 - II (1- Ut(d;)) (4) 
diED 

In this model, which has been 
called the noisy-OR utility [21], the 
probability that a patient dies by time t 
is just the probability that at least one 
disease will cause him to die by time t. 
Let U(D) = Un(D) - Ut(D) represent 
the net utility of caching a case with 
the diagnosis set represented by D, 
and let P(D I E) represent the prob-
ability of observing the diagnosis set D 
given the evidence E. 

The CASE UTILITY algorithm ran-
domly samples and caches cases on the 
basis of their expected net utilities, 
which are expressed as U(D) P(D I E). 
First, each diagnosis is instantiated 
based on its prior probability, and 
Ut(D) is calculated using equation (4) 
for a given t. Next, a random number 
is sampled from the uniform distribu-
tion on [0, 1]; if it is less than U(D), 

the evidence nodes E are instantiated 
using the BASIC algorithm starting with 
diagnosis set D; otherwise, another 
diagnosis set D is generated. This 
procedure biases the prior probability 
of the diagnosis set (used in the firstl. 
step of the BASIC algorithm) by the 
importance of caching cases that are _' 
associated with that diagnosis set. 

Table 1 shows our subjective es-
timates of a patient's probability of 
dying as a direct result of each condi-
tion remaInIng undiagnosed for 
a minutes and for 2 minutes. For ex-
ample, the probability of a patient 
dying as a direct result of anaphylaxis 
(an allergic reaction to a stimulus, in 
which the patient's blood pressure 
may drop to a fatally low level) is 
0.100 if there is a 2-minute delay in the 
diagnosis of anaphylaxis (even though 
the patient may be treated based on 
his symptoms within this 2-minute 
period); this risk is reduced to 0.005 if 
anaphylaxis is diagnosed immediately. 
In contrast, early diagnosis and inter-
vention do not have much effect on 
the mortality caused by hypovolemia 

MClh.lnform. Mcd .. Vol. 30. No.2. 1991 

" 

For personal or educational use only. No other uses without permission. All rights reserved.
Downloaded from www.methods-online.com on 2015-06-02 | ID: 1000471717 | IP: 150.212.109.248



0.60,-------------------------------------------------, 

0.50 

0.40 

0.30 

0.20 

0.10 

__ 
o 200 400 600 

Case Number 

Rg.G Cumulative joint probability ofthe evidence: BASIC algorithm. 

(a decrease in the patient's blood 
volume). We emphasize that the 
utilities in Table 1 are rough approxi-
mations that are intended to demon-
strate the concepts underlying utility-
based caching, and are not intended to 

BOO 1000 

( . be used in a system that recom-
mends therapy. 

--) 

evaluation algorithm. The daemon 
compares the user-supplied case with 
those in the cache; if a match is found, 
the marginal posterior probability for 
each disease is returned immediately. 
If the case is not found in the cache, 
the daemon passes the case to the 
network-evaluation module, and in-
ference proceeds as it would without 
the cache. The use of a daemon is 
apparent to the user only because 
some cases are evaluated much more 
rapidly than they would have been had 
the cache not been present. 

3.3 Inference 

Cache-based inference employs a 
daemon that intercepts cases bound 
for a conventional belief-network 

Table 2 Frequencies and prior probabilities for diagnosis nodes: All algorithms* 

Diagnosis Fraction of Generated Diagnoses Prior 
BASIC NETUsE CASE UTILITY probability 

Hypovolemia 0.125 0.135 0.125 0.10 
LV failure 0.076 0.092 0.076 0.05 
Anaphylaxis 0.010 0.010 0.019 0.01 
AlA insufficient 0.204 0.204 0.201 0.20 
Pulmonary embolus 0.015 0.010 0.101 0.01 
Intubation 

Normal 0.898 0.903 0.854 0.92 
Extubated 0.051 0.041 0.074 0.03 
One-sided 0.051 0.055 0.072 0.05 

Kinked tube 0.051 0.065 0.068 0.04 
Disconnection 0.116 0.107 0.125 0.10 

* LV failure: left-ventricular failure; AlA insufficient: insufficient anesthesia or analgesia. 
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4. ResuIts 

Figs.5 and 6 show the probability 
mass function (PMF) and cumulative 
distribution function (CDF), respect-
ively, for the ALARM cache gener-
ated by the BASIC algorithm; this 
cache was generated in approximately 
19 hours. Of the 98,304 possible evi-
dence sets in this network, the 841 
cases generated (0.85 percent) have a 
total probability of approximately 
0.53. Thus, a user instantiating every 
evidence node, and no other nodes, 
will receive results immediately in 
slightly more than SO percent of the 
cases, assuming that the evidence 
nodes are instantiated in accordance 
with probabilities in the belief net-
work. The average marginal prob-
abilities for each of the diagnosis 
nodes are presented in Table 2; these 
numbers give an estimate of which 
diagnoses were most common in the 
generated cases. As expected, BASIC 
diagnoses were generated roughly in 
proportion to their prior probabilities. 

In contrast to the cache generated 
by the BASIC algorithm, that resulting 
from the NETUsE algorithm has many 
small evidence sets with relatively high 
probabilities (Fig.7), reflecting the 
fact that the user will almost never 
instantiate values for all the evidence 
nodes. Note that these evidence sets 
are unique but not mutually exclusive; 
for example, both the evidence sets 
(CVP = Low) and (CVP = Low, BP 
= High) may be generated as part of 
this cache. Clearly, the sum of the 
probabilities of these evidence sets 
will exceed 1.0 if enough sets are 
generated. The average marginal 
probabilities for each of the NETUsE 
diagnosis nodes (Table 2) reveal ap-
proximately the same distribution of 
diagnoses as in the BASIC cache; only 
the likelihood of evidence being pre-
sented has changed. 

Table 2 also shows the average 
marginal probabilities for each of the 
diagnosis nodes for the cases in the 
CASEUTlLlTY cache. As expected, the 
diagnoses associated with the greatest 
changes in utility of using the cache 
are most likely to be included in cases 
constituting the cache. In particular, 
the average marginal probabilities of 
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Table 3 Explanation of abbreviations used in Figs. 2-4. (From [191. with permission.) 
Abbreviation 

AnestlAnalgesia insufficient 
art. C02 
CO 
CVP 
Error Cauter 
Error Low Output 
exp.C02 
Fi02 
History 
HR BP 

HR EKG 
HR SAT 
LVED Volume 
LV failure 
Min Vol 
MV 
PA Sat 
PAP 
PCWP 
Pres 
Pulm. Embolus 
Sa02 
Stroke vol. 
TPR 
Vent.alv 
Vent lung 
Vent Machine 
Vent tube 

Number Meaning 

20 insufficient anesthesia or analgesia 
33 arterial carbon-dioxide content 

6 cardiac output 
1 central-venous pressu re 

30 error in HR reading due to electrocautery device 
28 error in HR reading due to low cardiac output 
14 carbon-dioxide content of expired gas 
12 fraction of oxygen in inspired gas 
3 history of left-ventricular failure 
7 heart rate obtained from a blood-pressure 

monitor 
8 heart rate obtained from an electrocardiogram 
9 heart rate obtained from an oximeter 

25 left-ventricular end-diastolic volume 
18 left-ventricular failure 
15 minute volume, measured 
16 minute volume, calculated 
32 pulmonary-artery oxygen saturation 
10 pUlmonary-artery pressure 

2 pulmonary-capillary wedge pressure 
13 breathing pressure 
21 pulmonary embolus 
11 arterial-blood oxygen saturation 
26 stroke volume 

4 total peripheral resistance 
34 alveolar ventilation 
35 pulmonary ventilation 
37 minute ventilation measured at the ventilator 
36 ventilation measured at the endotracheal tube 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 
o 200 400 600 800 

Case Number 

Fig.7 Joint probability of the evidence: NETUSE algorithm. 
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anaphylaxis and pulmonary embolus 
are 2 and 10 times higher than their 
respective prior probabilities. 

5. Discussion 

The results of the BASIC algorithm 
are consistent with the hypotheses that 
a relatively small number of evidence 
sets in the ALARM belief network 
span a significant proportion of the 
total evidence space. In the case of the 
ALARM belief network, our results 
indicate that, regardless of the infer-
ence algorithm and the hardware plat-
form, a relatively small cache can' 
provide immediate results in more ' 
than half of the cases, yielding a 50% . 
speedup in inference. In modeling 
actual use of the network with the 
NETUSE algorithm, we find that we 
can readily relax the strong require-
ment that the user instantiate all the 
evidence nodes during a consultation, 
yet we still generated likely cases 
based on the properties of the belief 
network only. The CASE UTILITY al-
gorithm tends to generate diagnosis 
sets in proportion to the net change in 
utility of using the cache to diagnose 
them. The three algorithms have in 
common the emphasis on improving 
average-case performance; that is, 
they optimize speed of inference 
based on expected-probability or ex-, 
pected-value metrics. 

This introduction to the potential of .! 

the caching paradigm points to several 
areas for further research. A combina-
tion of the CASE UTILITY and NETUSE 
approaches could be implemented 
readily, leading to simultaneous mod-
eling of expected use of a belief net-
work (which node values are likely to 
be instantiated?) and expected need to 
use the belief network (which cases 
are important to diagnose early?). 
Different case generators might be 
based on daemons that silently sample 
input as users present cases to a belief 
network. This approach might be 
natural for a heavily used belief net-
work, in particular for one instanti-
ated automatically by sensors (for ex-
ample, a blood-pressure monitor). 
The subset of nodes cached in the 
belief network does not need to be 
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restricted to any of the sets presented 
here; caching based on subparts of the 
total belief network (e. g., Markov 
blankets [22]) might prove to be a 
powerful technique for separating fre-
quently instantiated subsets of a belief 
network from the other nodes, thus 
substantially reducing running time. 
Belief networks might then be decom-
posed into modules, each indepen-
dently cached, leaving only the rarely 
used subnetworks to be evaluated by 
the standard algorithms. 

Although caching is effective for 
the ALARM network, its usefulness 
must be verified for a large variety of 
other networks. Ultimately, the ap-

of caching for prob-
abilistic inference must be evaluated 
empirically; networks that are evalu-
ated rapidly enough using current 
technology, or those that cannot be 
evaluated at all using existing al-
gorithms, clearly would not be suit-
able for caching, since cases could not 
be generated and evaluated. The net-
works in which an additional order of 
magnitude in performance improve-
ment would make the network useful 
are those that are most likely to be-
nefit from caching the results of prob-
abilistic inference. 

We anticipate further work with 
networks in which exact inference is 
impractical; for these networks, cach-
ing the results of simulation al-

\ gorithms might yield substantial im-
. provements in expected time for per-

I. ,; forming inference. Caching algorithms 
might also be appropriate subjects of 
metareasoning algorithms that deter-
mine the tradeoff between precompu-
tation and inference time [23]. The 
results presented here lead us to be-
lieve that cache-based inference can 
play an important role in enhancing 
the performance of real-time prob-
abilistic expert systems in medicine. 
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