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Abstract
We report on the design and implementation of a two-level
multiply-connected belief-network representation of the QMR
knowledge base. We use probabilities derived from QMR
disease profiles and from National Center for Health Statistics
hospital-discharge statistics. Using a stochastic simulation
algorithm for inference on the belief network, we compare the
performance ofQMR to that of the probabilistic reformulation
on cases abstracted from continuing medical education
materials from Scientific American Medicine.

1. Introduction
The Quick Medical Reference (QMR®) program is a decision-
support tool for diagnosis in internal medicine that was
developed at the University of Pittsburgh as the successor to
INTERNIST-1 [1]. Designed to assist a physician in making
difficult diagnoses, QMR is built on one of the largest
knowledge bases (KBs) in existence. We are developing the
foundation for a decision-theoretic version of QMR, which we
call QMR-DT for Quick Medical Reference-Decision
Theoretic. Decision theory is based on probability theory and
utility theory. We limit our discussion in this paper to the
probabilistic component ofQMR-DT.
We believe there are a number of reasons for seeking

probabilistic systems in medicine. By using a probabilistic
model, we make explicit our assumptions-those used in
building both the KB and the algorithms for inference.
Moreover, such a KB is built on the well-developed and
widely understood language of probability, providing
researchers with a theoretical basis for creating diagnostic
systems and a common vocabulary for facilitating discussion
and collaboration. The use of a common language also makes
it possible to share independently developed probabilistic
inference algorithms and KBs. We can, for example,
incorporate statistics on the local prior probability of disease in
various clinical settings. For those diseases with sparse
statistical data, we can use subjective estimates of prior
probability. We can incrementally update these subjective
probabilities as local clinical data are accumulated [2].

The current output from QMR-DT is a differential of
leading diagnoses with a posterior marginal probability
associated with each disease. We believe that a probabilistic
differential is a more meaningful measure of belief than is a
differential with heuristic scores. Furthermore, with the
development of a utility model, we can use these probabilities
for expected-utility decision making, thus building a decision-
theoretic system on top of our probabilistic one. We hope
eventually to use the results of the expected-utility component

® QMR is a registered trademark of the University of Pittsburgh.

of the system for cost-effective test ordering and therapeutic
planning.

Our research to date has focused on building a probabilistic
foundation and method of inference for diagnosis in internal
medicine. The initial goal of the project is to compare the
performance of QMR to a probabilistic version of QMR,
investigating the computational and representational tractability
of a probabilistic approach. Our approach to developing QMR-
DT is an incremental one: we build the first probabilistic model
using as much of the QMR KB as possible, we test the
accuracy of the inferential algorithms on this simple model,
then we refine the model and algorithms successively based on
the performance of the system.

In this paper, we build on the work of many researchers in
general. probabilistic inference, probabilistic inference in
medicine, and probabilistic inference in medicine using belief
networks; see [3, 4] for a review of probabilistic inference on
belief networks.

In Section 2 of this paper we describe the probabilistic
model of QMR-DT and the algorithms that we use for inference
on the model. In Section 3 we describe a preliminary
evaluation of the diagnostic performance ofQMR-DT.

2. The QMR-DT Model
The QMR-DT model is built on a belief-network
representation. The belief network is a graphical representation
of probabilistic dependencies between variables [5]. More
specifically, it is a directed acycic graph in which each node
represents a random variable or uncertain quantity [6]. The arcs
in the graph often denote direct causal influences between
variables, where the strength of the influence is specified by
tables of conditional probabilities. Conversely, the absence of
an arc between two nodes denotes an assertion of
independence between the corresponding random variables.

We have reformulated the associations between diseases
and findings of the QMR disease profiles [1] into a belief-
network representation.1 This reformulation is described in [7,
8]. The QMR-DT KB consists of a two-level belief network of
n diseases and m findings, as shown in Figure 1. Each of the n
diseases {dl,...,dn} may be present or absent in a patient, and
each of the m findings {fi,...4fm may be unobserved or
observed to be present or absent. We refer to a disease
hypothesis H as an assignment of presence or absence to each
disease in {dl,...,dn}, where

1 We are currently using the INTERNIST-I KB (circa 1986), rather than
the more recent QMR KB. These two KBs are quite similar, to the extent
that the methods in this paper are applicable to transfomning the latterKB
as well. Where the distinction is inconsequential, we will refer to the
INTERNIST-1 KB as the QMR KB.
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H = (di= present di E H } u {di= absent I di E H)

H+ is set of all diseases asserted to be present, and H- is the
set of all diseases asserted to be absent such that JH+j + H-1 =
n.

An arc of probabilistic dependency between nodes
representing a disease d and finding fexists in the QMR-DT
KB if and only if there exists a link between d andf in the
QMR disease profile of d. Disease-to-disease dependencies are
not modeled presendy in the QMR-DT KB. The current QMR-
DT KB contains n = 534 adult diseases and m = 4040
findings, with 40,740 arcs depicting disease-to-finding
dependencies.

Figure 1 The two-level belief-network representation of the current QMR-
DT KB. The disease nodes are labeled dl,...,dn and the finding nodes are
labeled f,... fm. The probabilistic dependencies between diseases and
findings are specified with direted arcs between nodes, where an arc points
in the causal direction that we assume; that is, we assume that diseases
cause fimdings.

2.1 Assumptions in the Model
To reduce the representational and computational complexity of
QMR-DT, we made several simplifying assumptions.
Although we know that the assumptions are invalid in some
cases, we are taking an incremental approach to developing the
QMR-DT model: We examine the performance of the system
under these assumptions with the intention of eventually
modifying those that are most critical to accurate diagnostic
performance. We do not, however, assume that a patient has
only one disease. A primary goal of the current implementation
of QMR-D1 is to investigate multiple-disease diagnosis using
probability as a representation of uncertainty.

Assumptions evident from Figure 1 include marginal
independence of diseases, conditional independence of
findings given any hypothesis of diseases, and the assumption
that findings are manifestations of disease. Also, we assume
that diseases and findings are binary valued. We model the
influence of multiple diseases on a finding assuming causal
independence. In the remainder of Section 2.1, we discuss the
three different types of independence that we assume.
2.1.1 Marginal Independence of Diseases The absence
of arcs among disease nodes in the belief network of Figure 1
denotes the assumption that diseases are marginally
independent. Under this assumption, we can compute the
probability of a disease hypothesis H from the prior
probabilities of the states of the diseases in H:

P(H) = II P(d) fI [l-P(d)]
deH+ d - (H)

2.1.2 Conditional Independence of Findings The
absence of arcs among finding nodes in Figure 1 denotes the
assumption that findings are conditionally independent given
any disease hypothesis. Let F be a set of findings that are
observed for a particular patient, where F+ is the set of
findings observed to be present and F- is the set of findings

observed to be absent. Note that many findings may be
unobserved and thus appear in neitherF+ norF-.

The assumption of conditional independence given any
disease hypothesis allows us to compute the conditional
probability of a set of findings F given a disease hypothesisH
as follows:

P(F|H)= HI P(fIH) HI [l-P(fJH)]
feF+ feF (2)

2.1.3 Causal Independence We model the effects of
multiple diseases on a single fmding by assuming that the
effects of the diseases on the finding are independent. This
assumption, called causal independence, has been described by
a number of researchers, including by Good [9]. We use the
assumption of causal independence in the model of multicausal
interactions called the noisy-OR gate [6]. Peng [10],
Heckerman [7], and Henrion [8] have described the application
of the noisy-OR gate to modeling the effects of diseases on
manifestations. Moreover, the developers of QMR implicitly
assumed a noisy-OR gate interaction [11]. Under the
assumption of a noisy-OR gate, we can avoid representation
of the full set of conditional probabilities of the state of a
finding given each possible state of the finding's parents.
Consider a belief network with binary finding f, wherefhas
binary parents d1,d2,...,dk. To construct the complete
conditional probability table associated with the arcs from
dl,d2,...,dk tof, we would need to acquire a conditional
probability for each of the 2k states of the parents off. If we
assume causal independence, we need to acquire only k
conditional probabilities of the form P(f I only di),2 where 1 < i
. k.

As its name implies, the causal-independence assumption
maintains that the mechanisms by which diseases cause a
finding operate independently of one another and
independently of any other events, such as other findings.
Figure 2 shows a belief network for a noisy-OR interaction
between two diseases d, and d2 on a single finding f, as
depicted in [7]. Assuming causal independence and binary
findings, we can model the influence of multiple diseases on a
finding using the noisy-OR gate:

P(f I dl, d2) = P( Il only dl) P(fI only d2) (3)

The intuition behind Equation 3 is that the probability of a
finding f not occurring given a hypothesis H (where H+ =
{d1,d2} in Equation 3) is just the probability that, of the two
mechanisms that can cause f to occur, neither succeeds.
Because we have modeled the findings as binary variables, we
can rewrite Equation 3 as

P(f dl,d2) = 1- [l-P(f only di)] [l-P(f only d2)] (4)

In the more general case of a disease hypothesis H, we can
compute the probability offgivenH as follows:

P(f H) = 1 - II [1-P(f I only di)]
4deH+ (5)

2 We distinguish P(f only di) from P(f I di), where the fomier denotes the
probability of the event thatfoccurs given that only di occurs, and that,
for all j.i, dj is absent By contrast, we use the notation P(fI di) to mean
the probability of the event thatf occurs given that di occurs and for all
j.i, each dj occurs based on its prior probability.
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Figure 2 A belief network depicting the causal-independence assunption
of the noisy-OR gate. This network depicts the assumption that di and d2
causef through in iate mechanisms that are independent of each
other. Our belief that di initiates the mechanism "ld causes r' with
probability P(fI only dl) is represented by the arc from the node labeled
I'd,l1 to the node labeled "dl causesf N The absence of an arc between the
nodes labeled "d1 causesr and Ned2 causesfr represents an assumption of
causal independence. That is, the probability that the mechanism Ndl
causes"r is active is not affected by whether the mechaniSM d2 causesr
is active. Mso, the absence of the arc from the node Nd2N to the node Nedl
causes I represents the causal-independence assumption that the
probability that the mechanism Ndl causesr is active is not affected by
the presence or absence of d2. The same causal-independence assumptions
apply to the mechanism by which d2 causesf. The node with the double
boundary is a deterministic node, which represents the belief that, if either
of the two intermediate mechanisms occurs, f will be present with
certainty.

2.2 Probabilities Used in the Model
The necessary probabilities for our two-level belief network
include the prior probabilities of diseases and the conditional
probabilities relating diseases to findings. We describe the
derivation of each of these probabilities in turn.

2.2.1 Prior Probabilities of Diseases Our probabilistic
model requires that prior probabilities on diseases be made
explicit. We derived prior probabilities on diseases in the
QMR-DT KB from data compiled by the National Center for
Health Statistics (NCHS) on 192,000 inpatients discharged
from short-stay nonfederal hospitals in 1984 [12]. The
diseases in the NCHS statistics are classified by the
International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) [13] coding system, but the
INTERNIST-1 disease names do not always correspond
directly to an ICD-9-CM name; therefore, we developed an
approximate mapping between INTERNIST-1 names and ICD-
9-CM codes. In about 60 percent of the cases, there was a
close match between an INTERNIST-1 disease label and an
ICD-9-CM disease label. We manually reviewed the mapping
for gross outliers and modified the prior probabilities based on
our subjective estimates.
2.2.2 Mapping of QMR Frequencies to Probabilities
The developers ofQMR define afrequency between a specific
disease and finding as a measure of "how often patients with
the disease have the finding" [1] (p. 489). We obtained
probability estimates of the form P(f only di) for frequency
values of 1 to 5 from R. Miller, one of the primary developers
of INTERNIST-1 and QMR. The results of this mapping
appear in Table 1.

Table 1 A mapping between QMR frequencies and probabilities

QMR frequency P (f only di)
1 0.025
2 0.20
3 0.50
4 0.80
5 0.985

2.3 Algorithms for Inference
Given a set of positive and negative findings F and a model of
the dependencies between diseases and findings in internal
medicine, our goal is to compute P(di I F), the posterior
marginal probability for each disease di: 1 . i . n. We
contrast P(di F) with the posterior probability of a single-
disease hypothesis, P(only di IF, p), where u is the assertion
that diseases are mutually exclusive. This assumption is clearly
not applicable to the general problem of diagnosis in internal
medicine, where patients often have several diseases
simultaneously. The posterior marginal probability, on the
other hand, implicitly acknowledges the existence of one or
more diseases. In the next subsection, we first discuss the
complexity of calculating P(only di I Ff u), and then describe
the complexity of calculating he more general P(di I F).
23.1 Exact Algorithms We refer to Bayes' rule under the
assumptions of single-disease hypotheses and conditional
independence of findings as tabular Bayes' rule 3:

P(only d, F., u) - P(F only d,) P(only di)
I P(F only dk) P(only dk)
k-I

(6)
where there are n diseases and P(F I only di) is given by
Equation 2 when only di is present in H. Although the single-
disease assumption is very restrictive, the tabular Bayes'
formulation is appealing because of its low degree of
computational complexity, e(nm).

Consider generalizing to allow the diagnostic hypothesisH
to contain any subset of diseases in the KB. This
generalization to multiple-disease hypotheses is consistent with
the QMR-DT model. Straightforward application of Bayes'
theorem to the QMR-DT twQ-level belief network requires that
we sum over 2n disease hypotheses:

I P(FIH)P(H)
P(d,HF) :Hd4eH

E P(F H) P(H)
H (7)

The problem of probabilistic inference on two-level belief
networks such as that of QMR-DT is known to be NP-hard
[14]. Accordingly, we have sought to develop special-case
algorithms and approximation algorithms to perform more
efficient inference on the QMR-DT belief network.
2.3.2 Approximation Algorithms Approximation
algorithms compute estimates of the posterior marginal
probabilities of diseases that converge in the limit to the
posterior marginal probabilities implied by the QMR-DT
model.

3 The name tabulr Bayes' ruze is derived from the notion that we can
compute P(only di I F, it) as in Equation 6 from an n x V; table of
probabilities of the fomi P(fj I only di), where 1 < i < n and 1 < j <I!.
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We have implemented an approximation algorithm called
likelihood weighting, which places no a priori restrictions on
the connectivity of the belief network. Our goal is to investigate
the performance of likelihood weighting on the current QMR-
DT belief network and then to use the algorithm on future
versions of the network that contain a richer collection of
dependencies (for example, dependencies among diseases).
Likelihood weighting, a stochastic simulation algorithm, has
been described by Fung and Chang [15] and by Shachter and
Peot [16]. We have implemented a version of the likelihood-
weighting algorithm in LightSpeed Pascal on a Macintosh IHci.
For a detailed description of that algorithm, please see [17]. In
this paper, we henceforth use QMR-DT to refer collectively to
the QMR-DT model described in Sections 2.1 and 2.2 and the
simulation algorithm that we implemented.

3. A Preliminary Comparison of QMR to QMR-DT
We compared the performance of QMR to that ofQMR-DT on
cases abstracted from continuing-education materials published
by Scientific American Medicine (SAM). The SAM cases are
created as clinical scenarios of disease by an expert in the
appropriate subspecialty area. We defined the gold-standard
(reference) diagnosis of each of these cases to be those
diseases listed by SAM as the correct diagnosis for the case.
For 23 SAM cases, each containing a single disease in the
diagnosis, we recorded the ranks that QMR and QMR-DT
assigned to the reference diagnosis. These ranks appear in
Table 2; a summary of the ranks appears in Table 3. The QMR
ranks in column 2 of Table 2 are taken from QMR's list of
"potentially interesting diagnostic hypotheses" after a single
iteration of the QMR scoring algorithm. We do not use the
probabilities of the QMR-DT differential diagnosis in this
comparison, because the QMR differential does not contain
probabilities. Neither QMR nor QMR-DT was run on the 23
SAM cases prior to the study reported here.

Note that we used QMR in this study in a manner different
from that intended by the system's developers. Specifically,
QMR is intended to be used by a physician in an interactive
mode [18]. Our use ofQMR was limited to applying the QMR
diagnostic algorithm once to each set of positive and negative
findings. We did not provide the algorithm with additional
positive or negative findings based on queries generated by the
algorithm. The developers of QMR report that, even after all
the positive findings for a case have been entered, the addition
of negative findings (to the set of negative findings entered
initially) during an interaction with a clinician can increase
QMR's diagnostic accuracy [19].

Tables 2 and 3 show that QMR and QMR-DT performed
comparably on the SAM cases. We used a two-sided Wilcoxon
signed-rank test to investigate the hypothesis that QMR and
QMR-DT differed significantly in the ranks that they assigned
to the reference diagnoses. The test failed, at the p = 0.05
level, to reject this hypothesis.

There are various explanations for the performance of
QMR-DT: the SAM test cases may not be sufficiently difficult
or diverse to test the multiple-disease methods of QMR-DT,
one or more of the QMR-DT modeling assumptions may be
poor, or the estimates from the QMR-DT simulation algorithm
may not have converged to the posterior probabilities implied
by the QMR-DT model. In more detailed studies of the
convergence of the algorithm, we found that repeated runs of
the simulation on a test case produced similar posterior
distributions [17, 20]. Accordingly, we believe that the first
two possibilities are more likely.

In particular, consider SAM case 51, for which the
reference diagnosis is thyroid papillary carcinoma. The poor
performance of QMR-DT on this case appears to result from
the generally non-specific findings in the case and the lack of

dependencies between findings in the QMR-DT belief-network
model.

Table 2 Ranks assigned to the reference diagnosis of 23 SAM cases

Algorithm
SAM Case QMR QMR-DT
Number
1 2 1
6 2 2
15 1 2
20 1 1
22 1 1
23a 103
25 3 1
27 1 1
28 1 1
29 3 9
30 5 7
31 12 24
33 2 2
34 1 4
35 1 1
37 2 2
40 1 1
42 4 2
46 1 1
47 1 1
50 1 1
51 2 57
53 3 1

aA blank space appears where QMR did not assign a rank to the reference
diagnosis

Table 3 Summary of ranks assigned to the reference diagnosis of 23
SAM cases

Algorithm
Summary
statistic QMR QMR-DT
Numberimntopi 11 (48) 1 2
Number in top 5 21 (91) 18 (7g)
Number in top 10 21 (91) 20 (87)
Number in top 20 22 (96) 20 (87)

When presented with the phyiscal and laboratory findings
for SAM case 51, QMR-DT ranks subacute thyroiditis at the
top of its differential. Note that this disease accounts for the
finding in the SAM case of an elevated serum T3. The
reference diagnosis, however, was severely penalized by the
QMR-DT inference algorithm, since the disease profile of
thyroid papillary carcinoma does not contain the finding of an
elevated serum T3. We believe that the addition of
dependencies between findings would allow QMR-DT to
improve its diagnostic performance in this case, allowing the
system to recognize the elevated serum T3 as being related to
another finding in the case-oral contraceptive use-as the
authors of the SAM case intended.

Although the QMR KB does not contain the fmding-to-
finding link between elevated serum T3 and oral contraceptive
use, QMR ranked thyroid papillary carcinoma second in its
differential diagnosis. As the majority of the evidence in the
case suggests a malignant thyroid disease, the penalty that
QMR imposes on thyroid papillary carcinoma for not
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explaining the elevated T3 apparently does not markedly affect
the diagnostic score that QMR assigns to this disease.

We are continuing to study the performance of QMR-DT
on various types of diagnostic cases, attempting to isolate the
reasons for QMR-DT's misdiagnoses. We are optimistic that,
as we incrementally augment the QMR-DT KB to relax the
current assumptions, the performance of the system will
improve, especially on more difficult diagnostic cases.
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