
A Randomized Approximation Algorithm for
Probabilistic Inference on Bayesian Belief
Networks
R. Martin Chavez and Gregory F. Cooper
Section on Medical Informatics, Stanford University School of Medicine,
Stanford, California 94305

Researchers in decision analysis and artificial intelligence (AI) have used Bayesian belief
networks to build probabilistic expert systems. Using standard methods drawn from the
theory of computational complexity, workers in the field have shown that the problem
of probabilistic inference in belief networks is difficult and almost certainly intractable.
We have developed a randomized approximation scheme, BN-RAS, for doing probabilistic
inference in belief networks. The algorithm can, in many circumstances, perform efficient
approximate inference in large and richly interconnected models. Unlike previously
described stochastic algorithms for probabilistic inference, the randomized approxi-
mation scheme (ras) computes a priori bounds on running time by analyzing the structure
and contents of the belief network. In this article, we describe BN-RAS precisely and
analyze its performance mathematically.

1. INTRODUCTION

Recent work in expert systems and decision analysis has increased interest
in Bayesian probabilistic techniques for the representation of knowledge. This
article describes a randomized approximation scheme (ras), which we have
named BN-RAS, for the Bayesian inference problem in belief networks. BN-RAS

computes posterior probabilities, with high likelihood of success, to within
prespecified relative or interval errors. A corresponding analysis of running
time characterizes the strengths and weaknesses of the method and explicitly
characterizes computational resources in terms of known quantities and error
tolerances.

Within the discipline of artificial intelligence, many researchers have studied
methodologies for encoding the knowledge of experts as computational artifacts.
General purpose environments for constructing probabilistic, knowledge-inten-
sive systems based on belief networks have been developed [3]. Such networks
serve as partial graphical representations for decision models, in which the
knowledge engineer must define clearly the alternatives, states, preferences,
and relationships that constitute a decision basis.

NETWORKS, Vol. 20 (1990) 661485
0 1990 John Wiley & Sons, Inc. CCC 0028-3045/90/050661-025$04.00

662 CHAVEZ AND COOPER

The problem of Probabilistic Inference in Belief NETworks (PIBNET) is hard
for # P , and therefore hard for N9 [7]. In a later section, we describe the
complexity classes # P and N9 in more detail. The classification of PIBNET as
N9-hard has prompted a shift in focus away from deterministic algorithms and
toward approximate methods (including stochastic simulations) , heuristics, and
analyses of average-case behavior.

Stochastic simulations compute probabilities by estimating the frequency of
a given scenario in a large space of possible outcomes. Belief networks provide
frameworks for the generation of hypothetical outcomes, also known as trials,
in stochastic simulations. In this article, we offer a complexity-theoretic treat-
ment of approximate probabilistic inference. We use methods drawn from the
analysis of ergodic Markov chains and randomized complexity theory to build
an algorithm that, in many cases, efficiently approximates the solutions of
inference problems for belief networks to arbitrary precision.

We shall summarize previous work on belief networks as a paradigm for
knowledge representation. We shall then discuss earlier work on stochastic
simulation and logic sampling [MI. In particular, we shall examine Pearl's
method, known hereafter as straight simulation, for performing probabilistic
inference in belief networks. Finally, we shall propose and analyze a randomized
approximation scheme for probabilistic inference.

1.1 Belief Networks

Belief networks provide high-level graphical representations of expert op-
inion. More precisely, a belief network is a directed acyclic graph wherein
nodes represent domain variables and edges represent causal or associational
relationships [16]. For each orphan node (a domain variable that lacks incoming
arcs of preconditioning influences), the network designer must specify a prior-
probability distribution. For all other nodes, the expert must assess a probability
mass function (p.m.f.) conditioned on the node's parents. In general, the size
of a node's p.m.f. increases exponentially with the number of incoming arcs.
We shall restrict our coverage here to belief networks that model random
variables with discrete outcomes.

Let 2 denote an alphabet of symbols. In formal terms, a belief network $33
is a tuple (V,O,A,IT), where V c 2* is the set of domain variables (the labels
of the network), 0 C X* is a set of outcomes, A : V-+2v is a function that
describes the predecessors of each node, and rI : (V X 0) X 2(" O) + 3 speci-
fies conditional probabilities for each node, given its predecessors. A well-
formed belief network has no cycles; the relation n must specify exactly the
probabilities implied by the topology of the network, and

V X E v : 2 Il((X,v),s) = 1.0,
V E O

where s is a function from A(X) to 0 such that the cardinality of s is equal to
the cardinality of A (X) (Le., s assigns exactly one outcome to each ancestor of

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NElWORKS 663

X). The size of a belief network 93 is the length of an encoding of the tuple
(V,O,A,n), where the probabilities in II are represented in unary notation.

Every belief network represents a joint-probability space. Partially connected
belief networks also capture intuitive notions of independence; the absence of
an arrow implies a precise statement of conditional independence. Those ex-
plicitly represented assumptions can greatly reduce the complexity of represent-
ing and reasoning with the complete joint p.m.f. over all the variables in the
network. For modeling problems that specify singly connected belief networks
(i.e., networks that contain at most one undirected path between any pair of
nodes), the exact methods compute a probability assignment for all nodes in
time proportional to the diameter of the network on parallel machines and in
O (n) time on sequential machines, where n denotes the number of nodes. In
the worst case, however, PIBNET seems to require exponential time. All known
exact algorithms for inference on multiply connected networks operate in ex-
ponential time with respect to the number of nodes, in the worst case [19].

Figure 1 contains a small belief network from the domain of medicine; it is
intended for illustrative purposes only and not as an accurate medical model.
The probability that a patient has a brain tumor (i.e., C = T) given that he has
metastatic cancer (i.e., A = T) is 20%. The absence of an arc from B to C
implies the conditional independence of increased total serum calcium and brain
tumor given metastatic cancer. In other words, P(B = T,C = TIA = T) = P(B =

Metastatic cancer

Increased serum
calcium

Coma w
P(A=T) = 0.001

P PID=T D=T I
P(B=TI A=T) = 0.3
P(B=TI A=F) = 0.001

P(€=T I

tumor

Papilledema 0
B=T,C= = 0.1
B=T,C= a = 0.01
B=F,C= ’ = 0.05
B=F,C=$ = 0.00001

C=T, = 0.4
c=F) = 0.002

FIG. 1. This belief network captures information about metastatic carcinoma and
serum calcium. (It has been greatly simplified for purposes of illustration, and does not
convey a completely realistic representation of the causal-associational relationships.)

664 CHAVEZ AND COOPER

TIA = T) . P(C = TIA = T) or P(B = TIC = T,A = T) = P(B = TIA = T) .
The designer of a belief network specifies a conditional probability distribution
for each node given its parents.

1.2. Computational Complexity Theory

For a general introduction to computational complexity, see the bibliography
in [14]. We take our model of sequential computation to be a Turing machine.
Let 9 denote the class of problems that can be solved in an amount of time
that is a polynomial function of the size of the problem. Problems are usually
represented as an infinite set of strings that characterize problem instances,
where each instance represents a “yes-no’’ question. A polynomial-time de-
cision algorithm for a given problem answers the question posed by an arbitrary
problem instance after computing for no more than O(nk) time steps, where n
represents the size of the instance and k denotes a fixed constant. We transform
calculation problems into decision problems by asking not what the exact solu-
tion is, but rather whether the numerical solution lies below a given bound.

1.2.1. Nondeterministic Polynomial Time

NP is the class of problems that can be solved nondeterministically in polyno-
mial time on a machine that can compute along multiple paths simultaneously.
Equivalently, NP contains those problems for which a Turing machine can
guess a solution and then verify the solution’s correctness in deterministic
polynomial time. 999d%8 is the class of all problems that can be decided in
computational space that is a polynomial in the size of the problem. Inasmuch
as a computation that requires T(n) time can use no more than T(n) space, the
class PYPd%8 contains both N9 and 9. Whether PYPd%8 properly con-
tains N9 and N9 properly contains P, however, remain to be determined.

1.2.2. N9-Complete Problems and Reducibility

Let A be a problem that belongs to a class % of problems. We say that A is
complete for % if there exists a construction that reduces every instance of every
problem in % to an instance of A using space logarithmic in the size of the
instance. In some sense, then, A captures the maximal complexity of the class
%; A is at least as difficult to decide, for arbitrary problem instances, as is any
other problem in the class. If every problem in % is reducible to A , but A is
not known to belong to %’, we say that A is hard for %.

The hardest problems in NP, which are labeled NP-complete, probably do
not admit polynomial-time deterministic algorithms [8]. If any of the NP-com-
plete problems admits a polynomial-time deterministic algorithm, then P = N9
and all problems in N9 can be solved in polynomial time. The vast majority of
theoreticians believe, however, that NP properly contains P and that poly-
nomial-time algorithms for NP-complete problems do not exist.

PROBABILISTIC INFERENCE O N BAYESIAN BELIEF NETWORKS 665

1.2.3. PIBNET and PIBNETD

An algorithm for the PIBNET decision (PIBNETD) problem determines, for
some variable Y in a given belief network 92 = (V,{T,F},A,IT), whether Pr[Y =
TI > 0. PIBNETD is known to be complete for the class NP via a reduction from

3-satisfiability [7,6], where the size of the problem is determined by a natural
encoding of the tuple 92. An algorithm for the PIBNET problem computes, for
a given variable Y , the quantity Pr[Y = TI.

Inasmuch as we can reduce PIBNETD to PIBNET in logarithmic space, we know
that PIBNET is hard for NP. The problem of solving decision networks, which
contain decision nodes as well as chance nodes, is hard for 99’PdW (the
class of problems solvable in polynomial space) and therefore is at least as hard
as, if not harder than, that for PIBNET [15].

1.2.4. The Class #P

#P is the set comprising integer-valued functions that count the number
of accepting computations of some nondeterministic polynomial-time Turing
machine [23]. The counting versions of most NP-complete problems, in parti-
cular, are complete for #P. The #P-complete problems are at least as hard as
the NP-complete problems and perhaps are harder. Given an algorithm that
for a #P-complete problem, we can always generate a related algorithm for
the naturally corresponding h”-complete problem by answering “yes” when
the counting method returns 1 or greater and “no” otherwise. Examples of
#P-complete problems include counting the number of Hamiltonian circuits in
a graph, evaluating the probability that a probabilistic graph is connected,
computing the permanent of a matrix, and counting the perfect matchings in a
bipartite graph [8] .

PIBNET is hard for # P [7]. We therefore do not expect efficient polynomial-
time solutions for the exact problem. Specific belief networks or classes of belief
networks may have efficient polynomial-time algorithms, but the discovery of
a general polynomial-time algorithm for PIBNET would imply that 9 = NP. We
focus instead on efficient randomized algorithms that, with high probability,
approximate the desired solution to within some prespecified error for a wide
variety of networks.

2. ALGORITHMS FOR BELIEF NETWORKS

Current algorithms for probabilistic inference on belief networks can be
placed into three categories: the exact methods, which deterministically calcu-
late posterior probabilities; logic sampling and straight simulation, which apply
Monte Carlo techniques to the inference problem but do not give a priori
bounds on running time; and the PIBNET algorithm BN-RAS.

2.1 Exact Methods

Several algorithms have been developed for computing posterior probabilities
of nodes in belief networks contingent on a set of evidence, including the

666 CHAVEZ AND COOPER

message-passing algorithm of Pearl [161, the clique-triangulation method of
Lauritzen and Spiegelhalter [131, and the arc-reversal technique of Shachter
[20]. In the worst case, all known deterministic techniques experience exponen-
tially increasing time complexity as the intricacy of the causal model increases.

2.2 Logic Sampling and Straight Simulation

The incidence calculus [2] represents samples of the joint probability space
as bit strings and defines axiomatized procedures for deriving new bit strings.
More recently, the scheme of logic sampling has applied the incidence calculus
to Bayesian belief networks [9]. In logic sampling, belief networks serve as
simulated trial generators. The algorithm calculates belief destributions by aver-
aging over those trials that correspond to the observed data. Logic sampling,
however, may generate a large fraction of irrelevant trials. Recent modifications
of logic sampling reduce the posterior variance with a technique known as
importance sampling [21]. Straight simulation, which employs local numerical
computation followed by logic sampling , effectively clamps observed nodes to
the appropriate values and thereby avoids generating useless samples [17].

Straight simulation has two undesirable properties. First, the method does
not bound the number of required trials in terms of known quantities. To
our knowledge, no previous simulation methods (including logic sampling and
straight simulation) offer a priori upper bounds on the amount of computation
that will guarantee sufficient convergence properties. Second, the theory of
random Markov fields guarantees convergence to the correct stationary distribu-
tion in the limit; there is no reason, however, to believe that straight simulation
converges rapidly or efficiently to that distribution [5] . Empirical testing of
straight simulation reveals a serious difficulty: As the network’s probabilities
approach the boundaries at 0 and 1, the number of simulated trials needed to
obtain convergence increases without bound [4].

We address the first issue with area-estimation techniques inspired by Karp
and Luby [12]. We assume, for simplicity, the existence of an ideal trial genera-
tor that enumerates states of the network according to their exact probabilities.
By modifying the scoring strategy and assuming the existence of an ideal trial
generator, we build a randomized algorithm that, with high likelihood, guaran-
tees a fixed relative-error tolerance. Chebyshev’s inequality allows us to com-
pute the requisite number of trials as a function of known quantities. A similar
analysis sets a lower bound on the amount of computation required to guarantee
a prespecified interval error.

We analyze the second problem with techniques developed by Jerrum and
Sinclair [ll]. Recognizing that a trial generator probably cannot enumerate
combinatoric objects according to their precise probabilities in polynomial time
[22], we bound the discrepancy between a modified generator’s multistep trans-
ition probabilities and the true probabilities of the stationary distribution. The
accuracy of the generator increases with the number of transitions that we allow
for thorough mixing.

Finally, we combine the modified trial generator with stochastic simulation

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 667

in order to define an ras for PIBNET. The resulting BN-RAS calculates posterior
probabilities, with high likelihood, to within pre-specified relative and interval
tolerances. The running time depends on the tolerances, the logarithm of the
probability of achieving those tolerances, the smallest joint probability over all
nodes in the network, and the smallest Markov transition probability.

The deterministic methods for probabilistic inference typically exhibit expon-
ential behavior as the topological complexity of the network increases. BN-

RAS replaces the exact methods’ constraints on topological complexity with a
dependency on the smallest transition probability, which dominates the running
time. Although our methods cannot perform efficient inference on all belief
networks, they nevertheless expand the class of problems for which tractable
approximations can be considered. To our knowledge, the methods we describe
yield the first precisely characterized approximation algorithm for large and
richly connected belief networks.

We use techiques developed by Karp and Luby to analyze the time complexity
of straight simulation [121. The analytic treatment confirms previous empirical
observations. Then, we present an approximate PIBNET algorithm, known as
BN-RAS, based on the bounded convergence of an ergodic Markov chain and
on Monte Carlo area-estimation strategies. Finally, we compute the new algo-
rithm’s time complexity in terms of problem size and error tolerance.

3. THE BN-RAS ALGORITHM

We briefly recapitulate Karp’s and Luby’s analysis of Monte Carlo area
estimation in the Euclidean plane and apply it to the analysis of straight simul-
ation. The area-estimation strategy offers a simple method for bounding the
variance and convergence of Monte Carlo algorithms and establishes the overall
framework for our analysis.

3.1. Monte Carlo Area Estimation

Suppose a region E of known area A(E) encloses the region U of unknown
area A(U) in the plane. Suppose, furthermore, that region E contains exactly
b blocks, each with
not others. A block

area ci. The region U contains some of those blocks, but
belongs entirely to U , or not at all to U . Specifically,

1 if block i E U ;
0 if block i €! U.

In other words, A (E) = CP,, c, and A(U) = Cf=l a, . c,. We could calculate A(U)
by computing the sum directly; for very large b, however, we wish to avoid
costly summations.

The algorithm of Karp and Luby instead presupposes that we have a method
randomly to choose block i with probability c,/A(E). In each trial of the simul-
ation, randomly select block i and compute an estimator Y = a, . A (E) . Inas-

668 CHAVEZ AND COOPER

much as

the random variable Y estimates p = A(U) without bias. We reduce the variance
by computing multiple estimators Yj corresponding to trial j and defining the
unbiased estimator over multiple trials,

Karp and Luby analyze
N times [12]. They define

the variance of the Monte Carlo algorithm repeated
the relative error

P - p

Iyl
where p represents the value of the quantity to be estimated. Then, they derive
an upper bound on the number of trials N that guarantees, with probability
greater than a specified 1 - 6, a relative error less than a specified E . For
example, if we set E = 0.05 and 6 = 0.1, we must repeat the trial often enough
to guarantee a relative error that exceeds 5% no more than 10% of the time.
Any Monte Carlo algorithm that exhibits such convergence properties belongs
to the class of (~ , 6) approximation algorithms, by definition.

We can trivially define a distribution-free upper bound on N . Let d signify
the variance of Y , the value obtained in a single Monte Carlo trial. Then, the
variance of P is d / N . By Chebyshev’s inequality,

Thus, to ensure that Pr[l(P - p)/pl > €1 not exceed 6, the condition

suffices.
For the area-estimation algorithm, E[Y] = A(U) and

h
Ci E[Y‘-] = 2 -cY(Y’A(E)~

i = l A (E)

b

= A (E) ciai = A(E)A(U) .
i= 1

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 669

Therefore,

u2=E[YL] - E [q 2 = A (E) * A (U) - A (Q 2 ,

and

Finally,

guarantees an (€,a) algorithm for any p.m.f. on Y . Clearly, we seek estimation
algorithms with ratios A(E)/A(U) close to 1. Ideally, the regions E should not
be much larger than the region U of interest.

If we impose less stringent constraints by using interval (rather than relative)
error, fewer trials will be required, unless A(E) = A(U). To guarantee that

we set

An algorithm that bounds interval error a with success probability 1 - 6 is
known as an (a J) approximation scheme, by definition.

In the next section, we show how to construct regions U and E as collections
of blocks that represent the probabilities of interest in a Markov simulation for
Bayesian inference. We then apply the analysis of Karp and Luby to probabilis-
tic inference. Finally, we examine the difficult problem of randomly choosing
blocks from the joint-probability distribution.

3.2. Straight Simulation for Belief Networks

In this section, we describe the crucial properties of belief networks that
make Monte Carlo sampling possible. We present the Monte Carlo method in
detail and then discuss its convergence properties.

3.2.1. The Local-Computation Property

Straight simulation depends crucially on the property of local computation in
belief networks. More precisely, the probability distribution of each variable X

670 CHAVEZ AND COOPER

in the network, conditioned on the state of all other variables, can be written

Here and elsewhere, upper-case letters refer to nodes with arbitrary values;
lower-case letters denote instantiated nodes. The scaling factor (Y normalizes
the p.m.f., the ux represents the parents of X , the y, represent the children of
X , the f,(x> include X and the other parents of X's children, and the wx
represent all variables except X [17].

Knowing the instantiations for the parents of X, the children of X , and the
other parents of the children of X (which nodes define the Murkov blanket M
of X), we can compute the posterior distribution for X. The Markov blanket
of X probabilistically shields X from the rest of the network; no other infor-
mation is required to compute a p.m.f. over the values of X .

3.2.2. Straig h t-Simula tion Methodology

Straight simulation operates in the following manner. First, clamp observed
nodes to their observed values. Set the unobserved nodes to random values.
Choose an arbitrary order XI, . . . , X , in which to enumerate the unobserved
nodes. In one trial, begin with the first enumerated node X = XI and compute
a p.m.f. Pr[Awx] based on the instantiation of X's Markov blanket. Sample
from the computed p.m.f. and set XI to the sampled value. Sequentially repeat
the procedure for X,, . . . , X, to complete one trial. Record the sampled values
chosen in each trial; repeat the sampling for N trials. The frequency of recorded
values after N trials approximates the posterior p.m.f. at each node. Figure 2
gives the Pascal pseudocode that computes individual transition probabilities;
Figure 3 presents the pseudocode for straight simulation.

PROCEDURE sample(VAR X: node);
{Compute a transition p.m.f.)
VAR

sum, prod: REAL;
v, i: INTEGER;

BEGIN
sum := 0.0;
FOR X.value := 1 TO X.nvalues DO

BEGIN
prod := cprob(X); <cprob(X) = PrCX I u-Xl)
FOR i := 0 TO X.nchildren DO

sum := sum + prod;
X.dist [X. value] := sum;
END ;

prod := prod * cprob(X.childrenCi1); {cprob(X.childrenCil) = PrCy-] I f-](x)l)

normalize dist ;
END;

FIG. 2 .
network.

Pseudocode that computes the Markov transition probabilities from a belief

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 671

PROGRAH stsaightsim;
BEGIN
VAR

nodes: ARRAY l..HAXNODES OF node;
current-node: INTEGER;

PROCEDURE do-transition(VAR X: node);
{Compute a transition probability, and assign a value to node i)
BEGIN

sample(X);
X.value := choose(X.dist);
{select a value in l..X.nvalues according to the cumulative p.m.f. in X.dist}

END;

PROCEDURE next-transition;
{Compute a transition)
BEGIN

{Do not reinitialize the nodes)
IF current-node = nnodes THEN

BEGIN
score outcomes;
current-node := 1;
END ;

do-tsansition(nodes[current-node]);
current-node := current-node+l;

END;

PROCEDURE estimate;
VAR j, n: INTEGER;
BEGIN

compute n, the number of transitions;
current-node := 1 ;
FOR j := 1 TO n DO

next-trial;
END;
END.

FIG. 3. Pseudocode for straight simulation.

3.2.3. Straight-Simulation Convergence Properties

Empiric testing reveals that straight simulation converges very slowly as the
computed frequencies approach 0 or 1 [5]. We derive the same result analytically
by applying the techniques of Karp and Luby to straight simulation.

Assume for the moment that sequential sampling, based on local computation
at each node’s Markov blanket, generates network instantiations cs (otherwise
known as complete states) with probability Pr[cslt] exactly, where 5 represents
the observed variables and the set cs specifies a value assignment for each
domain variable. In actuality, the generator does not immediately produce
states according to the exact distribution; only in the limit at infinity does the
generator reach the stationary distribution [ll]. In the next section, we shall
correct that defect and describe a simulator with a stationary distribution that
differs from Pr[cslt] by a bounded relative error. For now, however, the pre-
sumed existence of an accurate trial generator greatly simplifies the analysis.

Let X I , . . . , X , denote the unobserved variables; without loss of generality,

672 CHAVEZ AND COOPER

let each node have two outcomes, T and F. Write cs as a set of rn terms {(Xl
t vl), . . . , (X, c v,)}, where each vi is one of {T,F}.

In each trial j , generate an assignment cs based on prior information 5 and
compute estimators

1 if (Xi t v) E cs ,
0 otherwise,

qxi,Vlj = {
where v is either T or F.

Finally, at the end of N trials, compute the averages

- N
1

N,=1
P[X,,V] = - z Y[Xi,VIi

Observe that

By performing many trials, we can reduce the variance of the unbiased esti-
mators Y[X,,v].

We now analyze the convergence of each estimator Y[X,,v] separately. By
analogy to the area-estimation algorithm, states s consistent with 5 correspond
to subdividing blocks. The containing region E represents the set of all states
s consistent with 5. By extension,

Similarly, Uxi,v corresponds to the states in which Xi takes on value v. The
Monte Carlo simulation aims to compute

For fixed S and E , the area-estimation algorithm requires a number of trials
proportional to A(E)/A(U) . Hence, for straight simulation, the number of trials
that guarantees convergence in variable Xi satisfies

where Pr[Xs = vlS] denotes the smallest probability in the network conditioned
on evidence 5.

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 673

By considering the calculation of probabilities in PIBNET, we derive an a priori
bound on the number of trials. Let M represent the Markov blanket of a node
X , M has Z instantiations MI, . . . , M I . Summing over all instantiations, we
obtain

k = l

min {Pr[X,=
l s k s l

= min {Pr[X,=
I c k s I

Letting T = minlsjcm,lsksI{Pr[Xi = VIMk]),
trials

we have as a sufficient number of

1 1 1 1

As T approaches 0, the running time to obtain a relative-error bound approaches
infinity.

If we require only interval error bounds, we obtain

for the number of trials, inasmuch as the expression p(1 - p) has a maximum
of 114 when p = 112.

We have predicated our analysis on the existence of a trial generator that
produces states s given evidence 5: according to the p.m.f. Pr[slt]. Recall that
the straight-simulation generator depends on the initial state. Moreover, we
know nothing about the generator’s convergence properties; finite runs of the
generator might not accurately represent the true p.m.f. Pr[sle]. In the next
section, we present a new trial generator in the form of an ergodic Markov
chain that avoids trapped and periodic states. In addition, we analyze the chain’s
convergence properties rigorously. Finally, we define the complete BN-RAS and
study its performance.

3.3 The BN-RAS Trial Generator

The method of straight simulation uses a state generator that enumerates
nodes in a fixed order. The generator therefore behaves asymmetrically with
respect to time. The analysis of convergence for Markov chains that lack time
reversibility is extremely difficult [11. In this section, we propose a time-revers-
ible generator for PIBNET and we analyze its convergence.

674 CHAVEZ AND COOPER

Assume, for the moment, that each node Xi has exactly two outcomes, F
and T. Assume, in addition, that there are no states with 0 probability (i.e.,
that there are no conditional probabilities equal to 0) . The absence of 0 probabil-
ities will aid in the construction of an ergodic chain. We shall later relax that
assumption.

3.3.1. Constuction of the Markov Chain

states, divided into two categories:
For a belief network with m nodes, define a Markov chain with 2"-'(m + 2)

1. The complete states. Each complete state CS corresponds to a set cs with
an instantiation for each of the rn nodes. The 2"' complete states are
mutually exclusive.
The partial states. Each partial state PS corresponds to a value assignment
p s for exactly m - 1 of the m nodes. There are m ways to choose m - 1
nodes, and 2m-1 states for each such choice. Hence, there are m . 2m-1
partial states, for a total of N = 2"-'(m + 2) partial and complete states.
The partial states are not necessarily mutually exclusive. Denote the state
space by [N], the set of integers from 1 to N .

2.

Let the symbols Pij represent the transition probability from state i to j .
Define the transitions as follows:

From complete states CS. With uniform probability llm, randomly select
node Xi and move to the partial state in which Xi has no value assignment.
The complete state CS corresponds to an instantiation cs of all the vari-
ables in the original belief network.
From partial states PS. Let Xi represent the single node that lacks a value
assignment in the current partial state. The partial state PS corresponds
to a configuration p s of the belief network. Examine state CS correspond-
- ing to cs = p s U {Xi+ T } and state CS corresponding to
cs = p s U {Xi t F) . Move to CS with probability Pr[csl(]lPr[psl(]. Simi-
larly, move to a with probability Pr[zl(]/PrlpslS]. Notice, in addition,
that Pr[psl(] = Pr[csl(] + Pr[zl(]. We derive the transition probabilities
by calculating a function f (defined in [17]) on the Markov blanket MB
and computing the quotient

-

-- Pr[csltl f [MB(cs)l
PrbslSI- f[MB(cs)l + f [M G) l .

Clearly, all states are reachable from any starting configuration. (The assumed
absence of impossible states and functional dependencies guarantees reach-
ability. Later, we shall describe a method that accomodates such dependencies.)
For each state, add a self-loop probability of 0.5, and multiply all the transition
probabilities defined previously by 0.5. The self-loop probability renders the

PROBABILISTIC INFERENCE O N BAYESIAN BELIEF NETWORKS 675

chain aperiodic, because it ensures that the Markov chain cannot become
trapped in the endless repetition of a fixed-length cycle. All the states communi-
cate, so the chain is also irreducible. Those two conditions taken together imply
ergodicity for a finite-state Markov chain. Well-known results in the theory of
Markov chains [lo] guarantee that there exists a limit distribution rr over the
states [N] such that

In other words, the f-step transition probabilities in an ergodic Markov chain
approach a stationary distribution independent of the starting state. The station-
ary distribution rr is the unique left eigenvector of the transition matrix P
corresponding to eigenvalue 1; in other words, rrP = rr.

Adding the self-loop probability 0.5 does not alter the stationary distribution.
Let P represent the original transition matrix, with zeroes along the diagonal.
If P = 1/2(Z + P) represents the modified transition matrix, then

1
2

rrP=-(rrZ+ 7rP) = rr,

so rr is also the stationary distribution for P .
Figure 4 demonstrates the ergodic, time-reversible Markov chain for a simple

two-node belief network. The transition probabilities from each complete state

P (B / A) =1/4
P (B 1 - A) = 114
P(A) = 1/2

} Complete
} States

} Partial
} States

FIG. 4. This Markov chain enumerates the combinatorial space of structures corre-
sponding to the two-node belief network A -+ B . Each arrow represents a bidirectional
edge. Each fraction denotes the probability of a transition out of the nearby node and
into the target node.

676 CHAVEZ AND COOPER

-
1
2
0
0
0
1
4
1
4

-
-

0
0

-

to the two compatible partial states are 1/4. In addition, each state has a self-
loop probability of 1/2. If we enumerate the states in the order A , A, B, B ,
AB, AB, A B , a, we obtain the transition matrix

-
0

0

0
0
0

3
8

1
4

-

-

1
2
-

-

1
4
I
4

-
-

0
0
1
2
-

0
1
4
-

0

0

1
4
-

0
0
0
1
2
-

1
8

1
4

-

0
-

0
1
2
-

0
0
0

3
8
-

0
0

0

0
0

1
4
-

1
2
-

0
1
8
1
4

-

-

We present the transition matrix here for purposes of explication only; the
algorithm never requires calculation or storage of the complete matrix.

Standare matrix calculation yields

& . [2 2 1 3 1 3 1 31

as the left eigenvector 7~ of the transition matrix. Notice, in addition, that the
stationary distribution represents each cs and p s with a weight proportional to
the Markov probability. The chain spends half the time in partial states and
half the time in complete states. Figure 5 gives the pseudocode for BN-RAS.

To analyze the Markov chain as a trial generator, we require that its stationary
distribution correspond to the probabilities of the underlying states, multiplied
by some constant. The ergodicity of the Markov chain guarantees a unique
stationary distribution 7~ and, by extension, a unique solution of the equation
TP = T. We guess an expression for the stationary distribution and verify that
our formulation satisfies the eigenvector equation.

For arbitrary complete states csi, ni = 1/2Pr[csi]; and for arbitrary partial
states psi, 7~~ = (1/2m)Pr[psj]. To derive those equivalences, we observe that
the eigenvector condition ~ T P = 7~ requires

where the sum is taken over all partial states compatible with csj. Similarly, the
eigenvector condition on 7~~ requires

where the sum is taken over all complete states compatible with psi.
The transition probabilities are given by Pij = 1/2m from complete to partial

PROBABILISTIC INFERENCE O N BAYESIAN BELIEF NETWORKS 677

PROCEDURE do - t r ans i t i on ;
{Perform one t r a n s i t i o n)
B E G I N

p := rand; {Uith p robab i l i t y 1/2. stay put (guarantees ape r iod ic i ty))
I F rand <= 0 . 5 THEN

BEGIN
{Kove from a complete s t a t e t o a p a r t i a l s t a t e)
uniformly choose a node X;
{Compute the t r a n s i t i o n p .m.f . , and move from a p a r t i a l s t a t e t o a complete s t a t e)

X.value := choose(X.d is t) ;
Em ;

sample(X1;

END;

PROCEDURE n e x t - t r i a l (t : INTEGER);
{Compute a t r ia l)
VAR

i: INTEGER;
BEGIN

s e t a l l t h e nodes t o uniform random values;
FOR i := 1 TO t DO

do- t r ans i t ion ;
END:

PROCEDURE es t imate ;
VAR

B E G I N
j, n , t : INTEGER;

compute n , t h e number of t r i a l s , and t , t h e number of t r a n s i t i o n s per t r i a l ;
FOR j := 1 TO n DO

BEGIN
n e x t - t r i a l (t) ;
score outcomes;
END ;

END;

FIG. 5 . Pseudocode for BN-RAS.

states, P,i = 1/2(Pr[csj]/Prlpsl]) from partial to complete states, Pj, = 1/2, and
Pji = 1/2. We can therefore rewrite Eqs. (9) and (10) as

and

In addition, we have the normalization requirement

z T [+ E Ti= 1 .
cs, PSI

[Observe that Eqs. (11)-(13) also yield 2" + m2"-l equations in 2" + m2"-l

678 CHAVEZ AND COOPER

unknowns, for which the ergodicity of the chain with transition matrix P guaran-
tees a unique solution.]

Substituting our expressions for rrj and rrJ into Eqs. (11)-(13), we obtain

1 Pr [cs j]
rrj = 2 -. prbsil -

2m Pr[psi1

1
2

= - Pr[cs,]

and

1 1 1
rn cs, 2 2rn

7 T . Z -. 1- ~r[cs,] = - pr[psjl ,

because the sum over all complete states cs, compatible with psi is equal to

Finally, we verify that the normalization constraint holds. The probability of
being in some Markov state is exactly 1. The sum of probabilities of partial
states is m, inasmuch as each complete state corresponds to rn partial states;
recall that the partial states are not mutually exclusive. Hence,

Pr[~sjl.

= 1 ,

as required.
The ergodicity of the chain implies that the Markov process has a unique

stationary distribution. In other words, we know that rr is unique. Our interpre-
tation of rr in terms of Pr[cs,] and Pr[ps,] satisfies all of the system’s constraints
on rr and is therefore unique.

3.4. Analysis of Convergence

The stationary distribution of the revised Markov chain reflects the underlying
probabilities. By ignoring partial output states, we can construct a filtered
Markov chain that produces complete assignments according to the correct
probabilities.

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 679

To analyze the convergence of the chain with the techniques of Jerrum and
Sinclair, we require time reversibility [l l] . Examine the detailed balance equa-
tion, a necessary and sufficient condition for reversibility:

ripii = ripii V i , j E [N] . (14)

Writing the equation in terms of probabilities yields

1 1 1 Pr[csi]
-Pr[cs,] - = - Pr[psj] . ~

2 2m 2 m 2pr[psjl '

which holds for all states.
For any time-reversible chain, introduce a weighted graph H with vertices

that correspond to states of the chain and edges (i,j) with weight n-;Pjj. Further-
more, define the conductance

taking minimization over all subsets S of states. Intuitively, the conductance
measures the chain's tendency to flow around the state space. For the two-node
example we have considered previously, an exhaustive calculation yields a
conductance of approximately 0.035714.

By relating the conductance to the second eigenvalue of the chain's transition
matrix, which governs the transient behavior of the chain, Jerrum and Sinclair
have proved the following theorem [111.

Theorem 1. Let H (with edges E(H) and vertices V (H)) represent the underlying
graph of a time-reversible Markov chain with conductance @(H) , stationary
distribution n-, and minimum self-loop probability 112. Let P t) denote the t-step
transition probability from state i to j-that is, the probability of being in state j
if one starts in state i and performs t transitions. Let II = miniEIN1n-j. Define the
relative pointwise distance (r.p.d.) after t transitions,

Then, the r.p.d. is bounded by

(1 - @(H)*/2)'
A(t) 5

II

Theorem 1 guarantees that rapid mixing of the Markov chain follows from a
suitable lower bound on the graph-theoretic quantity @(H). For our two-node

680 CHAVEZ AND COOPER

example, the r.p.d. reaches a value of 2.0 after five transitions, at which time
the bound (1 - @(H)2/2)'/17 is approximately equal to 16.0.

Let po represent the smallest nonzero transition probability in the chain.
Compute po by examining each node's Markov blanket, multiplying the smallest
elements in the corresponding link matrices, and normalizing. Then, multiply
the result by 0.5, the adjustment factor for self-loop probabilities of 0.5. Follow-
ing the exposition in [l l] , we bound the conductance by

(x i E ~ . r r ,) * (~ J G S , (~ . ~) € E (W ~) ,
@(H)?po min -Po min (IC(S)O. (16)

O < J S I 5 N / Z (- Z € S . . I) O<ISI5N/Z

where for each subset S , C(S) denotes the edges that cross from vertices in S
to vertices outside of S. Note, from the symmetric definition of conductance,
that we need to consider only sets S that contain half the vertices of [Nl or less.
We bound the conductance by replacing the terms P, with the minimum trans-
ition probability, po. The sums of rr, terms cancel out in the numerator and the
denominator.

First, define a canonical directed simple path (cdsp) between each pair of
states in the underlying graph. To move from one complete state csl to another
state cs2, fix an enumeration of the node variables X1, . . . ,Xm. For i from 1 to
m, if csl and cs2 differ in their assignments to X,, move to a partial state ps,
and thence to an intermediate complete state with assignment to X , specified
by cs2. (The partial state ps, contains the assignments of cs2 for variables 1 to
i - 1 and the assignments of csl for variables i + 1 to m.)

To move from any state s1 to a target state s2, define the following path:

0 Initial segment. If s1 is a partial state, move to the nearest compatible
complete state csl that specifies a value for the unassigned node. Other-
wise, the initial segment is empty.

0 Main path. Move from csl to cs2, the complete state nearest to s2.
0 Final segment. If s2 is a partial state, move from cs2 to s2. Otherwise, the

final segment is empty.

Recall that there is a cdsp between any pair of states, and so there are
ISl(N - ISl) cdsps connecting vertices in S to vertices outside S. Because we
have restricted S to contain no more than half the vertices in the graph, the
number of cdsps that cross the cut from S to vertices not in S is

Suppose that no more than b cdsps traverse any edge of H . Then, for any S,
the number of edges in the set C(S) must be at least NIS1/2 divided by b. Hence,

NPO @(H) I ~.
2b

PROBABILISTIC INFERENCE O N BAYESIAN BELIEF NETWORKS 681

Now find an upper bound on b. Examine a hypothetical edge that connects
complete state csk to partial state psk(a) , where psk(a) is a partial state corre-
sponding to csk (but with the node X , deassigned). Now consider an arbitrary
pair of complete states cso and csp By the definition of a cdsp, the cdsp between
cso and csf (called a c-c cdsp, because it connects two complete states) will
contain the edge that connects csk and psk(") if and only if cso and csf disagree
in their assignment to node X,. Given any fixed complete state cso in a network
of binary-valued nodes, exactly N / 2 of the other complete states differ from cso
in their assignment to variable X,. Therefore, no more than (N / 2) c-c cdsps
can cross the edge connecting csk and p s k (a) , for arbitrary k and a.

We observe that, for a cdsp between partial states (known as ap-p cdsp), the
construction of initial and final segments guarantees a unique correspondence
between the partial states at the termini of the cdsp and the complete states
that demarcate the main segment of the cdsp. A similar argument holds for
cdsps of type c-p and p-c. For a given edge between csk and psk(a), therefore,
we have at most (N/2) c-c cdsps, (N / 2) c-p cdsps, (N / 2) p-c cdsps, and (N / 2) p-p
cdsps. We conclude that at most 2N cdsps cross a given edge. Thus,

@(H) 2 p0/4 . (18)

For our two-node example, we see that p0/4 = 1/32, and the bound indeed
applies. Finally,

(1 - pJ/32)'
I7

A(t) 5

To achieve a maximum
distribution, we perform

relative error of y in approximating the stationary
the following number of transitions:

logy + log n
t ?

lOg(1 - p$/32) '

The preceding analysis assumes the absence of deterministically dependent
nodes, in which case the Markov chain is aperiodic and irreducible. Modify the
generator to accommodate such nodes by treating a group of deterministic
nodes as one for the purposes of simulation. An influence on any of the
nodes in a group becomes an influence on the group as a whole. With such a
construction, no state has a 0 probability, and all states communicate. BN-

RAS calculates the posterior probabilities of individual deterministic nodes by
examining the distribution of the synthetic group node. The method performs
poorly in the presence of large deterministic clusters, in which case the synthetic
group node acquires an excessively large number of possible outcomes.

3.5. Combining Generation with Estimation

We now recapitulate our earlier area-estimation analysis, but this time we
account for the relative error y of the trial generator. Let e represent the event

682 CHAVEZ AND COOPER

Xi = T for some node Xi in the network, let Y be the estimator of Pr[X, = Ti t]
(where 6 denotes the background information), and let P represent the average
over N trials. As usual, U represents the region of unknown area A (U) =
Pr[elt]. E represents the sampling universe, with known area A (E) = 1.

We know that

= z 2rrk
k : (X , t T) E C Y k

Inasmuch as the Markov chain approximates the %-k to within a relative error
of no more than y, the expectation of the summation Y is bounded as

A similar argument shows that

1
-A(E)A(U) I E[Y2] 5 (1 + y)A(E)A(U) .
l + Y

Combining terms, we observe that

(+2 = E[P] - E[Y]2

5 (1 + y)A(E)A(U) - [A(U)’/(l + .Y)~]

and

Then

u2

P2 A(U)* / (l + y)’
(1 + y) A (E) A (U) - [A(U)2/(1 + y)’] -5

= (1 + Y) ~ (A (E) / A (U)) - 1

With

PROBABILISTIC INFERENCE ON BAYESIAN BELIEF NETWORKS 683

trials, where r = minl,k,l{Pr[X = vlMk]}, we can (with probability greater than
1 - 6) estimate each probability by P to within a compounded relative error of
E and y.

Recall that each trial takes t transitions and that each transition requires
O(K . B . V) calculations, where K is the largest outdegree in the network, B is
the number of nodes in the largest Markov blanket, and V is the number of
values of the node with the most outcomes. To ensure that

with probability greater than 1 - 6, we must therefore perform

log(1 - ~$32)

transitions. In addition, we must score N trials and we must perform O(m - V)
arithmetic operations at the end. The tabulation of outcomes therefore requires
O(m . (N + V)) calculations, where m is the number of nodes in the network.

A powering lemma for randomized approximation schemes offers a substan-
tial improvement in running time [22]. In one simulation run, we perform

trials. Each trial requires t transitions of the generator. Now compute
12[-log 61 + 1 simulation runs, and for each node X = v record a median of
the probability estimates produced by the runs. According to Chernoff's bound,
the median estimates will differ from the correct probabilities by a relative error
less than E with probability greater than 1 - 6. In other words, the powering
lemma transforms an O(6-I) approximation scheme into an O(1og 6-') method.

The complete BN-RAS algorithm, which includes a powering scheme, a time-
reversible generator, and area estimation, requires

log y + log n
log(1 - &32)

* (I - log 61 + 1)

transitions to achieve an approximation of the posterior probability to within a
compounded relative error of y and E , with likelihood greater than 1 - 6.

The term log(1 - &32) dominates the computation time; as p o approaches
0, the denominator goes to 0. Networks with conditional probabilities close to 0
or 1 can therefore require many transitions in order to guarantee the theoretical
bounds on E and 6.

Finally, if we need to guarantee an interval error a rather than a relative

684 CHAVEZ AND COOPER

error 6, the T term disappears from the denominator. To ensure

with probability greater than 1 - 6, perform

log y + log n . ([- log 61 + 1) -
log(1 - p6/32)

transitions. Notice that we also require N tallies of the generated trials, where
each tally takes O(m . (N + V)) time.

4. CONCLUSIONS

We have shown how to compute a priori bounds on the randomized compu-
tation of marginal posterior probabilities in belief networks. The BN-RAS algo-
rithm offers, with high probability of success, an upper bound on both relative
and interval error. In addition, it guarantees that the simulated Markov chain
converges to a reasonable approximation of its stationary distribution within a
prespecified number of transitions.

The analysis of running time suggests that BN-RAS performs well on networks
of arbitrary size and topological complexity, at the expense of a strict depen-
dence on the probabilities within the network. In networks with conditional
probabilities that approach 1 and 0, our theoretical analysis suggests that we
explore alternatives to stochastic simulation. For large enough conditional prob-
abilities, however, we expect BN-RAS to require time that is linear in the size
of the network.

ACKNOWLEDGMENTS
Bruce Buchanan, Lyn DuprC, David Heckerman, Eric Horvitz, Harry Lewis, Ross
Shachter, Edward Shortliffe, and Les Valiant provided important feedback. This work
has been supported by grant IRI-8703710 from the National Science Foundation, grant
P-25514-EL from the U.S. Army Research Office, Medical Scientist Training Program
grant GM07365 from the National Institutes of Health, and grant LM-07033 from the
National Library of Medicine. Computer facilities were provided by the SUMEX-AIM
resource under grant RR-00785 from the National Institutes of Health.

References
[l] A. Z. Broder, How hard is it to marry at random? (On the approximation of

the permanent). Proceedings of the Eighteenth ACM Symposium on Theory of
Computing, (1986) 50-58.

[2] A. Bundy, Incidence calculus: A mechanism for probabilistic reasoning. Proceed-
ings of the First Workshop on Uncertainty in ArtiJicial Intelligence, UCLA, Los
Angeles, CA, 1985, American Association for Artificial Intelligence, 177-184.

PROBABILISTIC INFERENCE O N BAYESIAN BELIEF NETWORKS 685

[3] R. M. Chavez, Randomized algorithms for probabilistic expert systems. PhD thesis,
Knowledge Systems Laboratory, Stanford University, Stanford, CA (to appear).

[4] H. L. Chin and G. F. Cooper, Stochastic simulation of Bayesian belief networks.
Proceedings of the Third Workshop on Uncertainty in Artificial Intelligence, Seattle,
WA, 1987, American Association for Artificial Intelligence, 106-113.

[S] H. L. Chin and G. F. Cooper, Bayesian belief network inference using simulation.
Uncertainty in ArtiJcial Intelligence 3. North-Holland, Amsterdam (1989).

[6] G. F. Cooper, The computational complexity of probabilistic inference using Baye-
sian belief networks. Artificial Intell. in press.

[7] G. F. Cooper, Probabilistic inference using belief networks is NP-hard. Technical
Report KSL-87-27, Medical Computer Science Group, Knowledge Systems Labora-
tory, Stanford University, Stanford, CA, May (1987).

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, (1979).

[9] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic
sampling. Uncertainty in ArtiJicial Intelligence 2, North-Holland, Amsterdam (1988)

[lo] R. A. Howard, Dynamic Programming and Markov Processes, Technology Press
of the Massachusetts Institute of Technology, Cambridge, MA (1960).

[l l] M. Jerrum and A. Sinclair, Conductance and the rapid mixing property for Markov
chains: The approximation of the permanent resolved. Proceedings of the Twentieth
ACM Symposium on Theory of Computing, Chicago, IL, (1988) 235-244.

[12] R. M. Karp and M. Luby, Monte-Carlo algorithms for enumeration and reliability
problems. Proceedings of the Twenty-fourth IEEE Symposium on Foundations of
Computer Science (1983).

[13] S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on
graphical structures and their application to expert systems. J. R. Stat. SOC. B 50(2)

[14] C. H. Papadimitriou, Computational complexity. Combinatorial Optimization: An-

[lS] C. H. Papadimitriou, Games against nature. J . Comput. Syst. Sci. 31(2) (1985)

[16] J. Pearl, Fusion, propagation, and structuring in belief networks. ArtiJicial Intell.

[17] J. Pearl, Evidential reasoning using stochastic simulation of causal models. ArtiJicial
Intell. 32 (1987) 245-257.

[181 J. Pearl, Evidential reasoning using stochastic simulation of causal models (adden-
dum). ArtiJicial Intell. 33 (1987) 131.

[19] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence, Morgan Kaufmann, San Mateo, CA (1988).

[20] R. D. Shachter, Probabilistic inference and influence diagrams. Operations Res. 36
(1988) 589-604.

[21] R. D. Shachter and M. A. Peot, Simulation approaches to general probabilistic
inference on belief networks. Proceedings of the Fifth Workshop on Uncertainty in
Artificial Intelligence, Windsor, Ontario, Canada, August 1989. American Associ-
ation for Artificial Intelligence.

[22] A. J. Sinclair and M. R. Jerrum, Approximate counting, uniform generation and
rapidly mixing Markov chains. Technical Report CSR-241-87, Department of Com-
puter Science, University of Edinburgh, Edinburgh, Scotland, UK (1987).

[23] L. G. Valiant, The complexity of computing the permanent. Theor. Comput. Sci.

149-163.

(1988) 157-226.

notated Bibliographies, Prentice-Hall, Englewood Cliffs, NJ (1985) 39-51.

288-301.

29 (1986) 241-288.

8 (1979) 189-201.

Received February 1990
Accepted March 1990

