
Data Min Knowl Disc (2010) 20:328–360
DOI 10.1007/s10618-009-0151-4

A real-time temporal Bayesian architecture for event
surveillance and its application to patient-specific
multiple disease outbreak detection

Xia Jiang · Gregory F. Cooper

Received: 17 March 2009 / Accepted: 9 September 2009 / Published online: 30 October 2009
The Author(s) 2009

Abstract Reliable and accurate detection of disease outbreaks remains an impor-
tant research topic in disease outbreak surveillance. A temporal surveillance system
bases its analysis on data not only from the most recent time period, but also on data
from previous time periods. A non-temporal system only looks at data from the most
recent time period. There are two difficulties with a non-temporal system when it is
used to monitor real data which often contain noise. First, it is prone to produce false
positive signals during non-outbreak time periods. Second, during an outbreak, it tends
to release false negative signals early in the outbreak, which can adversely affect the
decision making process of the user of the system. We conjecture that by converting a
non-temporal system to a temporal one, we may attenuate these difficulties inherent in
a non-temporal system. In this paper, we propose a Bayesian network architecture for
a class of temporal event surveillance models called BayesNet-T. Using this Bayes-
ian network architecture, we can convert certain non-temporal surveillance systems
to temporal ones. We apply this architecture to a previously developed non-temporal
multiple-disease outbreak detection system called PC and create a temporal system
called PCT. PCT takes Emergency Department (ED) patient chief complaint data as its
input. The PCT system was constructed using both data (non-outbreak diseases) and
expert assessments (outbreak diseases). We compare PCT to PC using a real influenza
outbreak. Furthermore, we compare PCT to both PC and the classic statistical meth-
ods CUSUM and EWMA using a total of 240 influenza and Cryptosporidium disease
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outbreaks created by injecting stochastically simulated outbreak cases into real ED
admission data. Our results indicate that PCT has a smaller mean time to detection
than PC at low false alarm rates, and that PCT is more stable than PC in that once an
outbreak is detected, PCT is better at maintaining the detection signal on future days.

Keywords Temporal disease outbreak detection · Bayesian network · Patient-spe-
cific model · Mining ED chief complaint data · Uncertainty modeling · Biosurveillance

1 Introduction

Event surveillance consists of analyzing a region in order to detect patterns that are
indicative of some event of interest. As examples, we may look for patterns that are
indicative of a forthcoming disaster or a disaster that is in its early stages. Examples of
such disasters include hurricanes, terrorist attacks, and outbreaks of diseases. A classic
example of event surveillance involves monitoring some geographical region in order
to detect a disease outbreak. In what follows, the focus will be on disease outbreak
surveillance. Disease outbreak surveillance monitors a community for the onset of a
disease outbreak. A popular term for disease outbreak surveillance is biosurveillance.
Reliable and accurate detection of disease outbreaks remains an important research
topic in disease outbreak surveillance.

On a given day, the number of disease cases could of course exceed the expected
number by chance, and then return to normal. Ordinarily, this would not be considered
a disease outbreak. A disease outbreak is characterized by a statistically increasing
trend (with daily fluctuations) in cases until some peak is reached, then a decline, and
then possibly an increase to a second peak, and so on. So, the pattern of a disease out-
break is emerging over time. A temporal disease outbreak surveillance system looks
for emerging patterns by analyzing how the situation has changed recently in time.
The analysis is based not only on the data from the most recent time period, but also
on the data from previous time periods. A non-temporal outbreak detection system
only looks at data from the most recent time period such as the previous 24 h. The
analysis would not look at data from previous time periods. A non-temporal method
can in principle be used to investigate an emerging disease outbreak, and, in fact, many
of the existing disease outbreak detection systems are non-temporal (see Sect. 2.1.1).
However, there are two difficulties with such a method.

First, a non-temporal system should have difficulty providing a small mean time
to detection at a low false alarm rate. Ordinarily, an event detection system returns a
numeric signal, and we issue an alert/alarm when the value of that signal exceeds some
threshold. A non-temporal detection system looks only at the data from the current
day (or whatever the unit of time might be). On a given day it is not uncommon for
the signal to be relatively high due to a random occurrence or to some non-outbreak
event. For example, a drug store may have increased drug sales on a given day due to
a store promotion. If we were using sales of some particular drug as our signal, that
signal could become high due to the promotion rather than due to an outbreak. When
the background data contains many such incidental anomalies, a non-temporal system
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will issue many false alarms unless we set the threshold to a high value. However, if
we do this we will increase our time to detection during an actual outbreak.

On the other hand, a temporal system looks at data from the current day and previous
days, which means a 1-day spike would be less likely to lead to the system returning
a high value of its signal. Therefore, we conjecture that a temporal system will have a
smaller mean time to detection at a low false alarm rate than a non-temporal system.
In general, we want our systems to run with few false alarms because if the system
issues too many false alarms, it loses its credibility.

Second, a non-temporal system can confuse the user. Although ordinarily there is
a general trend for the number of disease cases to increase during an outbreak, there
can be great fluctuation in the daily numbers. Figure 1a shows an epidemic curve
carefully reconstructed by health care officials for a Cryptosporidium outbreak that
occurred in North Battleford, Saskatchewan in spring, 2001. The outbreak starts on
about March 20 and ends on about April 5. Although there is a general trend for daily
counts to increase until the peak is reached, we see significant fluctuation in the daily
counts, and early in the outbreak the counts sometimes return to pre-outbreak values.
Due to the fluctuation in the daily counts, a system that looks only at the current day’s
data may exhibit considerable fluctuation in its posterior probability for an outbreak
early in the outbreak, thereby confusing the user as to whether or not there truly is an
outbreak.

As an example, PANDA-CDCA (PC) (Cooper et al. 2007) is a disease outbreak
detection system that uses a Bayesian network to model the relationships among the
events of interest and those observed. PC is a patient-specific system, because rather
than analyzing data aggregated over the entire population (i.e., daily counts of some
observable events), it monitors each individual patient case in the population. We shall
discuss the patient-specific system further in Sect. 2. PC is also a multiple-disease out-
break detection system, which monitors simultaneously 12 outbreak diseases and their
variations. However, PC does not use a temporal model of disease outbreaks. Cooper
et al. (2007) obtained results that were surprising at the time when evaluating the abil-
ity of PC to detect a laboratory validated outbreak of influenza in Allegheny County.
Under a false alarm rate of zero, PC detected influenza approximately 1 day before the
first positive viral cultures of influenza were taken. However, near the beginning of
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Fig. 1 a An epidemic curve for a Cryptosporidium disease outbreak in North Battleford, Saskatchewan.
b Weekly OTC sales of antidiarrheal drugs at one pharmacy in North Battleford. The data for these curves
were obtained from Stirling et al. (2001)
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the influenza outbreak, the posterior probability of influenza fluctuated between very
high and very low values.

We conjecture that by converting a non-temporal system to a temporal one, which
models that during an outbreak the number of outbreak cases is expected to steadily
increase but possibly with daily variation, we would attenuate the problems in a non-
temporal system.

In this research, we developed a high-level Bayesian network architecture repre-
senting a class of temporal event surveillance models called BayesNet-T. Using this
high-level Bayesian network architecture, it is possible to construct a temporal model
from an existing Bayesian network model for non-temporal event surveillance. Using
this high-level Bayesian network architecture, we developed a system which detects
the same outbreaks as PC but considers temporal aspects of disease outbreaks. We call
this temporal system PANDA-CDCA-TEMPORAL (PCT). We hypothesize that (1)
PCT will have a smaller mean time to detection than PC at low false alarm rates; and
(2) PCT will be more stable than PC in that once an outbreak is detected, PCT will be
better at maintaining the detection signal on future days. Like PC, PCT also monitors
multiple outbreak diseases and during the outbreak bases its analysis on information
from each individual case in the population. So we can describe PCT as a temporal,
patient-specific, multiple-disease outbreak detection system. To our knowledge, PCT
is the first such system to incorporate all of these elements. PCT is real-time in nature.
It is designed to run repeatedly each day and detect the event of interest that is currently
occurring.

In Sect. 2, we review representative methods for event surveillance. We then
describe BayesNet-T and PCT in Sect. 3. Section 4 presents results of experiments
evaluating PCT’s performance.

2 Methods for event surveillance

This section presents a representative, although not exhaustive, review of methods for
event surveillance.

2.1 Methods that analyze counts

Often the count of occurrences of some phenomenon increases during a disease out-
break. For example, as noted previously, Fig. 1a shows an epidemic curve constructed
from a sample of the population affected by a Cryptosporidium outbreak in North
Battleford, Saskatchewan in spring 2001. The outbreak was caused by a contamina-
tion of public drinking water. Cryptosporidium infection causes diarrhea. Figure 1b
shows the weekly counts of units of over-the-counter (OTC) antidiarrheal medicine
sold at one pharmacy in North Battleford during the time period affected by the out-
break. The correlation between these two curves suggests that by monitoring OTC
sales of such medicine we can possibly detect a Cryptosporidium outbreak at an early
stage. Similarly, the number of patients visiting the emergency department (ED) with
respiratory symptoms ordinarily increases during an influenza outbreak.
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To monitor and analyze the counts, we first choose a unit of time, which is ordinarily
1 day, but could be 1 hour (h), or any other unit. For the sake of discussion, in what
follows it is assumed that the time unit is 1 day. A count of some characteristic of the
outbreak is then obtained separately for each day.

2.1.1 Non-temporal methods

Non-temporal methods consider counts from some recent period of time only, such
as the previous 24 h. One method for analyzing these daily counts is to first derive the
mean µ and standard deviation σ of the daily counts over a period of time when no
outbreak is presumed to be occurring, and fix these values in the outbreak detection
system. An alert is then issued whenever the daily count exceeds µ by kσ , where k
is usually 2 or 3. Wong and Moore (2006) discuss problems with this method and
improvements to it.

In ordinary (non-spatial) event surveillance, an entire region is monitored globally.
For example, if we were monitoring whether a disease outbreak was occurring in a
particular county, we would monitor the entire county globally, without considering
the possibility of localized outbreaks in subregions. If an outbreak was occurring in a
small subregion of a county and the entire county was monitored globally, the outbreak
may go undetected until it spread to a larger subregion. In spatial event surveillance,
we search for patterns in spatial subregions. That is, we individually monitor both
small and large subregions of the region of interest. In this way, we not only may
detect an emerging event sooner, but we may also learn its location. Spatial cluster
detection is one statistical technique used for spatial event surveillance. Methods for
spatial cluster detection attempt to locate spatial subregions of some larger region
where the count of occurrences of some event is higher in one subregion relative to
other subregions. The classic technique for analyzing these counts is the spatial scan
statistic (Kulldorff 1997). A Bayesian version of the spatial scan statistic appears in
Neill et al. (2005a,b).

2.1.2 Temporal methods

Temporal methods detect an outbreak based on how the situation has changed recently
in time. The determination of an outbreak is based not only on the count from the most
recent day, but also on counts from previous days.

There are a number of temporal (time series) methods that consider the count of
occurrences of a single phenomenon. Some of these methods are discussed in Wong
and Moore (2006). Known methods include the Serfling method (Serfling 1963; Tsui
et al. 2001), the ARMA, ARIMA, and SARIMA models (Box et al. 1994; Hamilton
1994), univariate hidden Markov models (Rabiner 1989; Moore 2001a), Kalman filters
(Burges 1998), support vector machines (Burges 1998; Moore 2001b), and CUSUM
(Bos and Fetherston 1992). Other frequentist methods appear in Reis and Mandl
(2003), Reis et al. (2003), and Soneson and Bock (2003). Baron (2002) developed
a method based on solving a suitable change-point problem. A Bayesian method is
developed in Jiang and Wallstrom (2006). Temporal versions of the spatial scan sta-
tistic appears in Kulldorff et al. (2005) and Neill et al. (2005a,b).
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CUSUM is one of the most widely used temporal methods. CUSUM analyzes the
counts from the previous i time units (e.g., days). Let µ0 be the mean of the counts
during some background period when no outbreak is occurring (the in-control process
mean), σ be the standard deviation of the counts during the background period, and
µ1 = µ0 + δσ for a constant δ (µ1 is the out-of-control process mean). Then we
define a slack value K as follows:

K = |u1 − µ0|
2

= δσ

2
.

Let X1, X2, . . . Xi be the counts from each of the past i time units. To determine when
to signal an alert, we monitor the following time series of statistics Si :

S1 = max(0, X1 − (µ0 + K ))
...

Si = max(0, Si−1 + Xi − (µ0 + K )).

We signal an alert whenever

Si > H,

where H = dσ for a constant d. In Montgomery (2001) it is recommended to let
d = 5.

Exponentially weighted moving average (EWMA) is a statistical quality control
technique. EWMA is a variation of the moving average method in which we assign
weights to observations in an exponentially decreasing order according to the age of
the observations, with the observations further in the past weighing less. EWMA can
be considered a temporal method because, similar to other moving average algorithms,
it bases its analysis not only on the value of the most time step but also on the values
from the previous time steps. Wong and Moore (2006) discuss in detail how EWMA
can be applied to perform outbreak detection.

Methods that look at several counts are called multivariate. Multivariate temporal
methods appear in Moore et al. (2006) and Shmueli and Fienberg (2006). The Bayes-
ian method developed in Jiang and Wallstrom (2006) can look at several counts, but
in the implementation which they evaluated it did not. A multivariate version of the
spatial scan statistic appears in Kulldorff et al. (2007). Kulldorff (2004) developed
the software package SaTScanTM, which allows the user to simultaneously do both
multivariate and temporal spatial modeling.

2.2 Patient-specific methods

Rather than analyzing data aggregated over the entire population (i.e., daily counts
of some observable events), another approach is to model the relationships between
an outbreak disease and the effect of the outbreak on each individual in a population.
This is a patient-specific approach. By modeling each individual in the population, we
can base our analysis on more information than that contained in a summary statistic,
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such as the number of patients who visited the ED with respiratory symptoms on a
given day.

2.2.1 Non-temporal patient-specific methods

PC (Cooper et al. 2007) is a non-temporal method that models the CDC Category
A diseases (see www.bt.cdc.gov/agent/agentlist-category.asp) and also several other
diseases. It consists of a large Bayesian network which contains a set of nodes for
each individual in a region. PC takes as input a time series of chief complaints, one
for each ED patient in the region. There are 54 chief complaints, including a catchall
category of other complaints. Each hour, based on the previous 24 h (1 day) of data,
it outputs the posterior probability of each disease. PC not only can inform us if an
outbreak is likely, but also what type of outbreak it might be. Additional details of PC
are provided in Sect. 3.1.3.

PC is a non-temporal outbreak detection system, as mentioned, and it is also non-
spatial. We are interested in understanding how each of spatial and temporal extensions
of PC affect its performance. We previously developed a spatial extension of PC that is
described and investigated in Jiang et al. (2009), which showed that such an extension
can significantly improve detection performance. The purpose of the current paper is
to introduce a temporal extension of PC and investigate how that extension affects its
detection performance, relative to PC and to two traditional non-spatial, time-series
methods, CUSUM and EWMA.

BARD (Bayesian aerosol release detector) (Hogan et al. 2007) is a Bayesian net-
work, patient-specific system designed to compute the posterior probability of an out-
door, wind-borne release of anthrax spores. BARD’s goal is to perform earlier, more
sensitive detection of wind-borne outbreaks by recognizing a characteristic dispersion
pattern. Its input includes meteorological data, such as wind direction and speed for
the region being monitored. It not only detects an outbreak, but also characterizes
release location, quantity, and time.

2.2.2 Temporal patient-specific methods

A predecessor to PC called PANDA (Population-wide ANomaly Detection and Assess-
ment) (Cooper et al. 2004) is also a patient-specific, Bayesian network system that has
a simple temporal model of an outbreak disease. PANDA is designed specifically to
detect non-contagious outbreak diseases such as airborne anthrax or West Nile enceph-
alitis. PANDA is able to detect disease outbreaks due to inhalational anthrax, and the
only clinical evidence considered by this system is whether an individual presented to
the ED with respiratory symptoms or not. The Bayesian network in PANDA contains
a set of nodes for each individual in a region. These person nodes represent properties
of the individual such as age, gender, home location, the anthrax infection state of the
individual, and the ED admission state of the individual. The Bayesian network also
contains a global node representing the location of the anthrax release and a global
node representing the time of the anthrax release. Temporal information is represented
by states of nodes in the network. For example, the global node Time of Release has
states never, today, yesterday, and day before yesterday. Although PANDA models
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the time period of the outbreak (in days), it does not model a progressive increase in
the number of expected outbreak cases over time.

3 BayesNet-T and its application to PC

The BayesNet-T architecture builds on a non-temporal architecture called BayesNet.
So first we describe BayesNet and show that PC is in the BayesNet class of event
surveillance models. Then we develop BayesNet-T.

3.1 The BayesNet event surveillance models

This section presents a description of the high-level Bayesian network architecture rep-
resenting the BayesNet class of event surveillance models and gives several concrete
examples.

3.1.1 The high-level Bayesian network architecture

Suppose we are investigating whether there is an event of interest in some region.
Let E be a random variable whose value is yes if the event of interest occurred or
is occurring, and whose value is no otherwise. Besides the variable E , there can be
a set of attribute variables which represent properties of the event of interest, a set
of intermediate variables which depend on the properties of the event of interest,
and a set of observable variables which depend on the intermediate variables. These
observable variables comprise our Data. Figure 2 shows a high-level Bayesian net-
work architecture representing this class of models. Any model in this class is called
a Bayesian Network (BayesNet) model. If each intermediate variable represents an
individual in a population, and there is a set of observable variables for each such indi-
vidual, it would be a patient-specific model. In this paper only BayesNet models that
are patient-specific will be considered. However, the theory does not require that they
be patient-specific. For example, suppose E represents the occurrence of an influenza
outbreak, and the only observable variable is C , which is the count of OTC sales of
thermometers. The variable C depends on E , and we can model this dependency using
the DAG E → C . This is a BayesNet model containing no attribute or intermediate
variables and which is not patient-specific.

In a non-temporal model, new data are obtained each day (or at whatever our time
unit may be) from the entire region being monitored. The Bayesian network is then
used to compute

P(E = yes|Data).

3.1.2 A simple example of a BayesNet model

3.1.2.1 The model Figure 3 shows a simple example of a BayesNet model, which
has no global or intermediate variables. For the sake of concreteness, let us give the
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Fig. 2 The high-level BayesNet
Bayesian network architecture.
The value of E is yes if the event
of interest occurred, and is no
otherwise. The sets of variables
enclosed by ovals represent
Bayesian subnetworks. The
attribute variables are properties
of the event of interest, the
intermediate variables depend
on the properties of the event of
interest, and the observable
variables depend on the
intermediate variables. The
shaded observable variables are
the measured variables and
comprise our Data. The
unshaded variables are
unmeasured. The double
arrowed edges indicate one or
more edges from each variable
in a given set to variables in the
set below it. In general, there
need not be any attribute or
intermediate variables

E

. . . .

. . . .

Intermediate

Variables

Observable

Variables

Data

. . . . Attribute

Variables

Fig. 3 A simple example of a
BayesNet model

P(I = mk \ E = yes) = pk

P(I = mk \ E = no) = qk

EP(E = yes) = b

P(E = no) = 1-b

I

Data

variables meaning. Suppose that the variable E has value yes if there is currently an
outbreak of influenza and the value no otherwise. The plate representation in Fig. 3
indicates that there is a variable I for each individual in the entire region G being
monitored for influenza. So this is a patient-specific system. There are no variables
describing properties of the event per se (beyond data about entities in the population)
and no intermediate variables. The possible values of I are our manifestations mk

for each individual. In this example, suppose that they are the chief complaints with
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which the individual might present in the Emergency Department, where one value
is noED, which means the individual did not visit the Emergency Department. In this
example, other possible chief complaints might include cough, and fever/chills. Note
that I = mk is an assignment of chief complaint mk for individual I .

3.1.2.2 The inference algorithm The Data consist of the values of I for all individ-
uals in region G. Since there could be thousands, or even millions, of individuals in
G, we would not explicitly construct the Bayesian network in Fig. 3, and instantiate I
for each individual. Rather, due to the fact that the Bayesian network structure entails
that individuals’ chief complaints are conditionally independent given the value of E ,
we can compute the likelihoods of the data as follows:

P(Data|E = yes) =
∏

k

(pk)
Ck

P(Data|E = no) =
∏

k

(qk)
Ck ,

where Ck is the number of individuals with the kth chief complaint, and pk and qk are
defined in Fig. 3. Then using Bayes’ Theorem, we compute that

P(E = yes|Data) = P(Data|E = yes)P(E = yes)

P(Data|E = yes)P(E = yes) + P(Data|E = no)P(E = no)
.

3.1.3 PANDA-CDCA

We now describe a more complex example of a BayesNet model, namely the Bayes-
ian network in PANDA-CDCA (PC) (Cooper et al. 2007). Note that although PC was
previously developed, we generalized it to create the BayesNet architecture (Fig. 2),
which is an innovative contribution of this paper.

Figure 4 shows the Bayesian network in PC. Each node in the network along with
its parameters is described. PC is a hybrid network in that some of the parameter
values were obtained from expert knowledge and some were learned from data. Since
we often do not know for sure when an outbreak starts and whether a patient has the
outbreak disease, there is little reliable data concerning patients presenting in the ED
with outbreak diseases. However, we have much more data that is reliable concern-
ing patient visits to the ED when there is no outbreak. So the probabilities concerning
outbreak diseases were obtained from expert judgment, whereas those concerning non-
outbreak diseases were obtained from data. We believe that outbreak detection is an
excellent domain in which to investigate this interesting hybrid approach to modeling,
which is based combining expert knowledge and data mining.

We now describe each node in the network.

E : This node represents whether there is an ongoing outbreak. The value yes repre-
sents that there is an ongoing outbreak of one of the outbreak diseases represented
by O during all or some of the previous 24-h period.
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FO

D

I

P(O = flu | E = yes) = 0.8
P(O = botulism | E = yes) = 0.01
....

P(O = none | E = yes) = 0
P(O = none | E = no) = 1

P(F = 0.0000118) = 0.0667
P(F = 0.0000236) = 0.0667
....

P(D = flu | O = flu, F = 0.0000118) = 0.0000118
P(D = botulism | O = flu, F = 0.0000118) = 0
....

P(D = other | O = flu, F = 0.0000118) = 0.00203298
P(D = noED | O = flu, F = 0.0000118) = 0.99795522
....

P(D = flu | O = none, F = 0.0000118) = 0
P(D = botulism| O = none, F = 0.0000118) = 0
....

P(D = other | O = none, F = 0.0000118) = 0.002033
P(D = noED | O = none, F = 0.0000118) = 0.997967

P(I = chest pain | D = flu) = 0.064626
P(I = diarrhea | D = flu) = 0.014422
....

P(I = other | D = flu) = 0
....

P(I = chest pain | D = other) = 0.022528
P(I = diarrhea | D = other) = 0.010549
....

P(I = other | D = other) = 0.485912

.
...

P(I = noED | D = noED) = 1

Data

E P(E = yes) = 0.05
P(E = no) = 0.95

Fig. 4 The PC Bayesian network. See the text for a description of the variables

O: This node represents which outbreak disease is occurring if there is an outbreak.
The prior probabilities for variable O were assessed by the project’s infectious
disease expert based on the literature and subjective estimates. There are 13
possible outbreak diseases, two of which are shown in Fig. 4 (influenza and
botulism). The possible outbreak diseases include the following CDC Category
A diseases: anthrax stage 1, anthrax stage 2, plague stage 1, plague stage 2,
smallpox, tularemia, botulism, marburg hemorrhagic fever stage 1, and marburg
hemorrhagic fever stage 2. PC also models the following outbreak diseases:
influenza, Cryptosporidium, and hepatitis A.
The 13th value of O is none, which represents a population-disease state in which
there is no ongoing outbreak disease. Note that P(O = none|E = no) = 1.0.
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Thus, each of the outbreak diseases listed above has a probability of 0, when
E = no.
PC assumes that outbreak diseases are mutually exclusive. For example, it
assumes there would not be influenza and botulism outbreaks occurring simul-
taneously. Although in reality different outbreaks could occur concurrently, this
event is unlikely, and therefore the model currently assumes it does not happen.

F : The value of this node is itself a probability. Given that an outbreak is ongo-
ing, this node represents the probability of an individual in the population both
being afflicted with the outbreak disease and going to the ED on the current day.
This node indicates the extent (severity) of the outbreak, if one is occurring. For
computational efficiency reasons, the states of this node were discretized into
15 numerical values, two of which are shown in Fig. 4. This node indicates the
extent of the outbreak, if one is occurring. Since the value f of F is a probability,
the probability distribution of F is a higher order probability distribution.
The possible values of F correspond to expected number of outbreaks cases of
5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, and 275 according to
the following calculations. The mean number of ED cases per day when there is
not an outbreak is estimated to be 577 according to the 2004 biosurveillance data,
and the standard deviation is about σ = 54. It was assumed that the expected
value of the increased number of ED cases during an outbreak ranged between
0.1σ = 0.1 × 54 ≈ 5 to 5σ = 5 × 54 ≈ 275. The 15 values above were
then taken from this range. Finally, the values of F were obtained by dividing
these numbers by 423,076, which is the number of people in the population. For
example, 5/423, 076 = 1.18 × 10−5.

D : This node represents the ED disease state of the an individual. The plate rep-
resentation in Fig. 4 indicates that there is one such node for each individual
in the population. Thus PC is a patient-specific system. The node’s value could
be any one of the outbreak diseases (values of O) if the individual has the
outbreak disease. Additionally, it could have value other which means the indi-
vidual arrives in the ED only with some non-outbreak disease (e.g., a broken
arm). Finally, it could have value noED which means the individual does not
visit the ED.
The probabilities for node D were obtained as follows. If there is no outbreak
occurring in the population, it is assumed the individual could not have an out-
break disease. Therefore, when there is no outbreak, the individual could arrive
in the ED only with a non-outbreak disease. The probability of this event is
called pother. So when there is no outbreak, the probability of not visiting the
ED is 1 − pother. These probabilities are estimated using the ED data from
the previous year. In the experiments described in Sect. 4, we used data col-
lected in Allegheny County from 2005 for testing outbreak detection perfor-
mance. Therefore, we used data from 2004 for estimating model parameters.
In 2004 in Allegheny County the probability estimates for PC were as follows:

P(D = other|O = none, F = f ) = pother = 0.002033

P(D = noE D|O = none, F = f ) = 1 − pother = 0997967.
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The probabilities of arriving in the ED with outbreak diseases given there is an
outbreak of disease d is based on the value of F as follows:

P(D = d|O = d, F = f ) = f

P(D = c|O = d, F = f ) = 0,

where c is an outbreak disease not equal to d. We assume that the probability of
someone having both an outbreak disease and an non-outbreak disease (other)
is pother × f . We therefore have

P(D = noE D|O = d, F = f ) = 1 − pother − f + pother × f
= (1 − pother)(1 − f ).

Finally,

P(D = other|O = d, F = f )

= 1 − P(D = d|O = d, F = f ) − P(D = noE D|O = d, F = f )

= 1 − f − (1 − pother)(1 − f ) = pother(1 − f ).

I : This node represents each of the possible chief complaints that an individual
could have when arriving in the ED. The plate representation in Fig. 4 indicates
that there is one such node for each individual in the population. There are 54
possible chief complaints, one of which is other, which means the chief complaint
was not one of the 53 specific chief complaints represented in the network. The
55th value of the node is noED, which means the individual did not visit the ED
and thus did not have a literal chief complaint. As mentioned previously, we do
not have good ED data during disease outbreaks. So the conditional probabilities
for this node were based on the knowledge of an infectious disease expert.

3.2 The BayesNet-T temporal event surveillance models

This section describes the high-level Bayesian network architecture representing the
BayesNet-T class of temporal event surveillance models and then gives a concrete
example.

3.2.1 The high-level Bayesian network architecture

We start with the high-level Bayesian network architecture in Fig. 2. Then two addi-
tional random variables, Y and F , are added to the set of attribute variables. These
variables are defined as follows:

F : severity of the outbreak if there is an ongoing outbreak.
Y : number of days into the outbreak, if there is an ongoing outbreak.

The specific nature of the variable F depends on the particular application. Note that
PC has a variable F that represents the severity of the outbreak (see Fig. 4). However,
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E

. . . .

. . . .

Data(0)

FY . . . .

. . . .

. . . .

Data(1)

. . . .

Intermediate
Variables

Observable
Variables

Attribute
Variables

Fig. 5 The high-level BayesNet-T Bayesian network architecture. The discussion in the caption of Fig. 2
pertains to this figure. There is always one attribute variable F representing the severity of the outbreak
and one attribute variable Y representing the number of days into the outbreak. The set of variables labeled
Data(0) denotes the data collected today, the set of variables labeled Data(1) denotes the data collected
yesterday, and so on

in general a BayesNet model need not have a variable F , whereas a BayesNet-T model
requires one. As to the intermediate and observable variables, there are a set of these
variables for today (day 0) and for each day preceding today (day i denotes i days
prior to the current day). Their probability distributions are conditional on the values
of F, Y , and the day i . The nature of this dependence also depends on the application.
The data on day i is denoted Data(i). A high-level Bayesian network architecture
representing this class of models appears in Fig. 5. Any model in this class is called a
Bayesian Network Temporal (BayesNet-T) model.

3.2.2 PANDA-CDCA-TEMPORAL

In this section we develop the temporal system PCT.

3.2.2.1 The model Figure 6 shows the Bayesian network structure for PANDA-
CDCA-TEMPORAL (PCT), which is the BayesNet-T system derived from PC (Fig. 4).
Each day PCT bases its outbreak posterior probabilities on the most recent T days
(including today) of ED data. We will now describe the nodes in the network.

E : This node represents whether there is an ongoing outbreak. It is the same node
as in PC, and its probability distribution is the same as the one in PC.

O : This node represents which outbreak disease is occurring given that there is an
outbreak. It is the same node as in PC, and its probability distribution is the same
as the one in PC.
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Fig. 6 The Bayesian network
structure in PCT

FO

D(0)

I(0)

E

D(1)

I(1)

Y

Data (0)Data (1)

...

F : If there is an ongoing outbreak then this variable represents its severity at the
current time; see Sect. 3.1.3 for details.

Y : This node represents the number of days into the outbreak, as of today, if
there is an ongoing outbreak. The prior probability over its values is a uniform
distribution over {1, 2, . . . T }, where T is the maximum time span over which
we are modeling an outbreak.

D(i) : This node represents the ED disease state of the an individual i days ago,
where i = 0 represents today. It has the same values as node D in PC. Its
conditional probability distribution will be discussed shortly.

I (i) : This node represents the chief complaint of the an individual i days ago. It
has all the same properties as the node I in PC. Its conditional probability
distributions are the same as those in PC.

The probability distribution of D(i) is conditional on O, F , and Y . The Bayesian
network structure in Fig. 6 entails that given values of O, F , and Y , the ED dis-
ease states (values of D(i)) and therefore the chief complaints (values of I (i)) for
an individual on different days are independent. For example, conditional on these
three variables, if an individual went to the ED yesterday with influenza, it does not
change the probability that the individual will go to the ED today with influenza. This
assumption allows for a given individual going to the ED two or more times during
an outbreak. This is certainly possible, especially in the case of an outbreak disease
with severe symptoms. Justification for this independence assumption is provided at
the end of this section.
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To develop the conditional probability distribution for node D(i), it is useful to first
define the following random variable:

F(i) : Probability of an individual both being afflicted with the outbreak disease and
going to the ED i days ago.

Recall that the value f of F is the probability of an individual both being afflicted
with the outbreak disease and going to the ED today, given that an outbreak is ongoing.
Early in the outbreak, which is when we hope to detect the outbreak, it is reasonable to
assume that the increase in cases can be approximated by a linear increase. Therefore,
we assume that the value f (i) of F(i) is related to the values f of F and y of Y as
shown in Fig. 7. This assumption entails that the outbreak extent is at level 0 when we
are 0 days into the outbreak, reaches level f today, and the increase over that period
of time is linear. The assumption of linearity is a first-order approximation to the way
in which different types of outbreaks might exhibit an increase. In the experiments
in Sect. 4.2.1 we test the robustness of this assumption by developing outbreaks with
non-linear increases in the number of outbreak-disease cases.

f (i)

y − i
= f

y
,

which implies that

f (i) = y − i

y
f. (1)

Given the Eq. 1 and the discussion in Sect. 3.1.3 concerning PC, the conditional
probability distributions for D(i) are as follows:

P(D(i) = other|O = none, F = f, Y = y) = pother

P(D(i) = noE D|O = none, F = f, Y = y) = 1 − pother

P(D(i) = d|O = d, F = f, Y = y) = y−i
y f i < y

= 0 i ≥ y
(2)

Fig. 7 Number of days into the
outbreak is plotted horizontally,
and the prevalence of the
outbreak is plotted vertically

y

f

i

f(i)

0 y-i

0 days into
outbreak

today
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P(D(i) = c|O = d, F = f, Y = y) = 0 for c �= d

P(D(i) = other|O = d, F = f, Y = y)

= pother

(
1 − y−i

y f
)

i < y

= pother i ≥ y.
(3)

P(D(i) = noE D|O = d, F = f, Y = y)

= (1 − pother)
(

1 − y−i
y f

)
i < y

= 1 − pother i ≥ y.
(4)

Let us discuss the boundary condition in Eq. 2. Recall that Y is uniformly distributed
between 1 and T . It is assumed that we must be at least 1 day into the outbreak for
the individual to contract the disease and arrive with it in the ED. The value of D(i)
is a given individual’s ED disease state i days ago. If i ≥ y, it is the individual’s
disease state before we are into the outbreak. For example, if y = 1, we are 1 day
into they outbreak today, and so if i ≥ 1, then i days ago we had not progressed into
the outbreak yet. Therefore, in that case the probability of the individual having the
outbreak disease is 0 as Eq. 2 entails. A similar discussion pertains to the boundary
conditions in Eqs. 3 and 4.

3.2.2.2 The inference algorithm On each day i , we know the value of I (i) for each
individual in the population. Data(i) is the set of these values i days ago, and Data is
the set of all these values.

Since the data items are conditionally independent given that O = none, we have
that

P(Data|E = no) = P(Data|O = none) =
T −1∏

i=0

P(Data(i)|O = none). (5)

Note that the product goes from 0 to T − 1, which means we look at T days of data.
The terms in the product on the right in Eq. 5 are given by

P(Data(i)|O = none) =
∏

k

(P(I (i) = mk |O = none)Ck (i) ,

where Ck(i) is the number of individuals i days ago with chief complaint mk . Note
that one of the chief complaints is noED, which means the individual did not visit the
ED. The reason we can compute P(Data(i)|O = none) by multiplying the individual
probabilities is that the nodes representing the manifestations of different individuals
(the nodes represented by the plate I ) are conditionally independent given values of
O, F, Y , and by construction F’s value and Y ’s value are irrelevant when O = none.

The value of P(I (i) = mk |O = none) for each patient who went to the ED could
be computed by performing inference using the Bayesian network in Fig. 6. However,
we can obtain this value more efficiently as follows:
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P(I (i) = mk |O = none)

= ∑
c

P(I (i) = mk |D(i) = c)P(D(i) = c|O = none)

= P(I (i) = mk |D(i) = other)P(D(i) = other|O = none)
+ P(I (i) = mk |D(i) = noE D)P(D(i) = noE D|O = none)

= P(I (i) = mk |D(i) = other) × pother
+ P(I (i) = mk |D(i) = noE D) × (1 − pother).

Next, we have that

P(Data|O D = d) =
∑

f,y

T −1∏

i=0

P(Data(i)|O = d, F = f, Y = y)

P(F = f )P(Y = y). (6)

The first term in the product on the right in Eq. 6 is given by

P(Data(i)|O = d, F = f, Y = y) =
∏

k

(P(I (i) = mk |O = d, F = f, Y = y)Ck (i)), (7)

where Ck(i) is the number of individuals i days ago with chief complaint mk .
The term in the product on the right in Eq. 7 above is computed as follows:

P(I (i) = mk |O = d, F = f, Y = y)

= ∑
c

P(I (i) = mk |D(i) = c)P(D(i) = c|O = d, F = f, Y = y)

= P(I (i) = mk |D(i) = d)P(D (i) = d|O = d, F = f, Y = y)

+ P(I (i) = mk |D(i) = other)P(D(i) = other|O = d, F = f, Y = y)

+ P(I (i) = mk |D(i) = noE D)P(D(i) = noE D|O = d, F = f, Y = y).

The conditional probabilities of values of D(i) in the previous expression are com-
puted using Eqs. 2, 3, and 4.

Using Bayes’ Theorem, we have that

P(O = d|Data) = P(Data|O = d)P(O = d)∑
c P(Data/O = c)P(O = c)

.

The prior probability of an outbreak disease is computed as follows:

P(O = d) = P(O = d|E = yes)P(E = yes) + P(O = d|E = no)P(E = no)

= P(O = d|E = yes)P(E = yes).

Finally,

P(E = yes|Data) =
∑

d �=none

P(O = d|Data).
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3.2.2.3 Justification for the independence assumption Recall that the model assumes
that, given values of O, F , and Y , the chief complaints of an individual on different
days are independent. We will now discuss the justification for this assumption, which
serves as an approximation.

First, we assume that the number of days of data T (time window) is fairly small.
In our experiments we used T = 5. For the sake of simplicity, in the discussion that
follows, we use T = 3. Also, for the sake of brevity, in what follows we denote the
event O = d, F = f, Y = y by e.

Next, note that P(I = NoE D|e) ≈ 1 for any set of values of O = d, F = f,
and Y = y. This can be seen by looking at Fig. 4. We see from that figure that, for
example,

P(D = noE D|O = flu, F = 0.0000118) = .9979552 (8)

P(D = noE D|O = none, F = 0.0000118) = .997967 (9)

P(I = noE D|D = noE D) = 1. (10)

Eqs. 9 and 10 are exemplary of what is true in general. Namely, regardless for realistic
values of O and F(and of Y in the temporal model), an individual will most probably
not go to the ED. We see from Equation 11 that if an individual does not go to the ED,
then the value of Ir is noED.

Now we will discuss the justification for the independence assumption separately
for three types of individuals.

1. The individual does not visit the ED during the time window.

Our assumption relevant to these individuals is that if an individual does not go to the
ED on one or more days in a row, it is still most probable that the individual will not
go to the ED the following day. Let I (k) be the individual’s chief complaint k days
ago. Due to the chain rule, we then have that

P(I (0) = noE D, I (1) = noE D, I (2) = noE D|e)
= P(I (0) = noE D|I (1) = noE D, I (2) = noE D, e)

× P(I (1) = noE D|I (2) = noE D, e) × P(I (2) = noE D|e)
≈ P(I (0) = noE D|e) × P(I (1) = noE D|e) × P(I (2) = noE D|e)
≈ 1.

The approximations hold because all terms in the first product are assumed to be near
1, all terms in the second product are near 1, and we have assumed the time window
is small. Now

P(I (0) = noE D, I (1) = noE D, I (2) = noE D|e)

is the actual conditional probability of the data concerning the individual, and

P(I (0) = noE D|e) × P(I (1) = noE D|e) × P(I (2) = noE D|e)

is the value used by model.
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The assumption made here is suspect only if not going to the ED several days in a
row somehow made it probable an individual would go to the ED the following day,
which does not seem reasonable. So the assumption concerning these individuals is
reasonable, and this assumption concerns most of the individuals in the population
since most individuals do not visit the ED in a short time window (unless there was
a very severe outbreak in which case computer-assisted outbreak detection would
probably not be needed).

• The individual visits the ED once during the time window.

Our assumption relevant to these individuals is that if an individual went to the ED
2 days ago, the probability of not going to the ED 1 day ago remains very high. Fur-
thermore, if the individual went to the ED 2 days ago, and did not go to the ED
1 day ago, the probability of not going to the ED today remains high. In general, the
assumption is that if an individual went to the ED i days ago and did not go the ED
i −1, i −2, . . . , and j +1 days ago, then the probability of not going to the ED j days
ago remains high, where j < i and j and i are both in the window. This assumption
seems reasonable. If an individual goes to the ED 1 day, one might argue that it would
increase the probability of going to the ED a second day because the individual is
sick. Or one might argue that it would decrease the probability of going to the ED
another day because the individual has already been to ED. Our assumption would
only be incorrect if an ED visit on 1 day made the probability of an ED visit another
day substantially different. So this assumption seems reasonable, but perhaps not as
compelling as the assumption for Type 1 individuals, which was discussed above.

Without loss of generality, assume that the individual’s sole ED visit is 2 days ago
and that the chief complaint is mk . Given the assumption above, due to the chain rule
we then have that

P(I (0) = noE D, I (1) = noE D, I (2) = mk |e)
= P(I (0) = noE D|I (1) = noE D, I (2) = mk, e)

× P(I (1)|I (2) = mk, e) × P(I (2) = mk |e)
≈ P(I (2) = mk |e)
≈ P(I (0) = noE D|e) × P(I (1) = noE D|e) × P(I (2) = mk |e).

• The individual visits the ED more than once during the time window.

Assuming conditional independence means that the naive Bayes assumption is being
made. Although this assumption is often not literally true, it often has been shown to
perform well in practice on classification tasks (Sun and Shenoy 2007). This seems
to be the least compelling of our assumptions. However, there should be very few
individuals of this type.

It is believed that no outbreak occurred in Allegheny County during the calendar
year 2004. Using ED data from that county during that calendar year, Jiang (2008)
evaluated the accuracy of the assumptions just presented. The results indicated that the
assumption for Type 1 individuals was accurate to the third decimal place, the assump-
tion for Type 2 individuals was accurate to the fifth decimal place, but the assumption
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for Type 3 individuals was not very accurate. However, the data also indicated that
few individuals are of Type 3, most are of Type 1, and an intermediate number are of
Type 2.

3.2.3 The type of temporal modeling in PCT

This paper focuses on modeling atemporal information about individual patients, as
patients arrive in the ED over time. This focus is reasonable, since the type of informa-
tion that is available electronically in real time about patients is usually a “snapshot”
of the patient at the time of the ED visit (e.g., the patient’s age, gender, and chief
complaint), rather than information about the patient over time (e.g., how the patient’s
temperature varies over time). Thus, the evidence about a given patient is modeled
as atemporal, even while we have temporal information about when those individuals
visited the ED. Moreover, the goal of the research reported in this paper is to detect
the presence of an outbreak at any given time, rather than to model the dynamics of
an outbreak over time. Thus, the outbreak node (O) is only temporal in the sense that
it represents the current time, which is continually changing.

4 Experiments

In Experiment 1, we ran PCT and PC with ED data collected during a real influenza
outbreak and compared the results. In Experiment 2, we created a set of simulated
influenza outbreaks and a set of simulated Cryptosporidium outbreaks by injecting
outbreak cases in real ED data. This type of simulated outbreak is called a semi-syn-
thetic outbreak. We then compared the results obtained by monitoring these semi-syn-
thetic outbreaks using PCT, PC, CUSUM, and EWMA. This section describes the two
experiments and how we evaluated the results from these experiments.

4.1 Experiment 1

4.1.1 Method

In this experiment, we evaluated the ability of PCT to detect a laboratory validated
outbreak of influenza in Allegheny County based on chief-complaint data from EDs
in that county. We compared PCT’s detection performance to that of PC. We used
a value of T = 5 as the number of days of data considered by PCT. Jiang (2007)
estimated that the outbreak started on 11/18/2003 and lasted for 66 days. Allegheny
County Health Department reported the first confirmed influenza case on 11/18/2003
(www.county.allegheny.pa.us/news/2003/231118.asp). The start of the outbreak was
subtle and based largely on the first officially reported influenza case.

4.1.2 Results

Figure 8a and b show the probabilities of an outbreak determined, respectively by
PC and PCT starting on 11/7/2003. On 11/29/2003 PC reported that the probability
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Fig. 8 A comparison of the performance of PC and PCT when detecting a real influenza outbreak.
(a) PC’s posterior probability of influenza outbreak (O= influenza) as a function of date between November
7 and December 8, 2003. (b) PCT’s posterior probability of influenza outbreak (O= influenza) as a function
of date between November 7 and December 8, 2003

of an outbreak was 0.12, and on 11/30/2003 PC reported that this probability was
0.98. However, on 12/1/2003 the probability reported by PC dropped down to 0.27.
After that the probabilities fluctuated, reaching a value of almost zero on 12/5/2003.
Finally, on 12/6/2003 the probabilities stabilized close to a value of one. On the other
hand, on 11/29/2003 PCT reported that the probability of an outbreak was 0.71, and
on 11/30/2003 PCT reported that this probability was 0.999. Not only did PCT report
higher probabilities than PC early in the outbreak (on 11/29/2003 and 11/30/2003),
but PCT’s probabilities stabilized close to 1.0 6 days earlier than PC’s probabilities
(11/30/2003 verses 12/6/2003).

Note that on 11/23/30 both PCT and PC showed a slight spike in the probability of
an outbreak, with PC reporting a probability of 0.079 and PCT reporting 0.151. The
next day PC’s probability dropped back down to zero, whereas PCT’s probability was
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at 0.08366. So very early in the outbreak PCT also provided a stronger warning of an
outbreak than PC.

4.2 Experiment 2

This experiment involved simulated outbreaks that use semi-synthetic data based on
ED data obtained from Allegheny County, Pennsylvania. First we discuss the data sets
and the method used to evaluate the systems; then we show the results.

4.2.1 The data sets

We used real ED admission data that we collected from Allegheny County, Pennsylva-
nia in the year 2004 as the background data. This data set contains all 110 zip codes in
Allegheny County. The average daily number of ED visits included in this date set is
about 580. We added simulated outbreak cases to this background data to create semi-
synthetic outbreaks. These outbreaks were semi-synthetic because the background
data is real and the overlaid outbreak data is synthetic. In all the experiments, influ-
enza and Cryptosporidium outbreak cases were simulated because outbreaks of these
types have been well studied (Stirling et al. 2001; Cooper et al. 2007; Jiang 2007). The
observed data for both types of outbreaks consisted of chief complaints presented by
patients in the ED. We simulated a total of 120 outbreaks for each type of outbreak.

Allegheny County, which covers 730 square miles, was modeled using a 16 × 16
grid. Each grid element is one cell. A zip code was considered entirely within a cell
if the zip code’s centroid was in the cell. To use a variety of background regions for
the outbreaks and to simulate the way outbreaks ordinarily initiate, outbreaks cases
were simulated in rectangular subregions of that county. Equal number of outbreaks
that occur in rectangles that are 2 cells by 1 cell, 2 cells by 2 cells, and 3 cells by
2 cells were developed. The 2 by 1 rectangles and 3 by 2 rectangles could go either
north-south or east-west.

To control the severity of the outbreak, we determined the number of daily injected
cases based upon the standard deviation σcell of the number of real background daily
ED visits in each cell in the injected subregion. We simulated the same number of
outbreaks for each of four levels of severity. The average (over the entire simulation)
number of injected cases in a cell for severity levels 1, 2, 3, and 4 were, respectively
1.5σcell, 2σcell, 2.5σcell, and 3σcell.

To test the robustness of the assumption in the model that the increase in the number
of outbreak cases is linear, we simulated outbreaks in which the number of injected
cases were made to increase according to linear, quadratic, and cubic functions before
the outbreak reached its peak. There were an equal number of outbreaks with each
type of increase. To simulate an outbreak that, for example, methodically exhibited a
linear increase in outbreak cases, we would assume that � of them occur on day one
of the outbreak, 2� occur on day two, and so on. The value of � can therefore be
determined by solving

� + 2� + · · · + 30

2
� = totcell

2
,
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where totcell is the total number of cases injected during the outbreak. The solution is
� = totcell/240.

To force daily fluctuations, we deviated from simply making the number of new
cases on day t equal to t� (linear case), t2� (quadratic case), or t3� (cubic case).
Rather, in half the simulations on even numbered days we made the number of new
cases 25% of the previous day’s count, and in the remaining simulations on even num-
bered days we made it 50% of the previous day’s count. We imposed daily fluctuations
so we could evaluate the detection maintenance capability of the systems. If PC first
detected an outbreak on day t when the number of injections was, for example, 100,
it is likely that it would not detect it on day t + 1 if the number of injections was only
50. However, since PCT would be looking at the data from both day t and day t + 1
it seems likely that it would maintain the detection signal on day t + 1.

To determine the chief complaint of each injected case, the chief complaint was gen-
erated stochastically according to a probability distribution Q of the chief complaints
given the outbreak disease (influenza or Cryptosporidium). Recall PCT contains a
probability distribution of the chief complaints given the outbreak disease, and it is
the same as the probability distribution P in PC. To test the robustness of the systems,
Q was allowed to vary significantly from P . To obtain a conditional probability dis-
tribution Qi , we let the probabilities in P be the means of a Dirichlet distribution. We
stochastically generated ten different probability distributions Q1 through Q10 accord-
ing to the Dirichlet distribution. Table 1 shows, in the case of influenza, the probabilities
in P , which were the means in our Dirichlet distribution, the standard deviations in
that Dirichlet distribution, and the sample probability distributions Q1 and Q2.

Figure 9 shows the daily ED visit counts (both real background and injected out-
break cases) for one particular influenza outbreak that showed a linear increase. The
actual zip codes in which outbreak cases were injected are 15084, 15014, and 15056.

4.2.2 Evaluation methodology

AMOC curves (Fawcett and Provost 1999) were used to evaluate the ability of the
systems to detect the outbreaks. In such curves, the annual number of false alarms is
plotted on the x-axis and the mean days to detection is plotted on the y-axis.

Table 1 The probabilities in P ,
which were the means in our
Dirichlet distribution, the
standard deviations in that
Dirichlet distribution, and the
sample probability distributions
Q1 and Q2

Chief complaint P(means) Standard Q1 Q2
deviations

Cough 0.343 0.194 0.175 0.127

Diarrhea 0.025 0.064 0 0

Dypsnea 0.099 0.122 0.018 0.100

Fatigue/weakness 0.026 0.065 0.023 0.053

Fever/chills 0.421 0.202 0.678 0.617

Malaise 0.011 0.042 0 0

Myalgia 0.010 0.040 0 0

Nausea/vomiting 0.041 0.081 0.080 0.103

Sore throat 0.024 0.062 0.026 0
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Fig. 9 The ED visit counts for
one particular semi-synthetic
influenza outbreak
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The performances of PC and PCT were further compared using traditional sig-
nificance testing, which is equivalent to computing the probability that one system’s
average time to detection is greater than that of another systems under the assump-
tion of prior ignorance. We will now discuss the methodology we used to determine
statistical significance.

Suppose we want to compare two systems, System1 and System2, which detect
the same set of outbreaks. For a given false alarm rate r , we can analyze the signif-
icance of the results using a paired observation t-test. For false alarm rate r , we let
µ

(r)
1 be the mean time to detection for System1, µ

(r)
2 be the mean time to detection for

System2, and µ(r) = µ
(r)
1 − µ

(r)
2 . We are interesting in rejecting the null hypothesis

that System1 has a smaller mean time to detection than System2. Therefore, we want
to see if we can reject that µ

(r)
1 ≤ µ

(r)
2 in favor of µ

(r)
1 > µ

(r)
2 . Our hypotheses are

therefore H (r)
0 :µ(r) ≤ 0 and H (r)

A :µ(r) > 0. Using the paired observation t-test, we
compute the p-value p(r) of the result.

If we do a Bayesian analysis and assume prior ignorance as to the value of µ(r),
Jiang (2008) shows that

P(H (r)
A |Data) = P(µ

(r)
1 > µ

(r)
2 |Data) = 1 − p(r).

where p(r) is the p-value obtained using the t-test.
We are not only interested in how early a system can detect an outbreak, but also in

how early the system maintains the detection of an outbreak. AMOC-M curves were
used to evaluate the latter. An AMOC-M curve (AMOC-Maintain curve) [33] is like
an AMOC curve, except that the y-axis plots the average time at which an outbreak
signal is detected and maintained thereafter. For example, if the threshold is 0.04, and
the sequence of signals is [0.01, 0.02, 0.05, 0.03, 0.04, 0.02, 0.05, 0.06, 0.05, 0.07],
then the time at which the signal is maintained above the threshold is 7 because on the
7th day the probability is 0.05, which exceeds 0.04, and it stays at or above 0.04 for
the remaining days in the analysis.

4.2.3 Results

Results of the experiments are shown next.
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(b)

(a)

Fig. 10 AMOC curves comparing the detection performance of PCT and PC. (a) Cryptosporidium out-
breaks. (b) Flu outbeaks

4.2.3.1 Results of comparing PC to PCT Figure 10 shows AMOC curves comparing
the detection performance of PCT and PC. Table 2 shows the posterior probability that
PCT has a smaller mean day to detection than PC at various false alarm rates (r). In
that table and in Table 3 the following notation is used:

• PCc : PC detecting Cryptosporidium outbreaks.
• PCT c : PCT detecting Cryptosporidium outbreaks.
• PC f : PC detecting influenza outbreaks.
• PCT f : PCT detecting influenza outbreaks.
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Table 2 At various false alarm
rates (r), the posterior
probability that PCT has a
smaller mean day to detection
than PC

r P(µPCc > µPCTc) P(µPCf > µPCTf )

0 0.9038 0.1291

5 0.6791 0.9132

10 0.0877 0.9087

15 0.0198 0.5630

Table 3 At various false alarm
rates (r), the posterior
probability that PCT has a
smaller mean day to maintaining
detection than PC

r P(νPCc > νPCTc) P(νPCf > νPCTf )

0 >0.9999 0.9990

5 >0.9999 >0.9999

10 >0.9999 >0.9999

15 >0.9999 >0.9999

For the sake of concreteness, let us define a small annual false alarm rate to be five
false alarms or less. We see from Fig. 10 and Table 2 that in the case of Cryptospori-
dium outbreaks PCT performed better for small false alarm rates, but worse for large
false alarm rates. In the case of influenza outbreaks PCT and PC performed about the
same.

Note that our results indicate that PC performs better at large false alarms rates
in the case of Cryptosporidium outbreaks. This result may be due to the following.
If we set our threshold low (and thereby have a large number of false alarms), we
should often be able to detect an outbreak when there is an initial small spike on an
early day of the outbreak if we look only at that day’s data. However, a system that
looks at that day’s data along with data from previous days might miss the 1-day
spike.

Figure 11 shows AMOC-M curves comparing the detection maintenance perfor-
mance of PCT and PC. For both Cryptosporidium and influenza outbreaks, the per-
formance of PCT is superior to that of PC for all false alarm rates.

Table 3 shows the posterior probability that PCT has a smaller mean day to main-
taining detection than PC at various false alarm rates (r ). These results strongly support
our hypothesis that PCT is more stable than PC in that once an outbreak is detected,
PCT is better at maintaining the detection signal on future days.

4.2.3.2 Results of comparing PCT to CUSUM and EWMA We mentioned in Sect. 2.2
that by modeling each individual in the population, we can base our analysis on more
information than that contained in a summary statistic such as the number of patients
who visited the ED with respiratory symptoms on a given day. By so doing we may
be able to obtain better detection performance. To test this conjecture we compared
the performance of PCT to the classic temporal methods CUSUM and EWMA (see
Sect. 2.1.2). We configured CUSUM and EWMA to attempt to detect the outbreak dis-
ease being simulated (either influenza or Cryptosporidium) by using the counts of the
three chief complaints that were the best indicators of the outbreak disease (according
to the probability distributions in PC).
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(b)

(a)

Fig. 11 AMOC-M curves comparing the detection maintenance performance of PCT and PC. (a) Cryp-
tosporidium outbreaks. (b) Flu outbreaks

Figure 12 shows AMOC curves comparing the detection performance of PCT,
CUSUM, and EWMA, and Fig. 13 shows AMOC-M curves comparing the detection
maintenance performance of PCT, CUSUM, and EWMA. Table 4 shows the posterior
probability that PCT has a smaller mean day to detection than CUSUM at various false
alarm rates (r ), and Table 5 shows the posterior probability that PCT has a smaller mean
day to maintaining detection than CUSUM at various false alarm rates (r ), Table 6
shows the posterior probability that PCT has a smaller mean day to detection than
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(a) 

(b)

Fig. 12 AMOC curves comparing the detection performance of PCT, CUSUM, and EWMA. (a) Cryp-
tosporidium outbreaks. (b) Flu outbreaks

EWMA at various false alarm rates (r ), and Table 7 shows the posterior probability
that PCT has a smaller mean day to maintaining detection than EWMA at various
false alarm rates (r ).

We see that for both types of outbreaks PCT performed substantially better than
CUSUM both at initially detecting outbreaks and at maintaining detection. For Cryp-
tosporidium outbreaks PCT performed much better than EWMA at both outbreak
detection and detection maintenance, whereas for influenza outbreaks PCT performed
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(a) 

(b) 

Fig. 13 AMOC-M curves comparing the detection maintenance performance of PCT, CUSUM, and
EWMA. (a) Cryptosporidium outbreaks. (b) Flu outbreaks

much better than EWMA at outbreak detection but only moderately better at detection
maintenance.

5 Discussion

This paper introduced a Bayesian network architecture called BayesNet-T for devel-
oping temporal event surveillance systems. Using this architecture, we extended the
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Table 4 At various false alarm
rates (r), the posterior
probability that PCT has a
smaller mean day to detection
than CUSUM

r P(µCUSUMc > µPCTc) P(µCUSUMf > µPCTf )

0 >0.9999 0.9312

5 >0.9999 0.9751

10 >0.9999 >0.9999

15 >0.9999 >0.9999

Table 5 At various false alarm
rates (r ), the posterior
probability that PCT has a
smaller mean day to maintaining
detection than CUSUM

r P(νCUSUMc > νPCTc) P(νCUSUMf > νPCTf )

0 >0.9999 >0.9999

5 >0.9999 >0.9999

10 >0.9999 >0.9999

15 >0.9999 >0.9999

Table 6 At various false alarm
rates (r), the posterior
probability that PCT has a
smaller mean day to detection
than EWMA

r P(µEWMAc > µPCTc) P(µEWMAf > µPCTf )

0 >0.9999 0.1011

5 >0.9999 >0.9999

10 >0.9999 >0.9999

15 >0.9999 >0.9999

Table 7 At various false alarm
rates (r), the posterior
probability that PCT has a
smaller mean day to maintaining
detection than EWMA

r P(νEWMAc > νPCTc) P(νEWMAf > νPCTf )

0 >0.9999 0.0455

5 >0.9999 0.8275

10 >0.9999 0.9856

15 >0.9999 0.6727

non-temporal outbreak detection system PC to the temporal outbreak detection system
PCT. We hypothesized that (1) PCT will have a smaller mean time to detection than
PC at low false alarm rates; and (2) PCT will be more stable than PC in that once an
outbreak is detected, PCT will be better at maintaining the detection signal on future
days. Results concerning both a real influenza outbreak and simulated outbreaks using
semi-synthetic data support hypothesis 2 strongly and hypothesis 1 modestly.

PCT is a patient-specific system that models each individual in the population. We
hypothesized that such as system might obtain better detection performance than clas-
sic time-series systems that uses a summary statistic such as daily counts. Results of
comparing PCT to CUSUM and EWMA served to support this hypothesis. Another
advantage of PCT over these methods is that PCT can be readily extended to include
other information about individuals other than ED data.
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