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ABSTRACT

We present a new mathematical formalism, which we
call modifiable temporal beliefnetworks (MTBNs) that
extends the concept ofan ordinary beliefnetwork (BN)
to incorporate a dynamic causal structure and explicit
temporal semantics. An important feature ofMTBNs is
that they allow portions ofthe model to be abstract and
portions of it to be temporally explicit. We show how
this property can lead to substantial knowledge
acquisition and computational complexity savings. In
addition to temporal modeling, the language ofMTBNs
can be an important analytical tool, as well as temporal
languagefor causal discovery.

INTRODUCTION

Representing and reasoning about temporal concepts is
an essential part of medical problem solving. All fi've
main medical tasks (prevention, diagnosis, therapeutic
planning/intervention, prognosis, and medical
discovery) involve time modeling and inference [1].
A great number of medical decision-support systems

(MDSSs) have been developed throughout the years, but
few of them have incorporated explicitly temporal
aspects of their respective domains [2,3]. In general,
modeling time is considered to be one of the greatest
challenges in developing MDSSs. We believe that a
major reason for this perceived difficulty is the lack of
models for temporal reasoning that simultaneously: (a)
are of sufficiently general applicability, and (b) can
help developers deal with pragmatic constraints such as
knowledge availability, computational tractability and
ease of development.

Accepting this premise means that the "time
problem" in MDSSs must be attacked at the model level
first. In other words, we need to develop methods that
support the creation of efficient, flexible and
expressive temporal medical reasoning systems. In this
paper we present a formalism (and sunmarze the
associated theory, algorithms and programs) that can
serve as a basis for the conceptual modeling and
practical implementation of time in MDSSs. Our
formalism (which we call modifiable temporal belief
networks - MTBNs) can also be used as an analytic tool
and a machine-learning model language.

1. MEDICAL TIME-MODELING DESIDERATA

We have developed a number of requirements for an
idealized temporal representation and reasoning

architecture for MDSSs, based on the body of work in
theoretical artificial intelligence dealing with general
temporal reasoning [4,5], the literature about systems
(and respective problem domains) developed over the
years in medical informatics [1,6], and the analysis of a
large-scale MDSS's temporal concepts and the analysis
of a number of real-life patients medical records [3]. We
propose that an idealized temporal representation and
reasoning MDSS architecture should provide:
L Expressive temporal representation (rich

ontologies, handling of uncertainty, ability to be
integrated with other fonnalisms, modeling of
causality).
IL Effective temporal reasoning (soundness /

completeness and computational tractability).
m Flexible and efficient modeling (availability of
knowledge for model specification, extensibility /
shareability-reusability, model specification ease).
IV. Formal foundation.
A much more detailed exposition of the desiderata

can be found in [6]. In the following section we
introduce a formalism designed specifically to meet the
above requirements.

2. MODIFIABLE TEMPORAL BELIEF NETWORKS

2.1. Intuitive description of belief networks
We chose to base our fonnalism on a probability-based
scheme because probabilistic formalisms can handle
uncertainty and decision-theoretic reasoning, while they
are not hindered by the undecidability of first-order-
logics [6]. The current state-of-the-art formalism for
probabilistic reasoning is the belief-network model (BN)
[7]. BNs are mathematical models combining a
graphical representation of probabilistic dependencies
and independences among random variables (in the
form of a directed acyclic graph - DAG), with a set of
conditional probability distributions (cpd). A BN
implicitly captures a joint probability distribution (ipd)
over the variables. BNs have been used to perform
temporal representation and reasoning (TRR) tasks
based on the following basic scheme: the stucture of a
BN is replicated n times, each corresponding to one ofn
discrete time points (i.e., they have a temporal range of
n time points). Arcs within a time slice (i.e., one
structure copy) are considered to be instantaneous,
while arcs between time slices are time-lagged (i.e.,
delayed). We will call a BN used in this manner a
temporal BN (TBN) [8,9]. Figure lb presents a TBN
corresponding to a three-fold replication of the BN in
Figure la. The basic BN structure that gets replicated
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involves variables A, B and the arc between them. Arc
Al to BJ in Figure lb is considered instantaneous,
while arcAI to B2 is time-lagged.

2.2.1. Problems arising when BNs are used for
time modeling
Unfortunately TBNs present the following problems:
(a) Cumbersome model specification and
presentation. Hundreds or even thousands of nodes and
conditional probability distributions may have to be
defined one by one, even if they are the same or vary
systematically.
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Figure 1. Replicating a BN structure (a) to form a
TBN (b), and problems arising with TBNs (c-d).

(b) Predefmed temporal range of interest. Ideally we
would like to vary the temporal range as a model
parameter. TBNs do not allow us to do so.

(c) The processes modeled are either static or
evolving over time in a way that is implicit. That is,
the causal processes' temporal evolution is "buried" in
the oftentimes subtle differences between slices, or even

worse, in the conditional probability distributions
associated with the graph's variables. For example in
figure lc, it is not at all clear how the causal structure
evolves.
(d) Non-integrated temporal/causal semantics.
Typically (in their general form) TBNs are used with
standard BN inference algorithms [9]. Thus knowledge
about time can not be exploited easily to prevent
serious inconsistencles from happening, or to enhance
the reasoning efficiency. This problem is most serious

in cases where: (i) a dynamic causal structure is
modeled and (ii) a model contains both temporally
indexed and abstracted variables (see Sections 2.2.2 and
2.5. for a discussion of the interpretation and
significance of such variables). An example of such
problems follows: in Figure Id, variables C, D are not
temporally indexed (i.e., they are abstract), while
variables Al to An are indexed (i.e., time tagged).
Although the graph does not violate the requirement for
a DAG, it does violate the trivial requirement for causal
precedence of the cause relative to the effect (an obvious
inconsistency in this example is that D should come

after C (because it is causally influenced by C), but also
before C, since D precedes (Al and thus) A3, which is a
cause of C.

2.2.2. MTBN solutions to TBN problems
MTBNs address the problems with TBNs as follows:
(a) The MTBN models have two forms: a condensed
(specification) and a deployed (run-time) form. The
condensed form allows a concise description of the
domain while the deployed form is the network
produced after the structure replication process is
carried out.
(b) The temporal range can be dynamically modified,
as long as the condensed model has been specified.
(c) The most radical departure ofMTBNs from TBNs is
the ability to model explicitly how the generating
(i.e., causal process) structure evolves with time. This
is achieved via the introduction of two new types of
variables: causal mechanism (arc) variables and
associated time-lag variables. Interactions of these
variables with ordinary domain variables is allowed in
order to describe complex ways in which diseases and
other processes evolve over time. Variables can also
have arcs to themselves to model persistence over time.
(d) MTBNs utilize a well-specified model of time, and
associate with it all variables in a clear and
unambiguous manner. Temporal and causal semantics
are well-defined and integrated to the formalism. Both
temporally indexed variables and non-indexed
variables are allowed. Non-indexed variables
correspond to variables that are abstractions over

indexed variables, variables that we do not know or

wish to model their exact temporal location, or finally
external models (utilized as "procedural calls" from
within the MTBN model). Model specification and
inference takes into account this temporal semantics.
The causal semantics described in [10] are also obeyed.
In this paper we discuss single-granularity (i.e., smallest
temporal duration) MTBNs only. The formal
specification ofMTBNs can be found in [11].

Figure 2 shows an example of a MTBN involving
variables A and B. The condensed form is presented on
the left part of Figure 2, while the deployed form is on
the right. The two variables are causing each other (in a

simple feedback loop).- The numbers in the squares
adjacent to arcs denote time lags.
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Figure 2. A MTBN in compact form (left) and
deployed form (right).

Figure 3 shows the MTBN corresponding to Figure lc.
Contrary to the TBN of Figure lc, the MTBN
representation makes clear thatA causes B and that this
causal effect is delayed by L time units and that the
value of time-lag variable L is determined by the values
of C.

Figure 3. The MTBN corresponding to Figure lc.
2.3. Properties of MTBNs

The following main properties hold for MTBNs [11]:
Proposition 2.3.1. MTBNs can be factored according to
the conditional probability distributions of each
variable's Xi values dependent on its active parents'
values. Result 2.3.1. makes it possible to retrieve the
jpdfrom the cpds.
Proposition 2.3.2. An arbitrary MTBN MI can be
converted to a standard BN Bl such that Bl captures
the same joint probability distribution as Ml. Thus any

MTBN can be implemented as a BN alternatively. We
will explore the resulting trade-offs in more detail in
Sections 2.4 and 2.5.
Corollary 2.3.3. Valid MEBNs are defined from just a

temporal graph, temporal range and the conditional
probability specifications (i.e., we do not have to
explicitly define the full jpd).
Corollary 2.3.4. For every joint probability distribution,
there exists a MITBN that captures it.
Coroilary 2.3.5. Inference with MTBNs can be carried
out with any standard BN inference algorithm and is
NP-hard. This result allows us to use any standard BN
algorithm to do inference with MTBNs. It also suggests
that in the worst case the computational time
complexity ofMTBNs is intractable. In Secton 2.5 we

will show how to use partial abstractions to cope with
this problem.
Proposition 2.3.6. MTBNs are more expressive than
causal BNs. This results follows since MTBNs can

express graphically more precise dependences.

Proposition 2.3.7. In some instances, MTBNs can be
more efficient than BNs, by exploiting knowledge about
the causal process they model.

2.4. Inference with MTBNs
As mentioned in Section 2.3., we can carry out
inference with MTBNs by converting them to a BN and
using any BN inference algorithm. This approach has
advantages and drawbacks. Some of the existing BN
inference algorithms are fast and convenient from the
developers' standpoint. They do not however help us

with the problems outlined in Section 2.2.1. For this
reason we have developed a stochastic simulation
inference algorithm that is a variation on the logic
sampling algorithm (LS) which we call temporal LS
(LST). We have implemented LST in a program called
HARMONY. This program supports a number of
features including temporally explicit and abstracted
variables in the same model (see Sections 2.2.2, and
2.5), case simulation from any MTBN model, and
continuous variables. Arbitrary code can implement the
cpds, allowing external models to be integrated with a

MTBN. HARMONY allows us to specify as part of a

query the causal manipulations of variables (if any).
Finally, LST and HARMONY perform simulation only
on a per temporal slice basis. This allows LST to
perform inference with very big models using limited
amounts of memory.

2.5.Using partial abstractions to satisfy practical
modeling constraints

In this section we show how MTBNs can be a

flexible, expressive and efficient formalism for creating
MDSS models with well-defined temporal aspects. We
use an example from the domain of endocrinology to
create multiple MBN and TBN models. We
implemented models both as MBNs and TBNs. We
performed inference using HARMONY (for MTBNs),
and LS, as well as the recursive decomposition exact
algorithm (for the TBNs). We compare the 8 models
against each other along the following dimensions:
Computational tractability (measured by the number
of variables in the model), query completeness
(measured by the number of joint probabilities of all
involved variables that can be derived from each
model), model expressiveness and temporal semantic
clarity (assessed qualitatively as satisfactory or not),
availability of knowledge necessary to instantiate the
model (assessed qualitatively), specification ease

(measured by the number of required conditional
distributions), and model behavior specification ease

(ease of specifying the high-level model behavior from
the low-level causal mechanisms - assessed
qualitatively). For all qualitative assessments we

provide justifications in the descrinptions of the models.
Table 1 summarizes these properties for all 8

different models. Our models capture some basic
regulatory features of thyroid function. The production
ofthe main thyroid hormone, T4, is stimulated by the
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Table 1. Comparison of time modeling properties of 8 alternative models for the TRH stimulation example. The
first three columns summarze quantitatively assessed properties, while the last three columns summarize
qualitatively assessed p s (for explanations see text). Calculations omit variables with constant values.

COMPLEXITy QUERY SPECFICAIION MODEL AVALABITY | MODEL

(NUMBER OF COMPLETENESS EASE EXPRESSIVENESS OF REQUIRED BEHAVIOR

VARIABLES) (NUMBER OF JOINT (NUMBER OF & TEMPORAL KNOWLEDGE SPECIFCATION

PROBABILITIES) CONDITIONAL SEMANTIC EASE

PROBABILITY CLARITY
DISTRIBUTIONS)

MODEL MTBN TBN MTBN TBN MTBN TBN MTBN TBN MTBN TBN MTBN TBN

FULLY 11*106 i1*i06 _(3e+1084) '-(3e+1O84) 7 77*106 + - -1-1-1 -
EXPLICrTr _

FULLY 3 3 20 20 3 3 + + + + + +

HIYBRIID 1 22 22 10*365 10*365 6 22 + - + + + +

HYBRD2 1 0 10 19.4*103 19.4*103 6 10 + - + + + +

pituitary hormone TSH. TSH production is suppressed
by high levels of T4, and stimulated by TRH. A
functional thyroid adenoma (ETA) is a benign tumor
that produces T4 independently of the rest of the thyroid
tissue. This in effect disrupts the feedback loop between
TSH and T4, resulting in high concentrations of T4 and
low TSH. A paicular cause for thyroid adenoma is
exposure to X-radiation. The abnormality in the T4
regulation can be detected by a TRH stimulation test
that involves measuring TSH levels over a period of
time after administering TRH to the patient. In a
normal person the observed pattern is bell-shaped,
while in the presence of FTA, it is flat and closer to 0
[12]. Ideally we would like to ask questions of the tpe
"In the context of a TRH stimulation test, and given
that the values ofTSH at times I to n are known, what
is the probability ofa ETA in this patient?".

A first approach towards modeling this problem is

Figure 4. Functional thyroid adenoma interferes
with TSH-T4 loop (fully explicit).

Here we model all variables as temporally explicit (i.e.,
indexed). The problem is that the temporal granularities
of interest for different variables are vastly different.
For instance the TSH and T4 interaction is on the order
of seconds or minutes, while X radiation (X) and FTA
(D) are on the order of months or years. To incorporate
X and D into our model we have to convert them to the
smallest granularity of interest (i.e., minutes) which
leads to an computationally unmgeable model for
both the MTBN and TBN models (table 1, row 1). Also
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we note that it is easy to specify such a model in MTBN
form but the available knowledge does not support such
a specification. Finally, the number of questions given
observed evidence in both models is astronomical, but
most ofthem are ofno clinical interest. All calculations
about this model in table 1 assume a time lag between X
and D that takes values between 1 and 10 years.

Another approach, shown in Figure 5, involves
abstracting X and D, and replacing variables TRH,
TSH, and T4 by an abstraction variable TRH
STMtULATION RESPONSE PATTERN (taking as
values: normal, abnormal).

Figure 5. Functional thyroid adenoma interferes
with TSH-T4 loop (fully implicit).

This is the method used in most current MDSSs
(implicit time modeling [31). This approach yields
easily specified models for both formalisms, and it is
computationally tractable. Unfortunately two problems
remain: first these models can answer a very restricted
number of queries of interest, and second the evidence
and questions comprising these queries are temporally
implicit. Therefore, in a patient case someone must
abstract over the values of TSH and map the
abstraction to one of the values of the TRH
STIMULATION RESPONSE variable.

Both of these difficulties are addressed when we
model this problem using the hybridl model, which is
a combination of temporally explicit (indexed) and
abstracted variables (Figure 6). In particular, we model
TSH TRH, T4 as explicit variables so that we can
observe their temporal patterns and reason about them,



while we are "collapsing" D to the present time and X
to involve a small number of past periods, each
spanning years.

Figure 6. Functional thyroid adenoma interferes
with TSH-T4 loop (hybrid] model).

The models are tractable and easy to specify. The range
of TSH, TRH, and T4 is constrained to the duration of a
TRH stimulation test (-30 minutes). Unfortunately, for
many domains it is questionable whether we could have
access to accurate conditional probability distributions
for such a model. An equally serious problem is
specifying the probabilities so that the high level
behavior of the model is consistent with known
empirical patterns of TSH given TRH manipulations
(because it requires repeated tuning of the model so that
the correct system behavior emerges from the
specification of low-level local variable interactions).

Assuming that the difficulties associated with the
type of hybrid model described in the previous
paragraph can not be overcome, MTBNs give us the
flexibility to change our modeling approach and build
the model of Figure 7 (hybrid2 model).

T~ ~~TH

RESPONSE PTERN

Figure 7. Functional thyroid adenoma interferes
with TSH-T4 loop (hybrid2 model).

This model instead of involving TSH, TRH, and T4,
involves only TSH measurements after TRH
stimulation. The model consists of two parts: an
abstracted reasoning part (on the left) essentially
identical to the one of Figure 5, and an explicit one, (on
the right) corresponding to an abstraction function PR
over values of TSHi (i.e., TSH at time I). The output of
PR is assigned to (i.e., determines) the value of the
"TRH STIMULATION RESPONSE PATTERN"
variable. For details on integrating external models to
MTBNs see [6].

DISCUSSION

In addition to the modeling services offered by MTBNs
that were presented in sections 2.2. to 2.5, MTBNs also

allow us to reason spatio-temporally, and to build
temporal entities such as facts /events /intervals and
reason with them , or reference them in multiple ways
[6]. Unique features of MTBNs that can not be found in
temporal variants of BNs such as TBNs, and action
networks [6], include lag and arc variables, integration
of explicit /implicit time modeling, and a more concise
representation. In [13] we also explore the use of
MTBNs to study temporal abstractions and temporal
causal discovery methods. Our current work is focused
on: (a) extensions to MTBNs to handle simultaneously
multiple-granularity models, and (b) applying and
evaluating the methods presented here.
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