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Summary  
Objectives: Bayesian anomaly detection 
computes posterior probabilities of anom-
alous events by combining prior beliefs and 
evidence from data. However, the specifica-
tion of prior probabilities can be challenging. 
This paper describes a Bayesian prior in the 
context of disease outbreak detection. The 
goal is to provide a meaningful, easy-to-use 
prior that yields a posterior probability of an 
outbreak that performs at least as well as a 
standard frequentist approach. If this goal is 
achieved, the resulting posterior could be 
 usefully incorporated into a decision analysis 
about how to act in light of a possible disease 
outbreak. 
Methods: This paper describes a Bayesian 
method for anomaly detection that combines 
learning from data with a semi-informative 
prior probability over patterns of anomalous 
events. A univariate version of the algorithm is 
presented here for ease of illustration of the 
essential ideas. The paper describes the algo-
rithm in the context of disease-outbreak de-
tection, but it is general and can be used in 
other anomaly detection applications. For this 
application, the semi-informative prior spec-
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ifies that an increased count over baseline is 
expected for the variable being monitored, 
such as the number of respiratory chief com-
plaints per day at a given emergency depart-
ment. The semi-informative prior is derived 
based on the baseline prior, which is esti-
mated from using historical data. 
Results: The evaluation reported here used 
semi-synthetic data to evaluate the detection 
performance of the proposed Bayesian 
method and a control chart method, which is 
a standard frequentist algorithm that is clos -
est to the Bayesian method in terms of the 
type of data it uses. The disease-outbreak 
 detection performance of the Bayesian 
method was statistically significantly better 
than that of the control chart method when 
proper baseline periods were used to estimate 
the baseline behavior to avoid seasonal ef-
fects. When using longer baseline periods, the 
Bayesian method performed as well as the 
control chart method. The time complexity of 
the Bayesian algorithm is linear in the number 
of the observed events being monitored, due 
to a novel, closed-form derivation that is in-
troduced in the paper. 
Conclusions: This paper introduces a novel 
prior probability for Bayesian outbreak de -
tection that is expressive, easy-to-apply, 
 computationally efficient, and performs as 
well or better than a standard frequentist 
method. 

1. Introduction  
Detection of anomalous events in data is a 
research area with important applications 
in domains such as disease-outbreak detec-
tion [1], clinical treatment monitoring [2], 
fraud detection [3], and intrusion detec-
tion [4]. In a typical scenario, a monitoring 
system examines a sequence of data to de-
termine if any recent activity can be con-
sidered a deviation relative to historical 
baseline behavior. Many detection algo-
rithms, such as the Shewhart control chart 
method [5], CuSum [6], and EWMA [7], 
use frequentist statistical techniques that 
derive statistics, such as p values. 

In this paper we introduce a Bayesian 
anomaly-detection algorithm for monitor-
ing broad patterns of anomalies that mani-
fest increased rates of some event (e.g., 
emergency department (ED) patients with 
a fever symptom)a. The algorithm operates 
on a univariate time series of counts of an 
event X being monitored. We call this 
method the Bayesian univariate (BU) algo-
rithm. The BU algorithm models the ex-
pected baseline rate of X during the pre-
vious 24-hour period using historical data 
that are assumed to contain no anomalous 
patterns. It uses the baseline rate to derive a 
semi-informative prior that represents the 
expected increased rates of X if there is an 
anomaly. This prior characterizes anom-
alous patterns of X. The models for non-
anomalous and anomalous patterns of X 
are used to derive a posterior probability of 
an anomaly.  

This paper describes an example of the 
BU algorithm in the context of disease out-
break detection. The example algorithm 
operates on a univariate time series of ED 

a Decreased rates can be handled in an analogous 
fashion. 
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chief complaint data. A chief complaint is a 
short phrase that describes the primary 
reason a patient came to the ED (e.g., “se-
vere headache”). Such data are often cap-
tured electronically in real time when a 
triage nurse sees a patient. The example ap-
plication of the algorithm that is presented 
here takes as input the number of ED re-
spiratory chief complaints (e.g., cough, 
shortness of breath, sputum production, 
etc.) in the previous 24-hour period, and it 
outputs a posterior probability of a respir-
atory disease outbreak being present dur-
ing that period. It could be run each hour, 
for example, to provide an ongoing assess-
ment of the presence of such an outbreak. 
The algorithm itself can be generalized to 
other applications in the area of anomaly 
detection, as for example monitoring 
whether a medication used to treat a given 
disease has changed relative to its use in the 
recent past. 

One technical contribution of this paper 
is the derivation of a closed-form solution 
to the posterior probability of an anomaly, 
given the prior probability distribution 
that we introduce. The time complexity of 
calculating this posterior probability is just 
linear in the number of the observed events 
X during the period being monitored. 

We compared the detection performance 
of the BU algorithm with a standard control 
chart algorithm, which also uses recent data 
to detect an anomaly. We hy  pothesized that 
BU would perform disease outbreak detec-
tion at least as well as the control chart 
method. If so, the BU algorithm will have the 
advantage that it generates a posterior prob-
ability that can be applied directly in deci-
sion analyses, unlike what is possible with 
the control chart method and other frequen-
tist approaches. For example, an analysis 
could be done of whether it is warranted for 
public health  officials to investigate a poten-
tial disease outbreak. 

The remainder of this paper is organized 
as follows. In the next section, we describe 
the main issues of the BU algorithm. We 
then present an example application of the 
algorithm, describe the experiments we 
performed, and show the results. We pro-
vide additional discussion of the algorithm 
and suggest several ways of extending it. We 
also describe previously published related 
work. We conclude with a brief summary. 

2. Background 
We model the expected baseline rate of 
event X during the previous 24-hour peri-
od using a Beta distribution. The Beta dis-
tribution is a continuous probability dis-
tribution that is parameterized by two 
positive shape parameters. The Beta dis-
tribution has been used for a wide variety of 
applications because it can take a very di-
verse set of shapes [8].  

The Beta distribution can be used to 
represent the uncertainty or random vari-
ation of a rate or proportion. In particular, 
the Beta distribution is a conjugate prior of 
the Binomial likelihood function and, as 
such, it is often used to describe the un -
certainty about a binomial probability pa -
rameter, as we do in this paper.  

There is a long history of using the Beta 
distribution to represent belief about a 
relative frequency. In the 19th century G. F. 
Hardy [9] and W. A. Whitworth [10] pro-
posed quantifying prior beliefs with Beta 
distributions. In addition, a Beta(1, 1), 
called the Bayes-Laplace prior, is often ap-
plied as a non-informative prior of some 
rate or proportion of interest [11]. 

In order to estimate the two parameters 
of the Beta distribution, we applied the 
method of moment matching, which is a 
popular means of parametric density esti-
mation [12–14]. It works by matching the 
first two sample moments (e.g., the mean 
and variance) to the corresponding popu-
lation moments and solving the resulting 
equations for the parameters to be esti-
mated [15]. 

Some researchers have used a Gamma 
prior as a representation for disease rate in 
epidemiology, such as the research work by 
Clayton and Kaldor [16, 17]. In the domain 
of disease-outbreak detection, Neill et al. 
[18] used a Gamma-Poisson model for 
Bayesian disease-outbreak detection. In 
particular, they assume that the number of 
disease cases are Poisson-distributed, 
where the underlying disease rate is mod -
eled using a Gamma prior distribution. 
They computed the posterior probability of 
an outbreak to monitor for potential dis-
ease outbreaks. 

3. Methods 
In this section, we describe the BU algo-
rithm for monitoring disease outbreaks 
that manifest as increased rates of re -
spiratory ED chief complaints. The term 
ED that is used below refers to one or more 
emergency departments in the region 
being monitored. If more than one, then 
the total patient cases across all EDs are 
treated as a single pool.  

We first introduce the following nota -
tion: 

Let Np be the total number of people in 
the population in a specific region being 
monitored for an outbreak of respiratory 
disease. 

Let N1 be the number of people from the 
monitored region who came to the ED in 
the most recent 24 hours with a respiratory 
chief complaint.  

Let N2 = Np – N1 represent the number 
of people in the monitored region who 
during the most recent 24-hour period did 
not visit the ED or who visited the ED with 
a non-respiratory chief complaint. 

We use OB to denote the state of an out-
break existing during the most recent 
24-hour period in the region being moni-
tored and NOB to represent the absence of 
any disease outbreak during that period. In 
particular, OB here will represent there 
being a respiratory outbreak in the popu-
lation. Note that OB and NOB are mutual -
 ly exclusive and exhaustive, and thus, 
P(OB) + P(NOB) = 1. 

Let θOB denote the fraction of people 
(out of the total population Np) who dur-
ing the most recent 24-hour period visited 
the ED with a respiratory chief complaint, 
when there is a respiratory outbreak in the 
population. Thus, 0 ≤  θOB ≤  1. We denote 
the density of θOB as f  (θOB  ). Note that θOB 

represents the total fraction of people with 
a respiratory chief complaint who visited 
the ED, including those with the outbreak 
disease and those without it. 

Similarly, let θNOB represent the fraction 
of people (out of the total population Np) 
who during the most recent 24-hour peri-
od visited the ED with a respiratory chief 
complaint, when there is not a respira -
 tory outbreak in the population. Thus, 
0 ≤  θNOB ≤  1. We denote the density of θNOB 

as g  (θNOB  ). 
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3.1 The Prior Distribution 

We model θNOB using a Beta distribution, 
namely, g  (θNOB) ~ Beta(θNOB  ; α0  , β0). We 
dynamically estimate the parameters α0 

and β0 from past ED data that are assumed 
to contain no respiratory disease out-
breaks. In particular, we use the sliding 
buffer concept [19], which separates the 
past data into two segments: a buffer pe -
riod and a baseline period, as shown in 
!Figure 1. 

The baseline period is used to statis-
tically characterize the patterns of non-
outbreak respiratory cases. We will be using 
the mean and variance of the counts per 
day during the baseline period to estimate 
parameters α0 and β0  . The more recent 
buffer period is inserted to avoid contami-
nation of the baseline period with a poten-
tial outbreak signal during monitoring.  

We used the independently developed 
BARD system to generate the simulated 
 anthrax cases [20]. BARD models in sig-
nificant detail the dispersion of spores from 
an aerosolized release of anthrax and the 
subsequent infection and health-seeking 
behavior of the exposed population. We 
evaluated the BU algorithm on datasets 
that we developed by overlaying simulated 
anthrax cases onto a background of real ED 
cases. Each dataset is assumed to contain 
only one outbreak, where the outbreak du-
ration is assumed to last up to two weeks. 
We use a buffer period of two weeks to 
avoid training the baseline model on out-
break cases. In order to accommodate 
 seasonal effects in the data, we use a total of 

12 weeks for the baseline period and the 
buffer period. Thus, we use a baseline peri-
od of 10 weeks, as shown in !Figure 1. 

In particular, we use the same day-of-
week data from the past 10 weeks in the 
baseline period to estimate the mean µ0 and 
the variance σ0

2 of θNOB for each day of the 
week, because experience shows that the 
number of respiratory counts is sensitive to 
the day of the week. Thus, for example, we 
will have 10 Mondays on which to estimate 
the mean and variance for respiratory 
counts on that day of the week. !Figure 1 
shows this example, where the current 
24-hour monitoring period is currently 
Monday. Finally, we use the method of mo-
ment matching in [15] to estimate parame-
ters α0 and β0 from the mean µ0 and vari-
ance σ0

2 using the equations shown below: 
 
  
 
 
  
 
 
The BU algorithm is a population-based 
outbreak-detection algorithm, which mod-
els the fraction of people (out of the total 
population) who visited the ED with a 
 respiratory chief complaint during the last 24 
hours. If an outbreak is occurring during this 
period, we assume that this fraction (θOB) is 
at least as large as the fraction in the absence 
of any disease outbreak (baseline fraction 
θNOB), namely, θOB ≥  θNOB  . As mentioned 
above, θOB is capturing the joint rate of both 
non-outbreak and outbreak cases of respir-

atory disease; the subscript “OB” means the 
joint rate that includes outbreak cases. In 
θNOB  , there are no outbreak cases, so this rate 
only includes non-outbreak ones. This as-
sumption will not hold if a disease outbreak 
would influence a large number of respir-
atory patients with non-outbreak diseases to 
avoid visiting the emergency department. 
But, such exceptions seem unlikely, es-
pecially early in the outbreak, which is when 
we most want to detect it and yet its presence 
is not yet  generally known. 

We model θOB as an increased rate of re-
spiratory chief complaints relative to θNOB  , 
and thus, we have the prior constraint that 
θOB ≥  θNOB  . We assume that we are indif -
ferent to the value of θOB other than that 
θOB ≥  θNOB  . Therefore, θOB is assumed to 
have a uniform distribution on the interval 
[θNOB  , 1]. Because θOB is only constrained 
to be greater than θNOB  , and otherwise it is 
uniform, we call this a semi-informative 
prior probability on θOB  .  

Let h(θOB  , θNOB) denote the joint prob-
ability density on θOB and θNOB  , and let 
h(θOB | θNOB) denote their conditional den-
sity. By integrating over all possible values 
of θNOB (0 ≤  θNOB ≤  θOB), we can represent 
the prior distribution of θOB as follows: 
 
  
 
 
 
 
because h(θOB, θNOB) = 0 when θNOB >θOB 

 
  
 
 
 
 
 (1) 
 
where the term 1/(1 – θNOB) represents the 
density of a uniform distribution of θOB on 
the interval [θNOB  , 1] given a specific value 
of θNOB  . !Figure 2 shows an example of a 
prior distribution g  (θNOB) and the derived 
prior distribution f  (θOB). 

Let B(u,v) represent a Beta function such 
that  
  
 
which has the following solution: 

Fig. 1 The sliding buffer concept used in the BU algorithm. Time is displayed on the horizontal axis 
and the number of respiratory chief complaints per day is displayed on the vertical axis. The small, 
shaded, horizontal areas correspond to a Monday of each week, which is the current day being moni-
tored. The baseline period is shown as being ten weeks long. The buffer period is two weeks. 
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Next, let B(z; u,v) represent an incomplete 
Beta function [21] such that  

 for 0 ≤  z ≤  1.  

 
Since we model θΝOB using a Beta distribu-
tion as shown in the equation in !Figure 3, 
Equation 1 can therefore be written as the 
equation shown in !Figure 4, where 
B (θOB  ; α0, β0 – 1) is an incomplete Beta 
function. 

3.2 Inference 

We wish to derive P(OB | E), where OB rep-
resents there being a respiratory-disease 
outbreak in the population in the last 24 
hours, and E denotes evidence, which in 
our example is the respiratory chief-com-
plaint status of patients who came to the 
ED during the previous 24 hours. We derive 
P(OB | E) by deriving P(E | OB), assessing 
P(OB), and applying Bayes’ rule. 

We assume that the status of respiratory 
for every person in the population is a se-
quence of independent Bernoulli trials 
with proportion parameter θNOB when 
there is no outbreak in the population. 
Given the non-outbreak situation in the 
last 24 hours, as denoted by NOB, we repre-
sent the likelihood P(E | NOB) using the 
Bernoulli-Beta model as follows. 
 
  (3) 
 
 
 
where g  (θNOB) ~ Beta(θNOB  ; α0  , β0). 
 !Equation 3 has the following well known 
closed-form solution [22]: 
 
B(α0 + N1, β0 + N2) / B(α0  , β0), 
 
where B represents a Beta function. 

Given a situation where an outbreak is 
occurring, we assume that we can model 
whether a person in the population arrives 
in the ED with a respiratory chief com-
plaint as a Bernoulli trial with proportion 
parameter θOB  . We then model the chief 
complaint status of the population as a set 

of independent, identically distributed Ber-
noulli trials. We therefore derive P(E | OB) 
as follows: 
 
  (4) 
 
 
 
where f  (θOB) is the prior distribution 
shown in !Equation 2. The closed-form 
solution to !Equation 4 is derived in the 
!Appendix as being shown in !Fig- 
ure 5. 

We compute the posterior probability of 
a disease outbreak using Bayes’ rule as fol-
lows:  
 

     (6) 
 
 
 
The time complexity for computing 
P(E | OB) using !Equation 5 is O(N1), 
where N1 is the number of people who 
came to the ED in the most recent 24 hours 
with a respiratory chief complaint. Com-
puting P(E|NOB) using !Equation 3 
requires constant time. Therefore, comput-
ing the posterior probability P(OB | E) 
using !Equation 6 requires time that is 
 linear in N1. 
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Fig. 2  
Plots showing 
examples of g(θΝOB) 
and f(θOB) with the 
range for θΝOB and 

θOB from 0 to 1,  
as shown in the 
 abscissa 

Fig. 3 An equation showing the density function of θΝOB 

Fig. 4  
An equation (Eq. 2) 
showing the density 
function of θOB 
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4. Evaluation 
In this section, we describe an example ap-
plication of the BU algorithm introduced 
in the previous section. We first describe 
the experiments used to evaluate the algo-
rithm and then show the experimental 
 results.  

4.1 Creating the Datasets 

We obtained a background time series of 
actual chief complaints from a set of EDs in 
Allegheny County, Pennsylvania in 2001 
and 2002, in which the background time 
series from 2002 was used for testing, and 
12-week data prior to each day of 2002 were 
used for training the baseline model for 
each day of 2002, i.e., served as the baseline 
period and the buffer period. We assumed 
there was no anthrax outbreak occurring 
during the period that we used to estimate 
non-outbreak parameters. All personal 
identifying information was removed from 
these actual ED cases, and this research was 
approved by the University of Pittsburgh 
IRB. We evaluated the BU algorithm on 
semi-synthetic datasets produced by over-
laying the simulated anthrax cases onto the 
real background time series of ED cases, 
where the simulated cases of anthrax were 
produced by the 2004 version of the BARD 
simulator [23]. 

BARD uses a Gaussian plume model 
and weather conditions to estimate the dis-
tribution of spore concentrations over a 
geographic region. Based on the spore con-
centrations in a given zip code, BARD uses 
a clinical model to simulate the number of 
patients who will contract inhalational an-
thrax over time and present to the ED with 
respiratory chief complaints. In particular, 
BARD produces a simulated outbreak sce-
nario consisting of a list of simulated an-

thrax cases, where each case consists of 1) a 
date-time field when the patient presented 
to the ED with a respiratory chief com-
plaint, and 2) the patient’s home zip code. 

BARD was used to generate 96 simu-
lated anthrax-release scenarios, each with a 
unique combination of release date, wind 
direction, wind speed, release location, re-
lease height, and quantity of spores re-
leased. In all scenarios, we assumed that 
1.0 kg of anthrax spores was released. For 
each month in 2002, eight random release 
times were selected for use by the simulator. 
We created one semi-synthetic dataset by 
overlaying the simulated outbreak cases 
produced by BARD onto the real ED cases 
starting from the release date. Thus, a total 
of 8 × 12 = 96 different datasets were 
 generated.  

The population size that is covered by 
the EDs, whose data we used in this evalu-
ation, is approximately four hundred thou-
sand, that is, Np ≈ 400,000. 

We close this section with an explana -
tion for why we used simulated outbreak 
data in these initial experiments, rather 
than real outbreak data. For instance, we 
could run the BU algorithm using real in-
fluenza outbreak data. However, there is no 
reliable gold standard regarding the date 
and time that such outbreaks occur. Thus, 
there are downsides to evaluating BU using 
real data. Although there also are limi-
tations in using simulated data, rather than 
real data, using simulated data allows us to 
readily evaluate a detection algorithm 
using a variety of patterns of simulated dis-
ease outbreaks, such as different severities 
of disease outbreaks and different disease 
outbreak onset dates. For this reason, simu-
lated data has frequently been used in re-
search that evaluates biosurveillance algo-
rithms. We believe simulated data provides 
a useful approach to performing an initial 
set of experiments. In future work, it would 

be worthwhile to evaluate these algorithms 
using real data as well. 

4.2 Experimental Methods 

We compared the detection performance of 
the BU algorithm with the detection per-
formance of the control chart (CC) 
method because both BU and CC 1) take as 
input data from recent observations, such 
as ED respiratory chief complaints from 
the most recent 24-hour period, 2) monitor 
for an increased respiratory count relative 
to the baseline countb, and 3) estimate the 
characteristics of baseline behavior using 
the same method described below. 

The control chart method typically 
models the non-anomalous events as a 
Gaussian distribution [5]. It consists of a 
center line, which is drawn as the non-
anomaly process mean, plus upper and 
lower control limits that indicate the 
threshold at which the process output is out 
of control. According to [5], the control 
chart methods do not perform well when 
less than 20 data samples from the in-
 control process (non-outbreak condition 
in the context of disease-outbreak detec-
tion) are used to estimate the baseline be-
havior. Let w represent the baseline period 
(in weeks) that we use to estimate the mean 
and variance of θNOB  , as described in Sec-
tion 3.1. In order to perform a balanced 
comparison between BU and CC, we used 
a sequence of values for w, namely w = 
{2, 6, 10, 14, 18, 22}. For each value of w,  
we implemented the control chart method 
and the BU algorithm as follows. 

CC takes as input the most recent 
24-hour ED respiratory chief-complaint 
counts, and outputs a Z scorec for observ-
ing that many counts, relative to a mean µ0 
and a standard deviation σ0. The parame-

Fig. 5 An equation (Eq. 5) showing the likelihood of evidence E when there is a respiratory-disease 
outbreak in the population in the last 24 hours where E represents the respiratory chief-complaint status 
of patients who came to the ED during the last 24 hours 

b Traditional control chart methods that are used in 
quality control also look for decreased counts of 
some event X relative to the baseline count of X. In 
contrast, in the domain of disease outbreak detec-
tion, we are often interested in increased counts of 
X. Thus the control chart method described in this 
paper only looks for increased counts as described 
in this section. 

c If the observed respiratory count is smaller than the 
mean µ0  , the z-Score is zero; otherwise, the z-Score 
is z = (x – µ0)/σ0  , where x is the observed respiratory 
count.
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ters µ0 and σ0 are estimated from the pre-
vious w weeks of ED data, using the sliding 
buffer method described in Section 3.1. 

In applying !Equation 6, we use 
P(OB) = 0.01 and P(NOB) = 0.99. The par-
ticular choice of these prior probabilities 
does not affect the detection performance 

of the BU algorithm that is reported in the 
next section, as long as they are not 0 or 1. 
However, the choice does affect the abso-
lute magnitude of the posterior probabil-
ities that are output by the BU algorithm. 

For each value of w, we plot an AMOC 
curve for BU and CC. An AMOC curve 
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Fig. 6 AMOC curves of BU and CC from using w = 2, 6, 10, 14, 18, and 22 weeks, respectively. In each curve of the subplot, the marker on the curve shows 
the expected detection time under a specific false positive rate, and the bar shows the 95% confidence interval of the expected detection time. 

shows the expected detection time as a 
function of the false positive rate [24]. The 
false-positive rate and the detection time of 
each algorithm are determined using the 
method described below. 

For each of the two algorithms, which 
we denote as algorithm A, we applied A on 
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the background time series of actual ED 
cases from 2002 that presumptively contain 
no anthrax disease outbreaks in order to 
determine its false positive rates under vari-
ous detection thresholds. In particular, a se-
quence of thresholds for evaluating A was 
obtained by sorting the probabilistic out-
puts from running A on the background 
time series, with one probability output per 
day. From these sorted probabilities, we re-
tained the unique ones, and used this se-
quence of probabilities as detection thresh-
olds for A. Note that the set of thresholds 
for BU can be different from those for CC 
due to their different outputs. Using a de-
tection threshold r in the threshold set for 
A, we can determine its false positive rate 
under the threshold r, as described below. 
Every threshold in the threshold set for A 
was used.  

The false positive rate was derived as 
FP/M, where M = 12 months and FP is the 
number of false positives that occurred 
using a detection threshold r, when the 
background ED data (which is real data 
with no simulated or real outbreaks) was 
monitored by the given algorithm A during 
a 12-month period.  

We then ran algorithm A on each of the 
96 semi-synthetic datasets to determine its 
expected detection times under the set of 
thresholds for A. The detection time of al-
gorithm A for a specific semi-synthetic 
 dataset (which is one of the 96 datasets con-
taining simulated anthrax cases) is the time 
from the simulated anthrax release until 
the threshold r was crossed by the output of 
A. The expected detection time of A is the 
average detection time over the 96 datasets. 

4.3 Results 

This section shows the AMOC curves for 
different lengths w of the baseline period. 

We report results from zero to five false 
positives per month. 

!Figure 6 shows a set of AMOC curves 
for BU and CC, in which the baseline peri-
od w is 2 to 22 weeks. BU has relatively 
better detection performance when using 
baseline periods in which w = 2 to 10 weeks. 

For CC the baseline periods of w = 18 to 
22 weeks result in relatively better detec -
tion performance, which suggests that a 
relatively large amount of baseline data 
needs to be used in order to construct an 
 effective and robust control chart method. 

At zero and one false positive per 
month, BU has an expected detection time 
that is less than that of CC over all values of 
w. The maximum detection-time gain of 
BU over CC is approximately 6.7 hours 
under zero false positives per month when 
using a baseline period w = 2 weeks. At two 
to five false positives per month and for all 
values of w, CC performs as well as BU, as 
shown in !Figure 6. 

We performed one-sided paired t-test 
using the detection times of BU and CC over 
the 96 outbreak datasets used in the evalu-
ation. We report a statistical analysis of detec-
tion times at zero and one false positive per 
month because one false positive per month 
is often considered as an upper bound on a 
tolerable false-positive rate in the domain of 
disease outbreak detection. Statistical ana-
lyses show that, at a significance level of 0.05, 
BU detects the outbreak statistically signifi-
cantly faster than CC at zero and one false 
positive per month when using a baseline 
period w = 2, 6, and 10 weeks. For higher 
values of w that were evaluated, the detection 
times of BU and CC do not show statistically 
significant differences. Overall, the results 
provide support that BU performs disease-
outbreak detection at least as well as the con-
trol chart method. 

!Table 1 shows the mean difference of 
the expected detection time of CC over BU 

Table 1 Mean difference of the expected detection time (hours) between BU and CC and the 95% 
confidence interval of that mean difference 

 w = 2 w = 6 w = 10 w = 14 w = 18 w = 22 

0 false positives 
per month 

6.7 
(2.5, 10.9) 

4.6 
(1.8, 7.4) 

3.2 
(0.2, 6) 

1.4 
(-2.7, 5.5) 

1.3 
(-3.2, 5.8) 

1.5 
(-3.1, 6.1) 

1 false positive 
per month 

2.5 
(0.7, 4.3) 

1.7 
(0.1, 3.3) 

1.6 
(0.1, 3.1) 

0.4 
(-1, 1.8) 

0.2 
(-1, 1.4) 

0.2 
(-1.1, 1.5)

and the 95% confidence interval of the 
mean difference when using a sequence of 
values for the length w of the baseline 
 period. 

4.4 Discussion 

Researchers have estimated that each hour 
earlier that an anthrax outbreak is detected 
can save as much as $200M in economic 
costs [25, 26] and more importantly can 
save many lives, because antibiotics could 
be started sooner in individuals who were 
exposed.  

A given algorithm (BU, CC, or other al-
gorithms) may generally decrease the out-
break detection time, but will also general -
 ly lead to false positive alerts. Such alerts 
would have a cost in that public health 
 officials would need to deal with them, 
which might involve time-consuming in-
vestigations. Thus, deciding the appropri-
ate threshold to use is important. Decision 
theory provides a coherent approach for 
 trading off these costs and benefits to 
 establish the detection threshold to use 
[27]. Since BU outputs a posterior prob-
ability, this output can be directly used 
as a key component in such a decision 
analysis. 

5. Extensions 
In this section, we discuss several possible 
ways of extending the BU algorithm. Recall 
that we model the prior distribution of 
θNOB  , namely g  (θNOB), using the same 
 day-of-week data from the past 12 weeks, 
which incorporates day-of-week effects. 
More generally, we can derive a conditional 
version of g  (θNOB | PV), where PV is a pre-
dictor variable that might include day-of-
week, season-of-year, holiday, and other 
 effects. 

The current BU algorithm monitors for 
increased counts of some event X relative to 
the baseline count, and the prior distribu-
tion of θOB was derived to characterize such 
an anomalous pattern, i.e., θOB ≥θΝOB  . In 
some types of anomaly detection, a decrease 
in the counts of some variable may suggest 
an anomalous event. For example, in fraud 
detection, a decrease in credit card purchases 
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near the card owner’s home town may sug-
gest that the card has been stolen. It would be 
useful to derive a prior distribution of θOB 

that models decreased counts of event X 
relative to the baseline count, i.e., θOB ≤ θΝOB. 
Let θ´NOB = 1 – θΝOB and θ´OB = 1 – θOB  , then 
monitoring for θOB ≤  θΝOB is equivalent to 
monitoring for θ´OB ≥θ´NOB  , for which the 
closed-form derivation shown in this paper 
can be directly applied. Then, the case of 
θOB ≤θΝOB can be derived by trans-
formations of variables. We then can moni-
tor for both anomalous increases and de-
creases of various variables. 

BU algorithm could form the foun-
dation of an analogous multivariate 
anomaly detection method. The most 
straightforward extension assumes inde-
pendence of two (or more) types of evi-
dence E1 (e.g., respiratory chief com-
plaints) and E2 (e.g., over the counter sales 
of cough & cold medications), which yields 
that P(E1, E2 | OB) = P(E1 | OB) × P(E2 | OB), 
and P(E1, E2  |  NOB) = P(E1 | NOB) × 
P(E2|  NOB). Each of the terms on the right 
side of these equations can be computed 
using the methods described in this paper. 
Multivariate extensions of BU that do not 
assume independence are more chal -
lenging and provide an open area of re-
search. 

BU could be extended to model the pro-
gression of a disease over time in order to 
create a temporal multivariate outbreak-
detection algorithm along the lines of that 
described in Jiang [28]. 

In this paper we modeled f  (θOB) and 
g  (θΝOB) as marginal prior probability 
 distributions, as illustrated for example 
in !Figure 2. This approach allowed 
 !Equations 3 and 4 to be derived sepa -
rately. It would be interesting to derive and 
apply these equations when the distribu-
tion of θOB and θΝOB is modeled jointly as 
well. 

6. Related Work  
This section gives a brief overview of some 
commonly used methods for anomaly de-
tection, which includes frequentist meth-
ods and Bayesian methods. 

Typical frequentist approaches for 
anomaly detection include methods from 

statistical quality control [29], regression 
[30], time series models [31], and wavelets 
[32, 33]. These methods are useful tools for 
anomaly detection and are commonly used 
in the public-health community for detec-
tion of disease outbreaks. However, it is dif-
ficult to incorporate any prior information 
that we may have, for example, our prior 
beliefs about the typical patterns of re -
spiratory cases in outbreaks of respiratory 
diseases.  

Bayesian approaches have been devel-
oped that can be applied to anomaly detec-
tion, such as dynamic linear models 
(DLMs) [34] and hidden Markov models 
(HMMs) [35]. DLMs are implemented by 
updating priors to obtain posteriors using a 
sequential approach for forecasting. To 
start a DLM modeling process, it is neces -
sary to specify the initial priors before the 
arrival of the first observation of the time 
series. Nobre et al. [36] modeled the sto -
chastic trend and the seasonal effect of an 
epidemiological time series using linear 
growth models described in [34]. They 
used a normal distribution with mean zero 
and a large variance to be the initial priors 
for the model parameters. LeStrat and Car-
rat [35] proposed to detect outbreak and 
non-outbreak phases of influenza by mod -
eling the incidence rates of influenza-like 
illnesses with HMMs using a mixture of 
Gaussian distributions. Rath et al. [37] ana-
lyzed the same datasets and showed that 
better detection accuracy can be achieved 
by modeling the outbreak rates with a 
Gaussian distribution and the non-out-
break rates with an exponential distribu-
tion.  

BU models the parameter prior prob-
ability of a non-anomaly using a Beta dis-
tribution. In contrast to previous Bayesian 
methods, including those discussed above, 
it derives the parameter prior distribution 
of an anomaly from that of the non-
anomaly in a semi-informative manner. 
This prior probability distribution is semi-
informative in the sense that the rate of a 
monitored event during an anomalous 
period is constrained to be greater than the 
rate during a non-anomalous period. 
Beyond that constraint, the anomaly prior 
probability is non-informative in the sense 
of following a uniform probability dis-
tribution.  

7. Summary  
This paper introduced a Bayesian anomaly-
detection algorithm called BU. The BU al-
gorithm takes as input a univariate time 
series of some event, as for example respi -
ratory ED chief complaints. It then outputs 
a posterior probability of an anomalous 
event occurring. In performing anomaly 
detection, the algorithm uses a semi-in-
formative prior that models an increased 
count over baseline. The semi-informative 
prior is derived based on the baseline prior, 
which is estimated from using historical 
data. We developed a computationally effi-
cient method for using this prior to derive 
the posterior probability of an anomaly.  

We described the algorithm in the con-
text of disease outbreak detection. In a 
study using simulated anthrax outbreaks, 
the algorithm performed statistically sig-
nificantly better than a control chart 
method when baseline periods were small 
enough to avoid seasonal effects. Impor-
tantly, the algorithm outputs a posterior 
probability, which can be used in decision 
analyses about how to act when confronted 
with a potential outbreak.  

The algorithm is general and can be ap-
plied in many anomaly-detection appli-
cation areas beyond disease outbreak de-
tection. Also, as discussed above, there are a 
number of ways in which the algorithm can 
be extended, which appear promising. 
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Appendix: Derivation of P  (E   | OB) 
By substituting Equation 1 into Equation 4, we obtain the following: 
 
  (7) 
 
 
By changing the order of integration and substituting g  (θΝOB) using its density function Beta(θΝOB  ; α0  , β0), we obtain Equation 8. 
 
 
  (8) 
 
 
 
 
Note that the inner integral in Equation 8 integrates all possible values of θOB as θΝOB ≤  θOB ≤  1. In order to express this inner integral in 
terms of a Beta function, we introduce a variable γ, where 0 ≤γ ≤ 1. Let θOB = (1 – θΝOB)γ + θΝOB  , then the inner integral in Equation 8 
can be calculated as follows by using variable substitution. 
 
 
 
  
 
 

(9) 
 
 
 
 
By using the Binomial theorem [38], the term   in Equation 9 can be represented as   
since N1 is a positive integer. Therefore, Equation 9 can be further written as Equation 10. 
 
 

(10) 
  
 
By swapping the order of integration and summation in Equation 10, we obtain 
 
 
 

(11) 
  
 
 
Finally by substituting Equation 11 into Equation 8 and swapping the order of integration and summation, we write P(E  | OB) as follows: 
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