
Journal of the American Medical Informatics Association Volume 3 Number 1 Jan i Feb 1996 

Research paper n 

A Temporal Analysis of’ QMR 

CONSTANTIN F. ALIFERIS, MD, MS, GREGORY F. COOPER, MD, PHD, 
RANDOLPH A. MILLER, MD, BRUCE G. BUCHANAN, PHD, 
RICHARD BANKOWITZ, MD, NUNZIA GIUSE: MD, MS 

Abstract Ob’ t* let Ive: To understand better the trade-offs of not incorporating explicit time 

-. 
in Quick Medical Reference (QMR), a diagnostic system in the domain of general internal medicine, 
along the dimensions of expressive power and diagnostic accuracy. 

Design: The study was conducted in two phases. Phase I was a descriptive analysis of the temporal 
abstractions incorporated in QMR’s terms. Phase II was a pseudo-prospective controlled 
experiment, measuring the effect of history and physical examination temporal content on the 
diagnostic accuracy of QMR. 

Measurements: For each QMR finding that would fit our operational definition of temporal finding, 
several parameters describing the temporal nature of the finding were assessed, the most important 
ones being: temporal primitives, time units, temporal uncertainty, processes, and patterns. The 
history, physical examination, and initial laboratory results of 105 consecutive patients admitted to 
the Pittsburgh University Presbyterian Hospital were analyzed for temporal content and factors that 
could potentially influence diagnostic accuracy (these included: rareness of primary diagnosis, case 
length, uncertainty, spatial/causal information, and multiple diseases). 

Results: 776 findings were identified as temporal. The authors developed an ontology describing 
the terms utilized by QMR developers to express temporal knowledge. The authors classified the 
temporal abstractions found in QMR in 116 temporal types, 11 temporal templates, and a temporal 
hierarchy. The odds of QMR’s making a correct diagnosis in high temporal complexity cases is 0.7 
the odds when the temporal complexity is lower, but this result is not statistically significant (95% 
confidence interval = 0.27-1.83). 

Conclusions: QMR contains extensive implicit time modeling. These results support the conclusion 
that the abstracted encoding of time in the medical knowledge of QMR does not induce a 
diagnostic performance penalty. 
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A frequently encountered heuristic in the develop- 
ment of medical decision support systems (MDSSs) 
is the implicit or abstracted modeling of time.‘,* This 
heuristic has significant implications for the design, 
implementation, and application phases of any given 
system that employs it. For the purposes of this pa- 
per, we define explicit time to be the handling of time 
that incorporates the three following components: 1) 
a time model, with well-defined fundamental tem- 
poral entities and properties, examples of which in- 
clude temporal primitives (points, intervals, pro- 
cesses) and a specific structure for time (a set of 
temporal properties such as direction, finiteness, and 
continuity); 2) a language for expressing the associ- 
ation of entities (objects, relations) with the time model 
(for example, events occurring within intervals, facts 
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being true or false for part or all of a time period); 
and 3) a set of appropriate inference rules that exploit 
knowledge about time and temporal associations to 
solve interesting problems (for example, if an event 
occurs before an interval, then it does not co-occur 
with any event following that interval).“-5 

This type of time modeling is in contrast with what 
we call implicit time, which is characterized by: 

1. Building temporal representations and inferences 
into propositional statements. 

2. Utilizing ordinary atemporal inference procedures 
to reason with the propositional statements. 

Typically, but not always, the user of the system is 
the abstractor of information (that is, the one who 
will provide the system with the truth or falsity of a 
proposition by utilizing his or her own temporal rea- 
soning capabilities). 

The research reported here intends to investigate the 
following hypothesis: For specific MDSSs and/or do- 
mains, abstracted time can achieve adequate performance, 
and thus by using if, one can avoid explicit time modeling 
and its associated costs. There are a number of addi- 
tional interesting questions associated with this con- 
jecture: 

1. What constitutes an appropriate collection of ab- 
stracted (atemporal) knowledge representations, 
corresponding to the domain to be modeled? 

2. Are there specific temporal entities that are crucial 
to MDSSs’ performance? What is the proper level 
of description of those entities? 

3. How would these results be useful for systems 
that operate in automated mode (i.e., when a hu- 
man operator mapping patient information to sys- 
tem temporal abstractions is not available)? 

We focus our attention on the problem of diagnosis, 
in the domain of general internal medicine (an im- 
portant and definitely non-trivial medical problem) 
and a particular system designed to solve it, Quick 
Medical Reference (QMR). QMR employs implicit time 
modeling and has been successfully evaluated against 
humans and similar systems, and carefully main- 
tained since the inception of its precursor INTERN- 
IST-1.6-9 

In particular, we wanted to examine the importance 
and effect of representing time implicitly on the per- 
formance of the system. In a classic statistics frame- 
work, this amounts to building a research design 
around the null hypothesis that the lack of explicit 

time in QMR does not cause decreased diagnostic 
performance, and trying to reject or accept the hy- 
pothesis. Part II of our study examines this hypoth- 
esis, as described below. 

An equally important task is the explanation of why 
the hypothesis is refuted or corroborated by experi- 
mental data; in other words, we must identify those 
characteristics of QMR’s implicit time handling that 
are responsible for its temporal robustness or insuf- 
ficiency. To provide such an analysis we need to first 
understand better the nature of implicit time in QMR. 
Part I of the study seeks to provide such an under- 
standing by studying the temporal abstractions found 
in QMR. 

In a review of temporal modeling in MDSSs, Kahn5 
proposes an empirical classification that places sys- 
tems in a spectrum of categories having at one ex- 
treme temporal ignorance (equivalent to out definition 
of implicit time), and at the other extreme integrated 
systems (i.e., systems based on a multitude of tem- 
poral models working in coordination to solve a par- 
ticular task). More specifically, he demonstrates how 
the earlier systems avoided the need for explicit 
knowledge representation and reasoning (KRR) by 
incorporating temporal information into ordinary 
atemporal formalisms. For instance, the INTERNIST- 
I system6 would ask questions of the type “Did the 
patient have a history of disease x?,” which clearly 
corresponds to an abstracted handling of time. It is 
obvious that the system’s developers were operating 
on the assumption that the user of the system would 
abstract relative data from historical observations and 
provide it to the program. The same approach was 
followed in a number of influential systems such as 
MYCIN, PIP, DXplain, CASNET, and ABEL.‘” 

The popularity of abstracted time in MDSSs can be 
attributed to factors that include the following: 

1. Because temporal information is reduced to fewer 
or more abstracted variables, complex evidence is 
grouped together, so that the resulting model is 
economical (or restricted, depending on one’s 
viewpoint) as far as complexity of evidential sup- 
port is concerned. 

2. Temporally implicit models require fewer param- 
eters than do their temporally explicit counter- 
parts. Thus, explicit models generally require more 
knowledge and data acquisition. Equivalently, if 
we make assumptions about unknown model pa- 
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rameters, then temporally implicit models require 
less assumptions than do explicit ones. 

Temporally implicit models rely on some external 
mechanism (typically a human operator) to pro- 
vide the MDSS with the truth or falsity of an 
abstracted temporal proposition, or alternatively, 
require an automated temporal abstraction mech- 
anism (usually coupled with a historical or fully 
temporal database). Thus, they exploit human rea- 
soning capabilities or decompose the temporal 
reasoning task into simpler subtasks. 

In addressing artificial intelligence (AI) problems, 
more expressive power generally means less com- 
putational tractability (and the opposite). Thus, 
we would expect that the ability to express tem- 
poral aspects of the problem domain is naturally 
followed by increased computational complex- 
ity.” 

Abstracted time was easier to model, especially in 
the earlier years of medical AI, when there was a 
relative lack of well-defined temporal models. Re- 
cent advances in temporal modeling have reduced 
the importance of this factor for modern MDSSs. 
Such advances include temporal logics,3,” connec- 
tionism methods, Markov decision processes, 
temporal belief networks/influence diagrams,‘*,‘” 
specific MDSSs that deal with dynamic do- 
mains,‘2,‘4m1X temporal databases, temporal data- 
base query languages, I9 and automated temporal 
abstraction methods.*” 

These arguments suggest that there are important 
trade-offs between explicit and abstracted time mod- 
eling. In other words, we need to examine why and 
how important is the ability to reason explicitly (as 
contrasted to an abstracted manner) about temporal 
processes and entities. The necessity of explicit time 
has been only partially explored in the medical AI 
and medical informatics literature, especially with re- 
spect to quantifying this importance. To our knowl- 
edge, there has not yet been a formal theoretical or 
empirical analysis of the trade-offs between explicit 
and implicit time for any realistic medical domain or 
MDSS. 

The basic arguments that have been offered in favor 
of the importance of explicit time in MDSSs are: 

1. The epistemological argument: observations of phy- 
sicians’ diagnostic and therapeutic problem solv- 
ing suggest that temporal models of normal and 
abnormal processes are used, and intricate tem- 

poral abstractions are created and employed to 
generate and validate (or rule out) competing hy- 
potheses. Additionally, physicians are able to uti- 
lize temporal planning for either diagnosis (e.g., 
“watchful expectancy”) or therapy.2’ 

2. The linguistic argument: analyses of discharge sum- 
maries and other medical texts indicate an im- 
pressive amount of temporal reasoning.14 

3. Pragmatics arguments: 

n The temporal domain argument: certain medical do- 
mains are based on the premise of a time-evolving 
process, and explicit time is fundamental for them 
[characteristic examples include the protocol-based 
therapy management, intensive care unit (ICU) real- 
time monitoring and intervention, and signal pro- 
cessing as in electrocardiographic (EKG) and elec- 
troencephalographic (EEG) interpretation]. 15rZ 

n The failure analysis argument: evaluation of MDSS 
diagnostic performance shows that some failures 
to reach the proper diagnosis can be attributed to 
a lack of temporal capabilities.h,‘6 

The epistemological and linguistic arguments are 
purely descriptive and do not in themselves prove the 
importance of explicit temporal reasoning in MDSSs. 
The temporal domain argument is true, but refers to 
clearly defined narrow types of MDSSs. There re- 
mains an open question about the importance of ex- 
plicit time in many areas of medicine, such as the 
domains of INTERNIST-I and MYCIN. These sys- 
tems’ need for explicit time could be substantiated 
by the failure analysis argument, in the sense that, 
ceteris paribus, if explicit time accounts for a sub- 
stantial number of diagnostic failures and the prob- 
lems cannot be fixed using implicit time models, then 
we can conclude that explicit time is indeed neces- 
sary. 

Through the present time, support for the failure 
analysis argument comes in the form of anecdotal 
evidence, rather than from experiments designed to 
investigate the validity of this hypothesis. One often- 
cited example is the 1982 New England Journal of Med- 
icine (NEJM) evaluation of INTERNIST-I, which, on 
the basis of three cases (of a total of 19 diagnostic 
problems), indicates that failure to represent explicit 
time caused diagnostic errors. But the 99% confi- 
dence limits of 3/19 (16%) are between 2% and 47%, 
suggesting that no strong conclusion should be reached 
from these data regarding the effects of not repre- 
senting explicit time. Even more importantly, the cases 
were not representative of the average encountered 
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clinical case, since they were NEJM clinicopatholog- 
ical conference cases that were selected on the basis 
of being very challenging.’ 

The previous discussion indicates a need for further 
investigation and quantitative analysis of the impor- 
tance of explicit time in MDSSs. For certain MDSS 
domains, this need seems well justified by the nature 
of the domain (i.e., the nature of the entities repre- 
sented is so deeply temporal, that either we could 
not reason about it without taking into account time, 
or it would be grossly ineffective to utilize some im- 
plicit/abstracted form of KRR). These domains/tasks 
include: 

n protocol therapy management,5,20 

n biomedical signal processing,22 

n “deep” causal models of diseases/physiology, which 
are modeled as dynamic systems,2” 

n ICU decision support,‘5 and 

human growth assessment 

In general terms, the characteristics of domains that 
seem to require explicit time are: 

optimization according to some time-dependent 
utility function, 

very small temporal scale, 

highly time-critical interventions, and 

the need for high precision in the identification of 
temporal patterns. 

Temporal Analysis of QMR’s Terms 

We devised a series of variables that correspond to 
what previous theoretical and empirical work sug- 
gests are important temporal reasoning and repre- 
sentation attributes.“-5*” These were used by the first 
author to classify each finding in QMR as temporal or 
atemporal, based on the following criterion. We clas- 
sify a QMR finding as temporal if any of the following 
is true: 1) it contains an explicit reference to either 
time points/intervals or units, 2) it refers to temporal 
relationships/reasoning, 3) it describes events or facts 
in some temporal context, 4) it refers to processes 
occurring over time (explicitly stable/evolving, or in 
sequence/overlapping), or 5) it mentions specific pat- 
terns (temporal or spatiotemporal). 

[{temporal relation}, {entities}, {qualifications}] 

The temporal relation is a set of temporal knowledge 
or reasoning statements characterizing the template. 
Entities is a set of non-temporal or temporal primi- 
tives that serve as arguments to the temporal relation. 
Finally, the qualifications set provides specific details 
as to what the particular nature of the various types 
captured by the template might be. The following 
example (partial description of template 10) illustrates 
these concepts: 

[{worsening, improvement, rapidly progressing}, 
{disease, abnormal finding, symptom}, {Hx, recent}] 

We additionally noted, from their representation in From this example template we can derive various 

Temporal finding Cinetidine adm prior to illness 

Figure 1 Levels in the abstraction process. Hx = history. 

the QMR knowledge base (KB), the QMR finding type 
(history, physical, simple-inexpensive laboratory, 
intermediate laboratory, advanced-expensive labo- 
ratory) and the QMR finding importance (i.e., the “im- 
port” value of QMR, which indicates the “need for 
a finding to be explained diagnostically if found”6), 
for all findings, regardless of temporal nature. We 
developed abstractions over the temporal findings 
(temporal types, temporal templates) and developed 
a temporal ontology for QMR, and examined tem- 
poral reasoning in QMR, in an incremental fashion, 
refining the abstractions as new QMR findings were 
examined. Temporal types correspond to simple ab- 
stractions over QMR findings. A template is an ab- 
straction over temporal types designed to capture in 
a concise manner the temporal aspects of types. A 
temporal type typically is an instantiation of only one 
template, although a few types can be viewed as 
specializations of more than one template. Templates 
can be used to generate types, although some in- 
stantiations of the templates may not belong in the 
original types found in QMR. A template has the 
following structure: 
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temporal types, for instance: “abnormal finding rap- 
idly progressing” (type 75), or “Hx (history) of recent 
worsening/improvement of abnormal finding/dis- 
ease” (type 25). We can also derive types not found 
in QMR, but which are reasonable generalizations/ 
variations of the existing types (e.g., “Hx of wors- 
ening symptom”). This occurs because in QMR the 
user cannot enter all findings with a temporal qual- 
ification, even if such a qualification exists for some 
findings. Whereas the temporal types provide the 
specific temporal abstractions employed by QMR, the 
templates serve as a summary and a generalization of 
those abstractions. A third concept, which we call 
reasoning types, denotes fundamental relations and 
other properties that can be combined to form tem- 
poral types (for examples of temporal types and rea- 
soning types, see Results sections 1.2-1.4). 

To ensure consistency in the categorization of tem- 
poral QMR findings (according to temporal type and 
reasoning type), the following procedure was fol- 
lowed: First, temporal findings were identified and 
separated from the rest of the QMR findings. Tem- 
poral types were developed from the temporal QMR 
findings. Second, values for the variables (i.e., tem- 
poral characteristics) for each temporal type were as- 
signed. Due to the limited -number of types (<120), 
consistency checks (with previously established tem- 
poral types) were easier and less error-prone to carry 
out than they would be with the full set of temporal 
QMR findings (776 in total). Third, after the types 
had been characterized, individual findings were cat- 
egorized as belonging to any specific temporal type. 
As a consequence, each finding would inherit the 
temporal attribute assignments of the corresponding 
abstract type. Fourth, each finding was examined for 
differences with the type it belonged to (due to the 
abstraction process), and the necessary adjustments 
were made to the deviating attributes of the individ- 
ual findings. Finally, templates and temporal reason- 

< 
DIAGNOSTIC SYSTEM 
EXPLICIT TIME “ON” 

Figure 2 An idealized experiment. 

CASES GROUP 1 CASES GROUP 2 
(Low TEMPORAL COMPLEXITY) (HIGH TFMPORAL COMPLEXlTY) 

I I 

t t 
f 

I QMR (IMPLICIT TIME) 
I 

PERFORMANCE 2 

Figure 3 A modified experiment. QMR = Quick Medical 
Reference. 

ing types were abstracted and classified empirically. 
Figure 1 illustrates the abstraction process from actual 
findings to temporal types, templates, and reasoning 
types. 

Standard descriptive statistics were computed for all 
variables. Bivariate associations of temporal attributes 
with the temporal classification/import/QMR-type of 
findings were examined with likelihood ratio (G*) 
tests of independence, Kendall’s tau, and the gamma 
coefficient (for ordinal variables). The association of 
import with temporal classification was further ex- 
amined with the previous statistics controlling for 
possible confounders.24 

Effects of Lack of Explicit Time on 
Diagnostic Performance 

Ideally, we would like to test the following (null) 
statistical hypothesis: Lack of explicit time in QMR does 
not cause decreased diagnostic performance when compared 
with the case where explicit time is employed. Figure 2 
shows an idealized experiment built around a post- 
test design 25 in which the same group of cases is 
presented to the system. Assuming that the diag- 
nostic system has explicit time that can be turned on 
and off at will, diagnoses are performed twice, once 
with explicit time being active, and once with explicit 
time being inactive. The performance in the first case 
is compared with that in the second one. Unfortu- 
nately, this ideal experiment is unattainable. There 
is no MDSS employing explicit time that operates 
with a scope comparable to that of general internal 
medicine. Nor is temporal reasoning typically imple- 
mented in a manner that can be turned on and off. 
Since modifying QMR to incorporate an explicit time 
model is equally infeasible for the purposes of this 
study,*‘j we designed a modified version of the pre- 
vious experiment, represented in Figure 3. 
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Table 1 n 

The Most Frequent Temporal Types 

1. Hx’ of syndrome/disease [11.2%] 
2. Hx of drug administration prior to current illness [S’S] 
3. Improvement/worsening of function after/during test/medical 

procedure/state [7.3%] 
4. Hx of familial disease/behavior [7.2%] 
5. Abnormal/normal finding/syndrome after drug/medical pro- 

cedure [4.4%] 
6. Hx of exposure to animals/factors [3.6%] 
7. Hx of recent medical procedure [3%] 
8. Hx of recent exposure to factor environment/food/behavior 

[2.7%] 
9. Increased/decreased rhythm/rate/speed (2.4%] 

10. Measurement per unit of time > Ct [2.3%] 

*Hx = history. 
tC = constant value. 

This is a pseudo-prospective design, where we first 
defined a measure of temporal content for patient 
records. Then we collected a set of patient cases and 
separated them in two groups: one of high and one 
of low temporal complexity. We presented each group 
of cases to the diagnostic system and derived a dif- 
ferential diagnosis for each case. Utilizing an appro- 
priate diagnostic performance definition, we derived 
a performance measure for each group. If the two 
groups differed only in their temporal contents, then 
we concluded that any difference found in the per- 
formance measures would be attributed to the in- 
ability of the system’s implicit time mechanism to 
cope with the temporal information found in the cases. 

We used 105 cases from the most recent formal eval- 
uation of QMRz7 (each consisting of history, physical, 
initial laboratory tests, and discharge summary and 
diagnoses). One of us (RB) was the primary inves- 
tigator in that study. The coding of the patient in- 
formation was done by experienced QMR users under 
the supervision of the last two authors (RB, NG). The 
patients were considered to be representative of the 
patients admitted to a large university hospital, since 
they were consecutive, unselected, patients present- 
ing to a university hospital covering a large urban 
area. 

The key concept in our experimental design was to 
make certain that the two patient groups indeed dif- 
fered only in temporal content, and were similar in 
terms of other properties that were suspected or known 
to be sources of diagnostic difficulty or even failure. 
First, we note that the history and physical exami- 
nation text of each patient record was separated into 
a number of individual pieces of information (POIs). 
A PO1 was defined as the smallest piece of clinically 

relevant information that could be meaningful if stated 
in the given document context. Thus, a PO1 could 
be either a stand-alone statement or a qualification 
of a previously established statement. To establish 
comparability between the two groups, we measured 
a set of potentially confounding variables (in a blinded 
fashion with respect to outcome), which were: rare- 
ness of the primary diagnosis; case length; presence 
of uncertainty (as percentage of uncertain POIs); use 
of spatial and causal information; number of diseases 
in the gold standard (GS)-that is, discharge-verified 
diagnoses for the patient case; and levels of reasoning 
involved. Note that it is important to maintain a pro- 
spective design, to avoid a case-control setup (i.e., 
trying to identify the temporal differences between 
the cases for which the system had a high perfor- 
mance vs the cases for which it had a low diagnostic 
performance), and the associated potential biases with 
respect to identifying the risk factor, and establishing 
case-control comparability.2* Other important con- 
siderations in the execution of this design are: 

1. Temporal content assessment: Each PO1 in the 
history and physical (H&P) text was characterized 
as temporal or not, based on the same criteria used 
to classify QMR findings (see Methods, section 1). 
For each POI, the values of the confounder attri- 
butes were assessed. The percentage of temporal 
POIs, divided by the total number of POIs in the 
case, constituted our measure of temporal content 
for that case. For each POI, the temporal attributes 
utilized in the assessment of explicit time were 
evaluated and summarized for each case. We uti- 
lized principal components analysis to identify 
summary linear combinations of those attributes 
as more detailed metrics of the case temporal con- 
tent. Similar measures of complexity and temporal 
content were assessed for the QMR encodings for 
each case. Finally, we identified temporal types 
in the raw clinical case descriptions that exceeded 
the expressive capacity of the QMR abstractions. 
The assignment of a value to each temporal at- 
tribute (for both the patient H&P and the QMR 
inputs) was done by the first author, who was 
blinded to the case outcome. The confounding 
variables were defined as follows (most based on 
the identification of POIs) for each case: the rare- 
ness of the primary diagnosis was measured as 
the prevalence of disease as recorded in the QMR 
KB (via a quasi-logarithmic prevalence index), the 
case length as the number of POIs, the presence 
of uncertainty as the percentage of uncertain POIs, 
the use of spatial and causal information as the 
percentage of spatial and causal POIs, respec- 
tively, the number of diseases in the GS diagnosis 
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as such, and, finally, the levels of reasoning in- 
volved as the number of distinct levels referred to 
in the case. 

2. Performance assessment: Our criterion was the 
percentage of cases for which QMR found the 
primary diagnosis (i.e., the top diagnosis in the 
discharge summary diagnoses list). 

The following matching criterion was used: 

n A diagnostic match occurred if and only if the GS 
primary diagnosis is clinically close to one of the q 
first diagnoses in the QMR differential diagnosis 
list, where q is a percentage. The primary dis- 
charge diagnosis (IcD9 primary diagnosis) was 
considered to be the GS. 

n q is defined to be a percentage of diagnoses from 
QMR’s differential diagnosis list. We experimented 
with various values for the q parameter (see Meth- 
ods), and decided to use q = 100% to provide a 
better balance of sample size between successful 
and non-successful diagnostic groups (in retro- 
spect, sensitivity analysis shows that our results 
are insensitive to this parameter for the range of 
all possible values: 20% to 100%). 

H A QMR diagnosis was judged clinically close to 
the GS if it was either identical to it, synonymous 
with it, in a significantly overlapping disease cat- 
egory, or at most one level down or up in a rec- 
ognized clinical classification such as those found 
in major textbooks of medicine (e.g., Harrison’s or 
Cecil’s textbook of medicine). 

Cases with no established primary diagnosis were 
excluded. When the first (primary) diagnosis in the 
GS differential was asserted in QMR, or given as 
a finding in QMR, or was not in QMR’s KB, the 
next diagnosis was used as the primary one (with 
a recursive application of the exclusion and skip- 
ping rules). The first author performed all the 
matches manually. Based on our diagnostic crite- 
ria, we had to exclude a number of patient cases, 
for the following reasons: the diagnosis was a find- 
ing in QMR; the diagnosis was not part of the 
QMR’s KB; the cases did not represent a straight- 
forward diagnostic problem (but a therapeutic or 
“rule out” problem); QMR did not produce a di- 
agnostic list; diagnoses were asserted (i.e., given 
to the system as fact); or all the necessary infor- 
mation was not available in the patient record. 
Thus, 35 of 105 cases were excluded from subse- 
quent analyses. 

Table 2 n 

Temporal Templates and the Corresponding Numbers of Temporal Types That Each Captures 

1. [{migrating}, {finding, symptom}, {Hx,’ now}]: 2 
2. [{simultaneous}, {findings, symptoms}, { }]: 1 
3. [{cardiac-pulse-specific pattern}, { }, { }]: 1 
4. [{impending}, {death}, {fear of}]: 1 
5. [{single}, {abnormal finding}, { }]: 1 
6. [{Hx 00, {finding, symptom, disease, state, syndrome, behavior, causal or evidential events}, {recent, remote, childhood, congenital, 

or now, by Hx or current information}]: 16 
7. [{repetition (implicitly)}, {finding, symptom, syndrome, disease, behavior, events, causal factor, medical procedure, causal or evidential 

event}, {Hx, chronic, recurrent, paroxysmal, with remission, premature by Dt,t episodic, multiple, seasonal, >rl/interval, irregular, 
intermittent}]: 26 

8. [{after, with, and, epidemic (i.e., in the context of)}, {abnormal/normal finding, disease, syndrome, abnormal function, symptom, 
state, improvement/worsening of function/finding/syndrome, /$ drug, medical procedure, animal, environment, food, factor, be- 
havior, event, exercise, factor presence, factor use}, {current, recurrent, greater than duration, Hx, remote, recent, smaller or equal 
than duration}]: 32 

9. [{during, with], {abnormal finding, disease, symptom, signs, / period, disease episode, state, activity, decreased measurement}, {Hx, 
at onset, improving/worsening}]: 11 

10. [{change, worsening, improvement, rapidly progressing, maximum severity, worsening followed by improvement, rise and fall, 
transient, progressive, changing character}, {characteristics, abnormal findings, disease, finding, symptom, lab value, syndrome}, {Hx, 
recent, at onset, in period of time]]: 19 

11. [{change in, age=, acute, paroxysmal, prolonged, increased duration/severity, increase, decrease, continuous, lasting > duration/ 
<duration, duration of period, measurement per units of time > constant}, {measurement time, finding, symptom, finding, behavior, 
recovery, healing, rhythm, rate, speed, medical procedure, factor, abnormal/normal function, measurement, drug administration, rate 
of normal response in diagnostic test}, {Hx, recent}]: 20 

*Hx = history. 
tDt = amount of time. 
$A double slash (“/“) separates the two parameter lists in relations with two arguments. 
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Table 3 

Temporal Reasoning Type Abstractions 

1. 
2. 
3. 

4. 

5. 
6. 
7. 
8. 

9. 

10. 

11. 
12. 

Spatiotemporal evolution (i.e., change in time and space) 
Simultaneity (i.e., concurrence of events and/or facts) 
Pattern recognition (i.e., specific clinically meaningful pattern 
detection) 
Temporal projection (i.e., specification of expected events as 
a result of current actions or states) 
Event singularity (i.e., specification of non-repetition) 
History of (i.e., precedence) 
Current property (i.e., time of reference is “now”) 
Form of progression/onset (i.e., specification of start or evo- 
lution of state) 
Repetition (i.e., periodicity, regularity, recurrence, multiplic- 
ity, seasonality, counting, rates, continuity/discontinuity) 
Temporal location (i.e., succession, coincidence, during-rela- 
tions) 
Interval duration 
Severity change 

Analysis: All continuous variables were discre- 
tized (based on their observed 50th percentile value 
as a single cutoff point). Odds ratios (ORs) of 
correct diagnoses were computed between the ex- 
planatory variable (i.e., potential confounders, and 
measures of temporal content) categories.2‘i Logit 
models (using the continuous variable versions 
and a standard statistical package) and Bayesian 
models (through the application of the K2 induc- 
tive learning algorithm29) were built to assess 
quantitatively the impact of temporal case content 
on system diagnostic accuracy. The interrelations 
of temporal content and the rest of the explanatory 
variables were also examined with respect to di- 
agnostic accuracy. Finally, the confidence profile 
method (as implemented in the Fastpro software 
package30) was used to derive high-density re- 

Figure 4 Temporal type abstraction. 

DURATION I 
LOCATION 

gions for the univariate ORs of the explanatory 
variables, assuming uniform prior distributions on 
the probability of correct diagnosis in the two tem- 
poral content categories, 

Results 

Temporal Analysis of QMR’s Terms 

Ontology 

We found that QMR utilizes the following temporal 
ontology to express temporal findings. 

1. Entities: 

n Generic: disease, syndrome, finding, symptom, 
laboratory value, test result, medical procedure, 
drug, causal factor, diagnostic factor, behavior, 
function, state, sign. 

n Temporal: periods, points of time, seasons, parts 
of the day, disease intervals, EKG-related intervals, 
systolic/diastolic periods, units of time, parts of 
intervals, age. 

2. Relationships/properties: 

n History of, during, before, after, coincides with, 
repeating, properties (frequency, speed, rhythm, 
regularity), duration, specific patterns. Also, Boo- 
lean combinations of the above are used to derive 
more complex propositions. 

Temporal types 

We constructed a total of 116 temporal types based 
on QMR findings. Table 1 lists the most frequent 
ones, together with their frequencies (% of total num- 
ber of temporal findings). [Another 49 temporal types 
abstracted over the types presented here are given 
in reference 31 (but not discussed in this paper, since 
they are subsumed by the temporal templates). The 
full list of temporal types can also be found in ref- 
erence 31.1 

Temporal templates 

Table 2 contains the descriptions of the 11 templates 
derived from the temporal types, followed by the 
number of the temporal types captured by each tem- 
plate. Templates 1 to 5 correspond to a few types, 
where templates 6 to 11 generalize over many more 
type instances. 

Temporal reasoning abstraction 

We identified a total of 12 different temporal reason- 
ing abstractions (as well as combinations of those), 
and they are shown in Table 3. 
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Statistical associations 

We found several interesting associations among the 
QMR temporal finding properties. QMR findings that 
reference temporal units (minutes, hours, etc.) have 
higher QMR import values than those of findings 
that do not (G2 p < 0.0001, gamma = -0.51 with t- 
value = -3.6). Similarly, when a QMR finding makes 
an explicit reference to procedures or patterns, the 
import value is higher than that of findings that do 
not (G2 p = 0.015 and 0.0005, gamma = -0.64 and 
0.64 with t-values = - 1.1 and 3.44, respectively). 
Overall, however (i.e., in the full set of QMR find- 
ings), temporal QMR findings have lower QMR im- 
port values than do non-temporal findings (G2 ~7 < 
0.0001, gamma = 0.65 with t-value .= 23.2). Symp- 
toms and signs have less import than do more ad- 
vanced laboratory findings (G* ~7 < 0.0001, tau = 
0.11 with p < 0.0001). At the same time, temporal 
findings are characterized by smaller values in the 
QMR type scale of diagnostic sophistication (see 
Methods) (G2 p < 0.0001, tau = 0.49 with p = 0.0001). 
When we control QMR type, the inverse relationship 
between temporality and QMR import value van- 
ishes. Thus, we believe that temporal findings have 
smaller QMR import values only because they are 
more H&P-related, and therefore they do not carry 
the same weight as sophisticated tests. Figure 4 de- 
picts a multiple-inheritance hierarchical classification 
of temporal types (i.e., more than one node in the 
abstraction tree can be the parent of a type) that 
captures their main features. A similar classification 
was developed for temporal reasoning abstractions 
(not shown here). 

Frequency and importance of temporal entities 

Of all 4,431 QMR findings, 17.5% were classified as 

Table 4 n 

Frequency Distributions for Main Attributes 

Among all findings: 

TEMPORAL: yes 17.5%, no 82.5% 
QMR TYPE: history 11.5%, symptom 570, sign 25.4%, laboratory 

simple 6.5%, laboratory intermediate 30.7%, laboratory expen- 
sive/invasive 20.9% 

IMPORT: low 2.3%, medium-low 15.8%, medium 35.5%, medium- 
high 32.4%, high 14% 

Among temporal findings only: 

TIME PRIMITIVES: implicit 93.3%, explicit points 0.3%, explicit inter- 
vals 6.4% 

TIMEUNITS: yes 5.5%, no 94.5% 

TEMPORAL UNCERTAINTY: n0 97%, yes 3% 
PROCESSES: yes 45.9%, no 54.1% 

REPEATING PATTERNS: yes 22.5%, no 77.5% 

Table 5 n 

Temporal Patterns and Reasoning Types Found in 
Patients Cases, but Not in Quick Medical Reference 
(QMR) 

Abstractions specifically pertaining to therapeutic planning 

1. Multiple therapeutic changes until patient responds 
2. Conditional temporal plans (“if X does not become Y within 

time period, I will do Z”) 
3. Intentions (admitted for , therapy begun temporarily/per- 

manently, etc.) 

Abstractions that are interpretation of clinical actions and reasoning 

4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 

17. 
18. 
19. 
20. 

Causal interpretations 
Baseline value identification 
Pending information 
Patient orientation to time 
Referral to unspecified time 
History compatible/incompatible with 

Abstractions that are elaborations of QMR abstractions 

Often finding during episode 
Seldom/from time to time/most of the time 
Temporally qualified drug administration 
Uncertain temporal progression 
Nth episode out of M total episodes 
Memory-related findings/tests/diseases 
Generalities followed by exceptions (e.g., no history of X, 
besides a single episode) 
Serial laboratory measurements 
New vs old findings 
Finding on and off during interval 
Minimum/maximum values over an interval 

temporal. Table 4 shows frequency distributions for 
some of the findings’ attributes. 

Temporal reasoning found in medical records 
but not in QMR 

We identified a number of temporal reasoning in- 
stances described in the medical record but not cor- 
responding to a QMR temporal abstraction (Table 5). 
Most of those patterns and reasoning types are elab- 
orations of existing QMR abstracted types, and con- 
stitute explanations of clinical actions and reasoning, 
or pertain to therapeutic plans. Thus, by not being 
specific to the diagnostic task, they would not, in 
our opinion, cause the system to have a decreased 
ability to derive a correct diagnosis. 

Effects of Lack of Explicit Time on 
Diagnostic Performance 

Most of the examined confounding variables were 
associated with only a small worsening of diagnostic 
performance (ORs between 0.54 and 0.74). Temporal 
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Table 6 n 

Odds Ratios (Confidence Intervals) for Diagnostic 
Accuracy, Given Various Case Properties 

Temporal content: 0.70 (0.27-1.83) 
Rareness: 0.71 (0.26-1.94) 
Case length: 0.60 (0.23-1.57) 
Uncertainty: 3.06 (1.15-8.13) 
Spatial information: 2.36 (0.89-6.23) 
Causal information: 0.63 (0.40-1.63) 
Multiple diseases: 0.54 (0.05-6.25) 
Deepness: 0.74 (0.25-2.18) 

content had an OR of 0.7, which means that the odds 
(i.e., frequencies ratios) of getting a correct diagnosis 
vs an incorrect one in the high-temporal-complexity 
group was 70% the odds of a correct diagnosis vs an 
incorrect diagnosis in the low-temporal-complexity 
group. Unfortunately, our modest sample size did 
not allow for tight confidence intervals (95% CI = 
0.27 to 1.83), and all the associations examined were 
not statistically significant (at the 0.05 level), so they 
must be interpreted as indicative only. Table 6 lists 
the ORs and CIs for temporal content and other ex- 
planatory variables. We used the Fastpro package30 
to derive high-density regions based on uniform priors 
for the probability of a successful diagnosis for both 
the high- and low-temporal-complexity content groups 
(assuming that ORs are log-normally distributed). In 
particular, the probability for an OR 5 was 0.76, 
indicating that our data do not support strongly that 
temporal content adversely influences diagnostic per- 
formance. Figure 5 illustrates the high-density region 
for the OR of temporal content. Table 7 represents 
the cumulative distribution of this posterior distri- 
bution. For example, from Table 7 we see that an OR 
of ~2 is true with a probability of -0.01 given the 
data, while an OR of ~0.5 is true with a probability 
of -0.25. Since marginal independence does not nec- 
essarily imply conditional independence, we devel- 

cl 1 2 

Figure 5 High-density region for odds ratio of temporal 
content. 

oped both logit and Bayesian network multivariate 
models29 for revealing a possible relationship be- 
tween temporal content and diagnostic performance, 
conditioned on the variable context of the previously 
mentioned confounders. Figure 6 shows the proba- 
bilistic graphic model found to be the most probable 
in light of our experimental data, given the assump- 
tion that all models were equally likely a priori. In 
that model, diagnostic correctness is determined jointly 
by temporal content, number of diseases, uncertainty 
content, and spatial information. The model provides 
an interpretation of the dependency of diagnostic 
performance on temporal content and the rest of the 
variables in the form of a conditional probability dis- 
tribution: 

p(correct-diagnosis ( temporal content, 
number of diseases, uncertainty content, spatial info) 

By examining this distribution, we concluded that no 
clear form of covariation exists between temporal 
content and successful diagnosis, when the rest of 
the explanatory variables are taken into account. For 
instance, high temporal content is associated with 
low probability for correct diagnoses (p = 0.17) when 
the other three predictors take the value “high,” while 
high temporal content is associated with high prob- 
ability for a correct diagnosis (p = 0.8) when number 
of diseases is high and uncertainty is low. When we 
held the values of the confounding variables (number 
of diseases, uncertainty content, and spatial infor- 
mation) constant and observed the probabilities of 
successful diagnosis as a function of whether tem- 
poral content was low or high, sometimes the prob- 
ability of a correct diagnosis increased, other times 
it decreased, depending on the set values of the three 
confounders. The use of measures of case content 
that were derived using principal components anal- 
ysis did not yield any statistically significant predic- 
tors for diagnostic performance. Similarly, in logistic 
regression analyses, temporal content was not a sta- 
tistically significant predictor for diagnostic perfor- 
mance. 

Although the interpretation of these results is com- 
plicated and should be viewed with caution in light 
of the modest sample size, it suggests that temporal 
content per se is not a strong indicator of the diagnostic 
performance of QMR. 

Discussion 

In this paper, we reported an empirical analysis of 
QMR’s implicit time both in terms of expressive power 
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and diagnostic performance. We believe that work 
in medical AI has led to the accumulation over the 
years of epistemologically significant artifacts (e.g., 
MDSSs), the study of which can be of benefit to the 
development of a clearer understanding of important 
theoretical and engineering issues. We focused on 
one such system, and posed a particular question 
regarding the trade-offs between explicit and implicit 
time modeling. Although researchers have discussed 
circumstances when explicit time might not be nec- 
essary,18 as well as why explicit time is impor- 
tant 4,5,15,18 to our knowledge, there has not been an 
experiment specifically designed to clarify and study 
the effects of implicit modeling of time in medicine. 
Our results may appear counterintuitive because it 
seems easy to develop examples in which implicit 
time cannot deal appropriately with certain temporal 
reasoning queries. Additional arguments are based 
on case-control investigations of diagnostic failures. 
While existence proofs of cases where explicit time 
is indispensable suggest its necessity for at least some 
situations, they say very little about the heuristic 
power of carefully implemented MDSSs in highly 
complex problem-solving environments.2 They also 
do not indicate how many cases that are currently 
diagnosed by atemporal systems would be incorrectly 
diagnosed (e.g., due to lack of explicit temporal 
knowledge) by some imperfect temporal implemen- 
tation of the corresponding systems. Finally, they say 
little about the cost and benefit trade-offs between 
the two (radically different in terms of required de- 
velopment time and inferencing resources) ap- 
proaches represented by implicit and explicit time 
modeling. 

A concern about the present study has to do the 
relatively low post-hoc power (i.e., power estimated 
based on the observed effect) of many of the exam- 
ined statistical tests. We believe that, although a high 
a priori power makes non-statistically significant re- 
sults easier to interpret, one has to take into account 
the great cost of collecting patient cases and analyz- 
ing them at the level of detail we used, the fact that 
similar (or smaller) sample sizes have been used for 
important (non-temporal) evaluations of MDSS7 (in- 
volving smaller effect sizes), and, finally, that our 
Bayesian analyses corroborate and complement the 
classic statistics conclusions. Moreover, recently re- 
searchers have criticized the use of pre-test power as 
arbitrary (since it depends on arbitrarily large esti- 
mates of the actual effect, and refers to a class of 
outcomes rather than a single outcome). Post-hoc power, 
on the other hand, seems to be uninformative as far 
as the interpretation of a statistical significance test 
(if the test is significant we do not care, but if it is 

Table 7 n 

Cumulative Distribution for Odds Ratio (OR) for 
Diagnostic Accuracy, Given Temporal Content 

OR Threshold Value p(True OR > OR Threshold Value) 

0.20 0.995 
0.50 0.750 
0.70 0.500 
0.98 0.250 
1.82 0.050 
2.18 0.010 
3.15 0.001 

non-significant it is always low). Post-hoc power is 
useful only for designing subsequent experiments 
based on our best information so far (i.e., the ob- 
served effect size). In light of those considerations, 
it has been proposed that CIs and Bayesian analyses 
are much more useful for the interpretation of non- 
significant results, an approach we adopted in this 
paper.“2 

Another interesting concern has to do with the qual- 
ity of human abstraction and its effect in our study. 
Based on the experience of the human abstracters 
for our patient cases, we can claim that our study 
reflects a high-quality abstraction performance. Thus 
the conclusions are practically best-case in that re- 
spect. 

An interesting improvement to this study would be 
to express the trade-offs in explicit vs implicit han- 
dling of time in decision theoretic terms rather than 
in terms of diagnostic accuracy. As it stands, our 
definition of correct diagnosis was, in simplistic terms, 
whether QMR included the primary GS in its full 
differential diagnosis (although we performed a sen- 
sitivity analysis on the size of QMR’s diagnostic list, 
as described in section 2 of Methods). This is far from 
ideal in terms of clinical significance. Again, the prag- 

Figure 6 Determinants of diagnostic accuracy. 
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matics of designing and executing the evaluation re- 
ported here were the primary factors for this choice. 
Clinical experts suggested that it would be infeasible 
to come up with quality-adjusted life-year (QALY) 
estimates for patients at the level of complexity en- 
countered in our cases, especially trying to take into 
account counterfactuals (e.g., QALYs given different 
diagnoses and corresponding treatments needed for 
assessing misclassification costs). Given these com- 
plexities, we believe that empirical analyses such as 
the one discussed in this paper are useful initial in- 
dications of the importance of abstracted time. Ide- 
ally, we would like to be able to study the problem 
of determining abstraction quality (with respect to 
some utility function characterizing the system’s an- 
swers) in generalized terms and provide a theoretical 
treatment based on well-specified abstraction and 
utility function classes. Such an analysis seems ex- 
tremely difficult to obtain, since it requires among 
other things the development of a formalism-inde- 
pendent means of expressing and analyzing the broad 
problem of medical temporal reasoning. 

Summarizing our findings, at the knowledge-engi- 
neering level, we were surprised to find that the 
QMR KB contains an impressive array of different 
temporal types, which we identified and classified. 
The various temporal types are composed of a small 
number of primitives. We identified this ontology. 
We additionally abstracted specific temporal tem- 
plates and types of temporal reasoning employed, 
and examined their importance. We believe that the 
identification of these temporal entities offers three 
potential benefits: 

1. It explains the ability of the system to cope with the 
rich temporal nature of most patient cases, since 
it shows an abundance of temporal concepts that 
can be mapped to QMR findings. The ultimate 
utility of QMR’s representation of temporal infor- 
mation is of course dependent on the human users 
of the system, who perform the abstraction from 
the patient record to the program. This study did 
not investigate that abstraction process. Also, in 
a few cases, the patient records were found to 
contain temporal statements about patients and 
their attributes that were not in the QMR lexicon. 

2. In cases where a diagnostic system is designed to 
gather patient information without human ab- 
straction, the study suggests the types of temporal 
abstraction mechanisms (and thus intelligent temporal 
data pre-processors) that should be in place for the sys- 
tem to function properly. These abstractions com- 
plement the set of suggested mechanisms offered 

by other researchers who have reported well-de- 
fined temporal abstraction mechanisms, aimed at 
having general applicability. ‘7~20 

3. In an exploratory sense, this study is a starting 
point for identifying important temporal requirements 
for the design of formal MDSS models employing explicit 
time (for example, among other things, it suggests 
that even explicit-time reasoners should allow the 
representation of abstracted time in order to ex- 
ploit its heuristic value). 

In the second part of the experiments described in 
this paper, we focused on diagnostic performance. 
We found that temporal content has a modest, and sta- 
fistically non-significant, effect on the diagnostic perfor- 
mance of QMR. Although in the present study we 
demonstrated satisfactory heuristic power for the QMR 
system/domain with respect to the temporal robust- 
ness of its heuristic, implicit handling of time, we 
believe that only by obtaining a system-independent 
analysis of diagnostic performance with respect to 
temporal abstraction, we will be able to gain deeper 
insight into the limits of implicit time. It is evident 
that such an analysis is very difficult to obtain. It is 
important to reiterate that we do not argue against 
explicit time in MDSSs. Instead, we show experi- 
mental results that support the notion that temporal 
abstractions are a powerful heuristic for dealing with 
the intractabilities of explicit time. It is an open ques- 
tion when temporal abstractions can effectively sub- 
stitute for explicit time, and how to develop them 
from fully or partially specified domain theories. Fi- 
nally, it should be kept in mind that our findings are 
specific to the QMR system and domain. We hope 
that these results will stimulate similar analyses for 
other medical systems and domains, and that they 
will encourage MDSS developers to make judicious 
selections between abstracted and explicit time mod- 
eling. 
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