
A Pattern Mining Approach for Classifying Multivariate Temporal Data

Iyad Batal∗, Hamed Valizadegan∗, Gregory F. Cooper† and Milos Hauskrecht∗
∗Department of Computer Science

University of Pittsburgh
Email: {iyad, hamed, milos}@cs.pitt.edu
†Department of Biomedical Informatics

University of Pittsburgh
Email: gfc@pitt.edu

Abstract—We study the problem of learning classification
models from complex multivariate temporal data encountered
in electronic health record systems. The challenge is to define
a good set of features that are able to represent well the
temporal aspect of the data. Our method relies on temporal
abstractions and temporal pattern mining to extract the clas-
sification features. Temporal pattern mining usually returns
a large number of temporal patterns, most of which may be
irrelevant to the classification task. To address this problem, we
present the minimal predictive temporal patterns framework
to generate a small set of predictive and non-spurious patterns.
We apply our approach to the real-world clinical task of
predicting patients who are at risk of developing heparin
induced thrombocytopenia. The results demonstrate the benefit
of our approach in learning accurate classifiers, which is a key
step for developing intelligent clinical monitoring systems.

I. INTRODUCTION

Advances in data collection and data storage technologies
have led to the emergence of complex multivariate temporal
datasets, where data instances are traces of complex behav-
iors characterized by multiple time series. Such data appear
in a wide variety of domains, such as health care, sensor
measurements, intrusion detection, motion capture, environ-
mental monitoring and many more. Designing algorithms
capable of learning from such complex data is one of the
most challenging topics of data mining research.

This work primarily focuses on developing methods for
analyzing electronic health records (EHRs). Each record
consists of multiple time series of clinical variables collected
for a specific patient, such as laboratory tests, medication
orders and physiological parameters. The record may also
provide information about the patient’s diseases, surgical
interventions and their outcomes. Learning classification
models from this data is extremely useful for patient moni-
toring, outcome prediction and decision support.

The task of temporal modeling in EHR data is very chal-
lenging mostly because the time series for clinical variables
are acquired asynchronously, that is, they are measured at
different time moments and they are irregularly sampled in
time. Hence, most time series feature extraction techniques
[1], [2], [3] cannot be applied on this data.

The key step for analyzing EHR data is to define a lan-
guage that can adequately represent the temporal dimension
of the data. Our approach uses temporal abstractions [4] and
temporal logic [5] in order to define patterns able to describe
temporal interactions among multiple time series. For exam-
ple, this allows us to define complex temporal patterns like

“the administration of heparin precedes a decreasing trend
in platelet counts”.

The next step is to automatically mine temporal patterns
that are important to describe and predict the studied medical
condition. Our approach adopts the frequent pattern mining
paradigm. However, we are not interested in finding all
frequent temporal patterns, but only those that are important
for the classification task. To address this, we present the
minimal predictive temporal patterns (MPTP) framework,
which relies on a statistical test to effectively filter out non-
predictive and spurious temporal patterns.

We demonstrate the usefulness of our framework on
a real-world clinical task of predicting patients who are
at risk of developing heparin induced thrombocytopenia
(HIT), a life threatening condition that may develop in
patients treated with heparin. We show that incorporating the
temporal dimension is crucial for this task. In addition, we
show that the MPTP framework provides useful features for
classification and can be beneficial for knowledge discovery
because it returns in a small set of discriminative temporal
patterns that are easy to analyze by a domain expert.

Our main contributions are summarized as follows:
• We propose a novel temporal pattern mining approach

for classifying complex EHR data.
• We extend our minimal predictive patterns framework

[6] to the temporal domain.
• We present an efficient mining algorithm that integrates

pattern selection and frequent pattern mining.

II. RELATED RESEARCH

Our work relies on temporal abstractions [4] as a pre-
processing step to represent the numeric time series data in
an interval-based format. The problem of mining temporal
patterns from time interval data is a relatively young research
field. Most existing approaches [7], [8], [9], [10], [11], [12],
[13] extend sequential pattern mining methods [14], [15]
to handle time interval data1. All of these related methods
have been mainly applied in an unsupervised fashion to mine
temporal association rules. Our work is different because we
are mostly interested in mining predictive temporal patterns
and using them as features in a classification model.

III. METHODOLOGY

Let D = {<xi, yi>} be a dataset such that xi ∈ X is
the electronic health record for patient i up to time ti, and

1Sequential pattern mining is a special case of temporal pattern mining,
in which time intervals are instantaneous.

2011 IEEE International Conference on Bioinformatics and Biomedicine

978-0-7695-4574-5/11 $26.00 © 2011 IEEE

DOI 10.1109/BIBM.2011.39

358

yi ∈ Y is a class label associated with a medical condition at
time ti. Our objective is to learn a function f : X → Y that
can predict accurately the class labels for future patients.
Learning f directly from X is very difficult because the
instances consist of multiple irregularly sampled time series
of different length. Therefore, we want to learn a space
transformation ψ : X → X ′ that maps each instance xi to
a fixed-size feature vector x′

i that preserves the predictive
temporal characteristics of xi as much as possible.

We propose using the following steps to obtain ψ:

1) Convert the time series variables into a higher level
description using temporal abstractions.

2) Mine the minimal predictive temporal patterns Ω.
3) Transform each EHR instance xi to a binary vector

x′
i of size equal to |Ω|, where every feature in x′

i
corresponds to a specific temporal pattern P ∈ Ω and
its value is 1 if xi contains P ; and 0 otherwise.

After applying this transformation, we can use a standard
machine learning method (e.g., SVM, decision tree, naı̈ve
Bayes, or logistic regression) on {< x′

i, yi >} to learn
function f .

A. Temporal Abstraction

The goal of temporal abstraction [4] is to trans-
form the time series for all clinical variables to a
high-level qualitative form. More specifically, each clin-
ical variable (e.g., series of white blood cell counts)
is transformed into an interval-based representation
〈v1[b1, e1], ..., vn[bn, en]〉, where vi ∈ Σ is an abstraction
that holds from time bi to time ei and Σ is the abstrac-
tion alphabet that represents a finite set of all permitted
abstractions.

The most common clinical variables in EHR data are:
medication administrations and laboratory results.

Medication variables are usually represented in an
interval-based format and they specify the time interval
during which a patient was taking a specific medication.
For these variables, we simply use abstractions that indicate
whether the patient is on the medication: Σ={ON, OFF}.

Lab variables are usually numerical time series that
specify the patient’s laboratory results over time. For these
variables, we use two types of temporal abstractions:

• Trend abstraction uses the following abstractions:
Decreasing (D), Steady (S) and Increasing (I), i.e.,
Σ = {D, S, I}. In our work, we segment the lab
series using the sliding window method [16], which
keeps expanding each segment until its interpolation
error exceeds some error bound. The abstractions are
determined from the slopes of the fitted segments. For
more information about trend segmentation, see [16].

• Value abstraction uses the following abstractions: Very
Low (VL), low (L), Normal (N), High (H) and Very
High (VH), i.e., Σ = {VL, L, N, H, VH}. We use the
5th, 25th, 75th and 95th percentiles on the lab values to
define these 5 states: a value below the 5th percentile
is very low (VL), a value between the 5th and 25th
percentiles is low (L), and so on.

Figure 1 shows the trend and value abstractions on a time
series of platelet counts of a patient.

Figure 1: An example illustrating the trend and value
abstractions. The dashed lines represent the 25th and 75th
percentiles and the solid lines represent the 5th and 95th
percentiles.

State Sequence Representation: We define a state to be
an abstraction for a specific variable. For example, state
E: Vi = D represents a decreasing trend in the values of
temporal variable Vi. We also use the shorthand notation
Di to denote this state, where the subscript indicates that
D is abstracted from the ith variable. We define a state
interval to be a state that holds during an interval, that is,
state interval (E, bi, ei) is a realization of state E in a data
instance and has specific start time (bi) and end time (ei).

Definition 1: A state sequence is a series of state inter-
vals, where the state intervals are ordered according to their
start times:

〈(E1, b1, e1), (E2, b2, e2), ..., (El, bl, el)〉: bi ≤ ei ∧ bi ≤ bi+1

Note that we do not require ei to be less than bi+1 because
the states are obtained from multiple temporal variables and
their intervals may overlap.

After abstracting all temporal variables, we represent
every instance (i.e., patient) in the database D as a state
sequence. As a result, D can be viewed as a set of state
sequences. We will use the terms instance and state sequence
interchangeably hereafter.

B. Temporal Relations
Allen’s temporal logic [5] describes the relations for any

pair of state intervals using 13 possible relations. However,
it suffices to use the following 7 relations: before, meets,
overlaps, is-finished-by, contains, starts and equals because
the other relations are simply their inverses. Allen’s relations
have been used by the majority of research on mining time
interval data ([7], [8], [11], [12]).

Most of Allen’s relations require equality of one or two
of the intervals end points. That is, there is only a slight
difference between overlaps, is-finished-by, contains, starts
and equals relations. These relations are too specific for
pattern discovery when the time information in the data is
noisy (not precise) [9], which is the case in EHR data.

Therefore we opt to use only two temporal relations,
before (b) and co-occurs (c), which we define as follows:
Given two state intervals Ei and Ej :

• (Ei, bi, ei) before (Ej , bj , ej) if ei < bj

359

• (Ei, bi, ei) co-occurs with (Ej , bj , ej), if bi ≤ bj ≤ ei,
i.e. Ei starts before Ej and there is a nonempty time
period where both Ei and Ej occur.

C. Temporal Patterns
In order to obtain temporal descriptions of the data,

basic states are combined using temporal relations to form
temporal patterns.

Definition 2: A temporal pattern is defined as
P = (〈S1, ..., Sk〉, R) where Si is the ith state of the
pattern and R is an upper triangular matrix that defines
the temporal relations between each state and all of its
following states:

Ri,j = Si r Sj : i ∈ {1, ..., k−1}∧j ∈ {i+1, ..., k}∧r ∈ {b, c}
The size of pattern P is the number of states it contains.

If size(P)=k, we say that P is a k-pattern. Hence, a single
state is a 1-pattern (a singleton). We also denote the space
of all temporal patterns of arbitrary size by TP.

Figure 2 graphically illustrates a 4-pattern with states
〈A1, B2, C3, A2〉, where the states are abstractions of tem-
poral variables V1, V2 and V3 using abstraction alphabet
Σ = {A,B,C}. The half matrix on the right represents the
temporal relations between every state and the states that
follow it.

Figure 2: A temporal pattern with states 〈A1, B2, C3, A2〉
and temporal relations R1,2 = c, R1,3 = b, R1,4 = b, R2,3 =
c, R2,4 = b and R3,4 = c.

Interesting patterns are usually limited in their temporal
extensions, i.e., it would not be interesting to use the
before relation to relate states that are temporally very far
away from each other. Therefore, the definition of temporal
patterns usually comes with a specification of a window size
that defines the maximum pattern duration.

In our task, we are interested in detecting events (medical
conditions) that may happen at a specific time ti during pa-
tient xi hospitalization period. Hence, recent measurements
of the clinical variables of xi (close to ti) are usually more
predictive than distant measurements [17]. The approach
taken in this paper is to define windows of fixed widths
that are aligned with ti for every xi and only mine temporal
patterns that can be observed inside these windows.

Definition 3: Let T = 〈(E1, b1, e1), ..., (El, bl, el)〉 be a
state sequence that is visible within a specific window. We
say that pattern P = (〈S1, ..., Sk〉, R) occurs in T (or that
P covers T), denoted as P ∈ T , if there is an injective
mapping π from the states of P to the state intervals of T
such that:
(
Si = Eπ(i)

) ∧ (
(Eπ(i), bπ(i), eπ(i)) Ri,j (Eπ(j), bπ(j), eπ(j))

)

∀i ∈ {1, ..., k} ∧ j ∈ {i+1, ..., k}

Notice that checking the existence of a temporal pattern
in a state sequence requires: (1) matching all k states of
the patterns and (2) checking that all k(k − 1)/2 temporal
relations are satisfied.

Definition 4: P = (〈S1, ..., Sk1〉, R) is a subpattern of
P ′ = (〈S′

1, ..., S
′
k2
〉, R′), denoted as P ⊆ P ′, if there is an

injective mapping π from the states of P to the states of P ′
such that:

Si = S′
π(i) ∧Ri,j = R′

π(i),π(j) ∀i ∈ {1, ..., k1} ∧ j ∈ {i+1, ..., k1}

Definition 5: The support of temporal pattern P in
database D is the number of instances that contain P :

sup(P,D) = | {Ti : Ti ∈ D ∧ P ∈ Ti} |

Note that the support definition satisfies the Apriori prop-
erty [18]:

∀P, P ′ ∈ TP if P ⊆ P ′ ⇒ sup(P,D) ≥ sup(P ′, D)

We define a rule to be an implication of the form P ⇒ y,
where P is a temporal pattern and y ∈ Y is a specific value
of the target class variable. We say that rule P ⇒ y is a
subrule of rule P ′⇒y′ if P ⊆ P ′ and y = y′.

Definition 6: The confidence of rule P ⇒ y is the
proportion of instances from class y in all instances covered
by P :

conf(P⇒y) =
sup(P,Dy)

sup(P,D)

where Dy denotes all instances in D that belong to class y.
The confidence of rule R : P ⇒ y is the maximum

likelihood estimation of the probability that an instance
covered by P belongs to class y. If R is a predictive rule,
then its confidence should be larger than the prior probability
of y in the data.

D. Mining Frequent Temporal Patterns

In this section, we present the algorithm for mining
frequent temporal patterns. We chose to utilize the class
information and mine frequent patterns from each class
separately. The algorithm takes Dy: the state sequences from
class y and min-supy: a user specified minimum support
threshold. It outputs all frequent temporal patterns in Dy:

{P ∈ TP : sup(P,Dy) ≥ min-supy}

The mining algorithm performs an Apriori-like level-wise
search [18]. It first scans the database to find all frequent
1-patterns. Then, it performs the following two phases to
obtain the frequent k-patterns:

1) The candidate generation phase: To generate candi-
date k-patterns using the frequent (k-1)-patterns.

2) The counting phase: To count the generated candi-
dates and remove the infrequent ones.

In the following, we discuss how to improve the efficiency
of each phase.

360

1) Candidate Generation: We generate a candidate
(k+1)-pattern by adding a new state (1-pattern) to the end of
a frequent k-pattern. Let us assume that we are extending
pattern P = (〈S1, ..., Sk〉, R) with state Sk+1 in order to
generate candidate P ′ = (〈S1, ..., Sk, Sk+1〉, R′). First, we
set R′

i,j = Ri,j for i ∈ {1, ..., k − 1} ∧ j ∈ {i+ 1, ..., k} so
that P ⊂ P ′. In order to fully define P ′, we still need to
specify the temporal relations between states S1, ..., Sk and
the new state Sk+1, i.e., we should define R′

i,k+1 for i ∈
{1, ..., k}. Since we have two possible temporal relations
(before and co-occurs), there are 2k possible ways to specify
the missing relations. That is, 2k possible candidates can be
generated when adding state Sk+1 to pattern P . However,
many of these candidates are not necessary to generate
because they are incoherent, as we see in the following.

Definition 7: A temporal pattern P is incoherent if there
does not exist any valid state sequence that contains P .

We introduce the following two propositions to avoid
generating incoherent candidates when extending frequent
pattern P = (〈S1, ..., Sk〉, R) with state Sk+1.

Proposition 1: P ′ = (〈S1, ..., Sk, Sk+1〉, R′) is incoher-
ent if R′

i,k+1 = c and Si and Sk+1 are extracted from the
same variable.

Proposition 2: P ′ = (〈S1, ..., Sk, Sk+1〉, R′) is incoher-
ent if R′

i,k+1 = c ∧ ∃j > i: R′
i,j = b.

We omit the proofs of these simple propositions due to space
limitation.

Example 1: Assume we want to extend pattern
P = (〈A1, B2, C3, A2〉, R) in Figure 2 with
state B3 to generate candidates of the form
(〈A1, B2, C3, A2, B3〉, R′). The relation between A2

and the new state B3 can be either before or co-occurs:
R′

4,5 = b or R′
4,5 = c. However, according to proposition

1, C3 and B3 cannot co-occur because they both belong
to temporal variable V3 (R′

3,5 �= c). Also, according to
proposition 2, B2 cannot co-occur with B3 (R′

2,5 �= c)
because B2 is before A2 (R′

2,4 = b) and A2 should
start before B3. Similarly, A1 cannot co-occur with B3

(R′
1,5 �= c) because A1 is before A2 (R′

1,4 = b). Therefore,

instead of naively generating all 24 = 16 candidates, we
generate only 2 candidates.

2) Speeding up the Counting Phase: Even by eliminating
incoherent patterns, the mining algorithm is still computa-
tionally expensive because for every generated candidate,
we need to scan the entire database in the counting phase
to check whether or not it is a frequent pattern. So can we
omit portions of the data that are guaranteed not to contain
the candidate we are counting? The proposed solution is
inspired by [19] that developed the vertical data format for
itemset mining and later expended it to sequential pattern
mining [15].

The idea is to associate every frequent pattern P with a
list of identifiers for all state sequences that contain P :

P.id-list = 〈i1, i2, ..., in〉 : Tij ∈ Dy ∧ P ∈ Tij
Clearly, sup(P,Dy) = |P.id-list|.

Definition 8: The potential id-list (pid-list) of pattern
P is the intersection of the id-lists of its subpatterns:

P.pid-list = ∩S⊂P S.id-list

Proposition 3: ∀P ∈ TP : P.id-list ⊆ P.pid-list

Proof: Assume Ti is a state sequence in the database
such that P ∈ Ti. By definition, i ∈ P.id-list. We also know
that Ti must contain all subpatterns of P according to the
Apriori property: ∀S ⊂ P : S ∈ Ti. Therefore, ∀S ⊂ P :
i ∈ S.id-list =⇒ i ∈ ∩S⊂PS.id-list = P.pid-list.

Putting it all together, we compute the id-lists in the
counting phase (based on the true matches) and the pid-lists
in the candidate generation phase. The key idea is that when
we count a candidate, we only need to check the state
sequences in its pid-list because:

i �∈ P.pid-list =⇒ i �∈ P.id-list =⇒ P �∈ Ti
This offers a lot of computational savings since the

pid-lists get smaller as the size of the patterns increases,
making the counting phase much faster.

Candidate Generation (Fk)
1: foreach P ∈ Fk

2: foreach I ∈ F1

3: C = generate coherent candidates(P , I)
4: for q = 1 to | C |
5: S = generate k subpatterns(C[q])
6: if (S[i] ∈ Fk : ∀i ∈ {1, ..., k})
7: C[q].pid-list = FkS[1]

.id-list ∩ ... ∩ FkS[k]
.id-list

8: C[q].mcs = max{FkS[1]
.mc, ..., FkS[k]

.mc}
9: if (| C[q].pid-list | ≥ min-supc)
10: Cand = Cand ∪ C[q]
11: return Cand

Figure 3: A high-level description of candidate generation.
The algorithm takes as input the frequent k-patterns (Fk)
and returns the candidate (k+1)-patterns (Cand) together
with their pid-lists.

Figure 3 shows the candidate generation algorithm. Af-
ter generating coherent candidates (line 3), we apply the
standard Apriori pruning [18], which states that for a (k+1)-
candidate to be frequent, all of its k-subpatterns must be
frequent as well (lines 5 and 6). In our implementation, we
hash all patterns in Fk, so that searching the subpatterns
in Fk requires only k operations. Now that we found all
k-subpatterns, we simply intersect their id-lists to compute
the pid-list of the candidate (line 7). Note that the cost of the
intersection is linear because the id-lists are always sorted
according to the order of the instances in the database. Line
8 is used to mine the minimal predictive temporal patterns
and will be explained later in Section III-F. Finally, line 9
applies an additional pruning to remove candidates that are
guaranteed not to be frequent according to the following
implication of proposition 3:

|P.pid-list|<min-supy =⇒ sup(P,Dy)<min-supy

361

E. Minimal Predictive Temporal Patterns
Applying frequent pattern mining on data usually results

in a very large number of temporal patterns, most of which
may be unimportant for the classification task. Using all
of these patterns as features can hurt the classification
performance due to the curse of dimensionality. Therefore,
it is crucial to develop effective methods to select a subset
of patterns that are likely to improve the classification
performance.

The task of pattern selection is more challenging than
the standard task of feature selection due to the nested
structure of patterns: if P is frequent, all instances covered
by P are also covered by all of its subpatterns, which
are also in the result of the frequent mining method (the
Apriori property). This nested structure causes the problem
of spurious patterns, which we will define and then explain
using an example.

Definition 9: A temporal pattern P is a spurious pattern
if P is predictive when evaluated by itself, but it is redundant
given one of its subpatterns.

Example 2: Assume that having very low platelet counts
(PLT) is an important risk factor for heparin induced throm-
bocytopenia (HIT). If we denote pattern PLT=VL by P , we
expect conf (P ⇒ HIT) to be much higher than the HIT
prior. Now assume that there is no causal relation between
the patient’s potassium (K) level and his risk of HIT, so a
pattern like K=N (normal potassium) does not change our
belief about the presence of HIT. If we combine these two
patterns, for example P ′ :K=N before PLT=VL, we expect
that conf (P ′⇒HIT) ≈ conf (P⇒HIT). The intuition behind
this is that the instances covered by P ′ can be seen as a
random sub-sample of the instances covered by P . So if the
proportion of HIT cases in P is relatively high, we expect
the proportion of HIT cases in P ′ to be high as well.

The problem is that if we examine P ′ by itself, we
may falsely conclude that it is a good predictor of HIT,
where in fact this happens only because P ′ contains the
real predictive pattern P . Having spurious patterns in the
mining results is undesirable for classification because it
leads to many redundant and highly correlated features. It is
also undesirable for knowledge discovery because spurious
patterns can easily overwhelm the domain expert and prevent
him/her from understanding the real causalities in the data.

Having discussed these problems, we propose the minimal
predictive temporal patterns framework for selecting predic-
tive and non-spurious temporal patterns for classification.

Definition 10: A frequent temporal pattern P is a mini-
mal predictive temporal pattern (MPTP) with respect to
class y if rule P ⇒ y is significantly more predictive than
all of its subrules.

In order to complete the definition, we define the MPTP
statistical significance test and explain how to address the
issue of multiple hypothesis testing.

The MPTP Significance Test: Assume we want to check
whether temporal pattern P is an MPTP with respect to class
y. Suppose that P covers N instances in the entire database
D and covers Ny instances in Dy (the instances from class
y). Let best conf be the highest confidence achieved by any
subrule of P ⇒ y:

best conf = max
S⊂P

(conf(S ⇒ y))

The null hypothesis presumes that Ny is generated from
N according to the binomial distribution with probability
best conf. We perform a one sided statistical test and cal-
culate its p-value:

p-value = Prbinom(x ≥ Ny;N, best conf)

This p-value is the probability of observing Ny or more
instances of class y out of the N instances covered by P if
the true underlying probability is best conf. If the p-value
is smaller than a significance level α (e.g., p-value < 0.01),
then this hypothesis is very unlikely and we conclude that
P ⇒ y is significantly more predictive than all its subrules,
hence P is an MPTP.

This test can filter out many spurious patterns. Going back
to example 2, we do not expect spurious pattern K=N before
PLT=VL to be an MPTP because it does not predict HIT
significantly better that the real pattern: PLT=VL.

Correcting for Multiple Hypothesis Testing: When
testing the significance of multiple patterns in parallel, it
is possible that some patterns will pass the significance test
just by chance (false positives). This is a concern for all
techniques that rely on statistical tests. In order to tackle
this problem, the significance level should be adjusted by
the number of tests performed during the mining. In this
work, we adopt the FDR (False Discovery Rate) technique
[20], which directly controls the expected proportion of false
discoveries in the result (the type I error). FDR is a simple
method for estimating the rejection region so that the false
discovery rate is on average less than α. It takes as input
sorted p-values: p(1) ≤ p(2) ≤ ... ≤ p(m) and estimates k̂
that tells us that hypothesis associated with p(1), p(2), ..., p(k̂)
are significant. We apply FDR to post-process all potential
MPTP (patterns satisfying the MPTP significance test) and
select the ones that satisfy the FDR criteria.

F. Mining Minimal Predictive Temporal Patterns
The algorithm in Section III-D describes how to mine

all frequent temporal patterns from Dy . In this section, we
explain how to mine the MPTP set from Dy . To do this, the
algorithm requires another input: D¬y , which is the instances
in the database that do not belong to class y: D¬y = D−Dy .

The process of testing whether temporal pattern P is an
MPTP is not trivial because the definition demands checking
the pattern against all its subpatterns. That is, for a k-pattern,
we need to compare it with all of its 2k−1 subpatterns!

In order to avoid this inefficiency, we associate every
frequent pattern P with two values:

1) P.mcs (Maximum Confidence of Subpatterns) is the
maximum confidence of all proper subpatterns of P :

P.mcs = max
S⊂P

(conf(S ⇒ y)) (1)

2) P.mc (Maximum Confidence) is the maximum confi-
dence of P and all of its proper subpatterns:

P.mc = max(conf (P ⇒ y), P.mcs) (2)

Note that P.mcs is all we needed to perform the MPTP
significance test for pattern P . However, we need a way to

362

compute P.mcs without having to access all subpatterns. The
idea is that we can reexpressed P.mcs for any k-pattern using
the maximum confidence values of its (k-1)-subpatterns:

P.mcs = max
S⊂P

(S.mc) : size(S) = k−1 (3)

This leads to a simple dynamic programming type of
algorithm for computing these two values. Initially, for every
frequent 1-patterns P , we set P.mcs to be the prior probabil-
ity of class y in the data and compute P.mc using expression
(2). In the candidate generation phase, we compute mcs of
a new candidate k-pattern using the mc values of its (k-
1)-subpatterns according to expression (3) (Figure3: line 8).
Then, we compute the mc values for the frequent k-patterns,
and repeat the process for the next levels.

1) Lossless Pruning: The MPTP significance test can
help us to reduce the search space. The idea is to prune
pattern P if we guarantee that none of P ’s superpatterns
will be an MPTP. However, since the algorithm is applied
in a level-wise fashion, we do not know the superpatterns
of P . To overcome this difficulty, we define the optimal
superpattern of P , denoted as P ∗, to be a hypothetical
pattern that covers all and only the instances of class y in
P , i.e., sup(P ∗, Dy) = sup(P,Dy) and sup(P ∗, D¬y) = 0.
Clearly, P cannot generate any superpattern that predicts y
better than P ∗. Now, we prune P if P ∗ is not an MPTP
with respect to P .mc (the highest confidence achieved by P
and its subpatterns). Note that this pruning is anti-monotonic
and is guaranteed not to miss any MPTP.

Example 3: Assume that the support of pattern P in Dy

is 10 and that P.mc = 0.75. We can safely prune P because
Prbinom(x ≥ 10; 10, 0.75) = 0.056, which is not significant
at significance level α = 0.01.

2) Lossy Pruning: This section describes a lossy pruning
technique that speeds up the mining at the risk of missing
some MPTPs. We refer to the patterns mined with the lossy
pruning as A-MPTP (Approximated MPTP). The idea is
to prune P if it does not show any sign of being more
predictive than its subpatterns. To do this, we simply perform
the MPTP significance test, but at a higher significance level
α2 than the significance level used in the original MPTP
significance test: α2 ∈ [α, 1]. If P does not satisfy the
MPTP test with respect to α2, we prune P . Note that α2 is
a parameter that controls the tradeoff between efficiency and
completeness. So if we set α2 = 1, we do not perform any
lossy pruning. On the other end of the spectrum, if we set
α2 = α, we prune every non-MPTP pattern, which leads to
very aggressive pruning!

IV. EXPERIMENTAL EVALUATION

In this section, we test and present results of our tempo-
ral pattern mining approach on the problem of predicting
patients who are at risk of developing heparin induced
thrombocytopenia (HIT) [21]. HIT is a pro-thrombotic dis-
order induced by heparin exposure with subsequent throm-
bocytopenia (low platelets in the blood) and associated
thrombosis (blood clot). It is a life-threatening condition if it
is not detected and managed properly. Hence, it is extremely
important to detect the onset of the condition.

A. Dataset
We use data acquired from a database that contains 4,281

electronic health records of post cardiac surgical patients
[22]. From this database, we selected 220 instances of
patients who were considered by physicians to be at risk of
HIT and 220 instances of patients without the risk of HIT.
The patients at risk of HIT were selected using information
about the heparin platelet factor 4 antibody (HPF4) test
orders. The HPF4 test is ordered for a patient when a
physician suspects the patient is developing HIT and hence
it is a good surrogate of the HIT-risk label. The HIT-
risk instances included clinical information up to the time
HFP4 was ordered. The negative (no HIT-risk) instances
were selected randomly from the remaining patients. These
instances included clinical information up to some randomly
selected time.

For every instance, we consider the following 5 clinical
variables: platelet counts (PLT), activated partial throm-
boplastin time (APTT), white blood cell counts (WBC),
hemoglobin (Hgb) and heparin orders. PLT, APTT, WBC
and Hgb are numerical time series and we segment them
using trend and value abstractions (Section III-A). Heparin
orders are already in an interval-based format that specifies
the time period the patient was taking heparin. We set the
window size of temporal patterns to be the last 5 days of
every patient record.

B. Classification Performance
In this section, we test the ability of our methods to repre-

sent and capture temporal patterns important for predicting
HIT. We compare our methods, MPTP and its approximate
version A-MPTP, to the following baselines:

1) Last values: The features are the most recent value of
each clinical variable.

2) Last abs: The features are the most recent abstractions
of the clinical variables.

3) TP all: The features are all frequent temporal patterns.
4) TP IG: The features are the top 100 frequent temporal

patterns according to information gain (IG).
5) TP chi: The features are the frequent temporal pat-

terns that are statistically significant according to the
χ2 test with significance level α = 0.01. This method
applies FDR to correct for multiple hypothesis testing.

The first two methods (1-2) are atemporal and do not rely
on any temporal ordering when constructing their features.
On the other hand, methods 3-5 use temporal patterns that
are built using temporal abstractions and temporal logic.
However, unlike MPTP and A-MPTP, they select the patterns
using standard feature selection methods without considering
the nested structure of the patterns.

We set the significance level α = 0.01 for MPTP and
A-MPTP, and we set the pruning parameter α2 = 0.25 for
A-MPTP (see Section III-F2). We set the minimum support
(min-sup) to be 10% of the number of instances in the class
for all compared methods.

We judged the quality of the different feature representa-
tions in terms of their induced classification performance.
More specifically, we use the features extracted by each
method to build an SVM classifier and evaluate its perfor-
mance using the classification accuracy and the area under
the ROC curve (AUC).

363

Table I shows the classification accuracy and the AUC for
each of the methods. All classification results are reported
using averages obtained via 10-folds cross validation.

Method Accuracy AUC

Last values 78.41 89.57
Last abs 80.23 88.43
TP all 80.68 91.47
TP IG 82.50 92.11
TP chi 81.36 90.99
MPTP 85.68 94.42

A-MPTP 85.45 95.03

Table I
THE CLASSIFICATION ACCURACY (%) AND THE AREA UNDER THE ROC

CURVE (%) FOR DIFFERENT FEATURE EXTRACTION METHODS.

The results show that temporal features generated using
temporal abstractions and temporal logic are beneficial for
predicting HIT, since they outperformed methods based on
atemporal features. The results also show that the MPTP
and A-MPTP are the best performing methods. Note that
although the temporal patterns generated by TP all, TP IG,
and TP chi subsume or overlap MPTP and A-MPTP pat-
terns, they also include many irrelevant and spurious patterns
that negatively effect their classification performance.

C. Knowledge Discovery
In order for a pattern mining method to be useful for

knowledge discovery, the method should provide the user
with a small set of understandable patterns that are able to
capture the important information in the data.

Figure 4: The number of patterns return by TP all, TP chi,
MPTP and A-MPTP for different minimum supports.

Figure 4 compares the number of temporal patterns (on
a logarithmic scale) that are extracted by TP all, TP chi,
MPTP and A-MPTP under different minimum support
thresholds. Notice that the number of frequent temporal
patterns (TP all) exponentially blows up when we decrease
the minimum support. Also notice that TP chi does not help
much in reducing the number of patterns even though it
applies the FDR correction. For example, for min-sup=5%,
TP chi outputs 1,842 temporal patterns that are statistically
significant! This clearly illustrates the spurious patterns
problem that we discussed in Section III-E.

On the other hand, the number of MPTPs is much
lower than the other methods and it is less sensitive to the
minimum support. For example, when min-sup=5%, the

number of MPTPs is about two orders of magnitude less
than the total number of frequent patterns.

Finally notice that the number of A-MPTPs may
in some cases be higher than the number of MPTPs.
The reason for this is that A-MPTP performs less
hypothesis testing during the mining (due to its ag-
gressive pruning), hence FDR is less aggressive with
A-MPTPs than with MPTPs.

Rule Sup Conf

R1: PLT=VL ⇒ HIT-risk 0.41 0.85
R2: Hep=ON co-occurs with PLT=D ⇒ HIT-risk 0.28 0.88
R3: Hep=ON before PLT=VL ⇒ HIT-risk 0.22 0.95
R4: Hep=ON co-occurs with APTT=H ⇒ HIT-risk 0.2 0.94
R5: PLT=D co-occurs with WBC=H ⇒ HIT-risk 0.25 0.87

Table II
THE TOP 5 MPTPS ACCORDING TO THEIR p-values. SUP DENOTES THE

PROPORTION OF DATA THAT THE PATTERNS COVER AND CONF DENOTES

THE CONFIDENCE OF THE RULES.

Table II shows the top 5 MPTPs according to the p-value
of the binomial statistical test, measuring the improvement
in the predictive power of the pattern with respect to the
HIT prior in the dataset. Rules R1, R2 and R3 describe
the main patterns used to detect HIT and are in agreement
with the current HIT detection guidelines [21]. Rule R4

relates the risk of HIT with high values of APTT (activated
partial thromboplastin time). This relation is not obvious
from the HIT detection guidelines. However it has been
recently discussed in the literature [23]. Finally R5 suggests
that the risk of HIT correlates with having high WBC values.
We currently do not know if it is a spurious or an important
pattern. Hence this rule requires further investigation.

D. Efficiency
In this section, we study the effect of the different

techniques we proposed for improving the efficiency of
temporal pattern mining. We compare the running time of
the following methods:

1) TP Apriori: Mine the frequent temporal patterns using
the standard Apriori algorithm.

2) TP id-lists: Mine the frequent temporal patterns using
the vertical id-list format described in Section III-D2.

3) MPTP: Mine the MPTP set using the vertical format
and the lossless pruning described in Section III-F1

4) A-MPTP: Mine the approximated MPTP set using
the vertical format, the lossless pruning and the lossy
pruning described in Section III-F2.

The experiments were conducted on a Dell Precision
T7500 machine with an Intel Xeon 3GHz CPU and 16GB
of RAM. All algorithms are implemented in MATLAB.

Figure 5 shows the execution times (on a logarithmic
scale) of the above methods using different minimum sup-
port thresholds. We can see that using the vertical data
format greatly improves the efficiency of frequent temporal
pattern mining as compared to the standard Apriori algo-
rithm. For example, for min-sup=10%, TP id-lists is more
than 6 times faster than TP Apriori.

Notice that the execution time of frequent temporal pattern
mining (both TP Apriori and TP id-lists) blows up when
the minimum support is low. On the other hand, MPTP
controls the mining complexity and the execution time

364

Figure 5: The running time of TP Apriori, TP id-lists,
MPTP and A-MPTP for different minimum supports.

increases much slower than frequent pattern mining when
the minimum support decreases. Finally, notice that A-MPTP
is the most efficient method. For example, for min-sup=5%,
A-MPTP is around 4 times faster than MPTP, 20 times faster
than TP id-lists and 60 times faster than TP Apriori.

V. CONCLUSION

The integration of classification and pattern mining has
recently attracted a lot of interest in data mining research and
has been successfully applied on static data [24], [6], graph
data [25] and sequence data [26]. This work proposes a
pattern-based classification framework for multivariate time
series data. Our approach relies on temporal abstractions
and temporal logic to construct the classification features.
We also propose the minimal predictive temporal patterns
framework and present an efficient algorithm to directly
mine these patterns. An important benefit of our approach is
that it can handle complex irregularly spaced temporal data,
such as electronic health records. This makes it a promising
candidate for many applications in the medical field, such
as patient monitoring and decision support.

VI. ACKNOWLEDGMENT

This work was supported by grants 1R21LM009102-
01A1, 1R01LM010019-01A1, 1R01GM088224-01 and
T15LM007059-24 from the NIH. Its content is solely the
responsibility of the authors and does not necessarily repre-
sent the official views of the NIH.

REFERENCES

[1] X. Weng and J. Shen, “Classification of multivariate time
series using two-dimensional singular value decomposition,”
Knowledge-Based Systems, vol. 21, pp. 535 – 539, 2008.

[2] L. Li, B. A. Prakash, and C. Faloutsos, “Parsimonious linear
fingerprinting for time series,” PVLDB, 2010.

[3] I. Batal and M. Hauskrecht, “A supervised time series feature
extraction technique using dct and dwt,” in ICMLA, 2009.

[4] Y. Shahar, “A Framework for Knowledge-Based Temporal
Abstraction,” Artificial Intelligence, 90:79-133, 1997.

[5] F. Allen, “Towards a general theory of action and time.”
Artificial Intelligence, 23:123-154, 1984.

[6] I. Batal and M. Hauskrecht, “Constructing classification fea-
tures using minimal predictive patterns,” in CIKM, 2010.

[7] F. Hoppner, “Knowledge discovery from sequential data,”
Ph.D. dissertation, Technical University Braunschweig, Ger-
many, 2003.

[8] P. Papapetrou, G. Kollios, and S. Sclaroff, “Discovering
frequent arrangements of temporal intervals,” in ICDM, 2005.

[9] F. Moerchen, “Algorithms for time series knowledge mining,”
in SIGKDD, 2006, pp. 668–673.

[10] S.-Y. Wu and Y.-L. Chen, “Mining nonambiguous temporal
patterns for interval-based events,” IEEE Trans. on Knowl-
edge and Data Engineering, vol. 19, pp. 742–758, 2007.

[11] R. Moskovitch and Y. Shahar, “Medical temporal-knowledge
discovery via temporal abstraction,” in AMIA, 2009.

[12] E. Winarko and J. F. Roddick, “Armada - an algorithm
for discovering richer relative temporal association rules
from interval-based data,” Data and Knowledge Engineering,
vol. 63, pp. 76–90, 2007.

[13] L. Sacchi, C. Larizza, C. Combi, and R. Bellazzi, “Data
mining with Temporal Abstractions: learning rules from time
series,” Data Mining and Knowledge Discovery, 2007.

[14] R. Agrawal and R. Srikant, “Mining sequential patterns,” in
ICDE, 1995.

[15] M. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42, pp. 31–60, 2001.

[16] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting
Time Series: A Survey and Novel Approach,” in Data Mining
in Time Series Databases. World Scientific, 2003.

[17] M. Valko and M. Hauskrecht, “Feature importance analysis
for patient management decisions,” in MedInfo, 2010.

[18] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in VLDB, 1994.

[19] M. J. Zaki, “Scalable algorithms for association mining,”
IEEE Trans. on Knowledge and Data Engineering, vol. 12,
pp. 372–390, 2000.

[20] Y. Benjamini and Y. Hochberg, “Controlling the false dis-
covery rate: A practical and powerful approach to multiple
testing,” Journal of the Royal Statistical Society, vol. 57,
no. 1, pp. 289–300, 1995.

[21] T. Warkentin, “Heparin-induced thrombocytopenia: pathogen-
esis and management,” British Journal of Haematology, vol.
121, pp. 535–555, 2000.

[22] M. Hauskrecht, M. Valko, I. Batal, G. Clermont,
S. Visweswaram, and G. Cooper, “Conditional outlier
detection for clinical alerting,” in AMIA, 2010.

[23] R. Pendelton, M. Wheeler, and G. Rodgers, “Argatroban dos-
ing of patients with heparin-induced thrombocytopenia and
an elevated aptt due to antiphospholipid antibody syndrome,”
The Annals of Pharmacotherapy, vol. 40, pp. 972–976, 2006.

[24] H. Cheng, X. Yan, J. Han, and C. wei Hsu, “Discriminative
frequent pattern analysis for effective classification,” in ICDE,
2007.

[25] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis,
“Frequent substructure-based approaches for classifying
chemical compounds,” IEEE Trans. on Knowledge and Data
Engineering, vol. 17, pp. 1036–1050, 2005.

[26] V. S.-M. Tseng and C.-H. Lee, “Cbs: A new classification
method by using sequential patterns,” in SDM, 2005.

365

