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Abstract We present the multivariate Bayesian scan statistic (MBSS), a general frame-
work for event detection and characterization in multivariate spatial time series data. MBSS
integrates prior information and observations from multiple data streams in a principled
Bayesian framework, computing the posterior probability of each type of event in each
space-time region. MBSS learns a multivariate Gamma-Poisson model from historical data,
and models the effects of each event type on each stream using expert knowledge or la-
beled training examples. We evaluate MBSS on various disease surveillance tasks, detect-
ing and characterizing outbreaks injected into three streams of Pennsylvania medication
sales data. We demonstrate that MBSS can be used both as a “general” event detector, with
high detection power across a variety of event types, and a “specific” detector that incorpo-
rates prior knowledge of an event’s effects to achieve much higher detection power. MBSS
has many other advantages over previous event detection approaches, including faster com-
putation and easy interpretation and visualization of results, and allows faster and more
accurate event detection by integrating information from the multiple streams. Most im-
portantly, MBSS can model and differentiate between multiple event types, thus distin-
guishing between events requiring urgent responses and other, less relevant patterns in the
data.
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1 Introduction

Event surveillance tasks require continuous monitoring of massive quantities of multivari-
ate data in order to detect and identify emerging patterns. For example, government agen-
cies responsible for public health and safety must respond rapidly to a variety of potential
threats, including wars, disease outbreaks, crime waves, natural disasters, and terrorist at-
tacks. A timely and informed response to these events can substantially reduce the result-
ing human, financial, and societal costs, while a delayed or incorrect response may have
catastrophic results. Automatic systems for event surveillance have the potential to improve
the timeliness and correctness of response by rapidly identifying relevant patterns in the
massive amount of data being monitored. In such systems, both early detection and accu-
rate characterization of events are essential: relevant events must be quickly detected and
correctly identified, enabling a timely and appropriate response, while false positives (due
to irrelevant events or other patterns in the data) must be kept to a minimum. To achieve
accurate detection and characterization of events, surveillance systems must integrate infor-
mation from multiple streams of spatial and temporal data in order to obtain a coherent and
complete situational awareness, identifying which events have occurred and which subsets
of the data (e.g. spatial regions) have been affected by each event.

As a concrete example of the event surveillance problem, we focus on the motivating
application of disease surveillance. In this application domain, we wish to develop systems
that monitor electronically available public health data sources (such as hospital visits and
medication sales) and automatically detect emerging outbreaks of disease. Both early de-
tection and accurate characterization of events are important in this domain: major health
threats such as pandemic avian influenza or a bioterrorist attack require rapid responses
(such as treatment of potentially infected individuals, health advisories, travel restrictions,
and quarantines) in order to control the spread of the outbreak and reduce its impact. How-
ever, taking appropriate actions often requires knowledge of the characteristics of the dis-
ease (e.g. source, method of transmission, and available treatments) and which areas have
been affected. Similarly, serious outbreaks requiring urgent responses must be distinguished
from less serious outbreaks (e.g. seasonal influenza) and from irrelevant patterns in the data
(e.g. increases in over-the-counter medication sales due to store promotions). Thus disease
surveillance systems must not only detect emerging outbreaks, but also determine the type
of outbreak and its area of effect, to facilitate a timely and correct public health response.

Our disease surveillance system, described in Sabhnani et al. (2005), monitors daily data
feeds from over 20,000 hospitals and pharmacies nationwide. Pharmacy data is made avail-
able through the National Retail Data Monitor (Wagner et al. 2004). We monitor two dif-
ferent data types: Emergency Department (ED) visits, classified by chief complaint type
(e.g. respiratory, fever), and over-the-counter (OTC) medication sales, classified by product
type (e.g. cough/cold, thermometers). Counts are aggregated at the zip code level, and each
ED chief complaint type and each OTC product type is treated as a separate data stream.
Thus we have a time series of daily counts for each data stream for each zip code, where
each count represents the number of ED visits (or OTC sales) of a given type in that zip code
on that day. Our current system monitors each data stream separately, using an expectation-
based scan statistic (Neill et al. 2005b) to search for space-time regions where the recent
counts for that stream are significantly higher than expected. This method first forecasts the
expected counts for each data stream for each zip code using historical data, and then detects
spatial clusters of zip codes with higher than expected counts.

While this system has been demonstrated to achieve early detection of real and simu-
lated disease outbreaks (Neill 2006), several additional criteria must be met to improve the
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timeliness of detection and the usefulness of the detected patterns. First, event surveillance
systems should integrate information from multiple streams of spatial time series data, in-
stead of monitoring each data stream separately, in order to achieve higher detection power
for events that simultaneously affect multiple streams. Second, systems must be able to
model and differentiate between multiple types of event, and to incorporate prior knowledge
of the effects of each event type. These priors can either be specified by a domain expert,
or learned from labeled training examples. As noted above, characterization of events is es-
sential to distinguish patterns that are relevant to the user from those that are irrelevant, and
to inform the user’s response to any relevant events. Finally, the methods used for event de-
tection and characterization must be computationally efficient, in order to detect patterns in
large real-world datasets in near real time. Though no previous approach meets all of these
criteria, some individual criteria have been met by previously proposed methods. In particu-
lar, our recently proposed Bayesian scan statistic (Neill et al. 2006) enables the incorporation
of prior information into the event detection task, but only considers univariate data. As we
demonstrate in this paper, we can achieve more useful characterization of events, as well as
more timely and accurate event detection, by extending the Bayesian framework to multiple
data streams and multiple event types.

Thus we develop a new methodology for multivariate event detection and characteriza-
tion using spatial time series data, the “multivariate Bayesian scan statistic” (MBSS). The
MBSS method integrates information from multiple data streams in a coherent and compu-
tationally efficient Bayesian framework, enabling faster and more accurate event detection.
MBSS also incorporates prior information and incremental learning in order to model and
distinguish between multiple event types, thus providing users with sufficient situational
awareness to enable a rapid and informed response. In the following sections, we describe
the MBSS framework in detail, and then evaluate the performance of MBSS on event detec-
tion and characterization tasks in the disease surveillance domain.

2 The multivariate Bayesian scan statistic framework

In the multivariate event surveillance problem, our main goal is to detect and characterize
events (such as disease outbreaks) based on their effects on the monitored data sources. We
typically monitor count data for multiple spatial locations, time steps, and data streams. For
example, to detect an outbreak of avian influenza, we might monitor hospital Emergency
Department (ED) visits, with each data stream representing the number of ED visits with a
different chief complaint type (respiratory, fever, etc.), and over-the-counter (OTC) medica-
tion sales, with each stream representing the number of sales of a different product group
(cough/cold medications, thermometers, etc.).

In the general case, we are given a dataset D consisting of multiple data streams Dm, for
m = 1 . . .M . Each data stream consists of spatial time series data collected at a set of spatial
locations si , for i = 1 . . . I . For each stream Dm and location si , we have a time series of
counts ct

i,m, where t = 0 represents the current time step and t = 1 . . . T represent the counts
from 1 to T time steps ago respectively. For example, in disease surveillance, we typically
have data collected on a daily basis, and aggregated at the zip code level due to data privacy
concerns. Thus a given count ct

i,m might represent the number of respiratory ED visits, or
the number of cough/cold drugs sold, for a given zip code on a given day.

As noted above, our goals in the MBSS framework are event detection and character-
ization: we wish to detect any relevant events occurring in the data, identify the type of
event, and determine the event duration and affected locations. Thus we wish to compare
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the set of alternative hypotheses H1(S,Ek), each representing the occurrence of some event
of type Ek in some space-time region S, against the null hypothesis H0 that no events have
occurred. We assume that the set of event types E = {Ek}, for k = 1 . . .K , is given, and that
these events are mutually exclusive (i.e. at most one event occurs in the data). Moreover,
each distinct hypothesis H1(S,Ek) assumes that the given event type Ek has affected all and
only those locations si ∈ S, and thus all hypotheses H1(S,Ek) are mutually exclusive.

Many other problem formulations are possible, e.g. assuming that each event type has
an independent probability of occurrence, in which case we must deal with the added com-
plexity that multiple events can affect the same location. Our simplifying assumption of
mutually exclusive events enables an efficiently computable model and easily interpretable
results, but has reduced power to detect multiple simultaneously occurring events, unless
each compound event is modeled as an additional event type. We believe that this formula-
tion is appropriate in cases where events are rare (e.g. in the disease surveillance domain),
but less appropriate if events are very common.

Each event type can be thought of as a process that affects some subset of the data in
some probabilistic manner. This leads to the key insight that we can both detect and charac-
terize events by searching over subsets of the data, identifying subsets with high likelihood
of some event type Ek . In the space-time event detection framework, we assume that the
event causes an increase in counts (for some subset of data streams) in the affected area,
and thus we search for space-time regions with higher than expected counts. In our disease
surveillance example, the event types may be either specific illnesses (e.g. influenza, an-
thrax), non-specific syndromes (e.g. influenza-like illness, gastrointestinal illness), or other
non-outbreak events that may result in patterns of increased counts, such as promotional
sales of OTC medications, inclement weather, or tourism.

In addition to the set of event types, we are also given a set of space-time regions S to
search. Each region S ∈ S contains some non-empty subset of the spatial locations si , and
also has a time duration W(S), indicating that these locations have been affected by an event
during time steps t = 0 . . .W(S)−1. Note that a spatial location si may be contained in mul-
tiple distinct regions, and thus we typically search over a set of overlapping regions. While
there are exponentially many possible regions S that could be considered, we generally do
not want to evaluate all such regions, both due to computational and practical considera-
tions. For example, we would not usually expect a disease outbreak to affect any arbitrary
and spatially dispersed set of zip codes, but instead only sets of nearby zip codes.

When choosing the set of search regions S , we generally consider all spatial regions
of a given shape (e.g. circles, rectangles) and varying sizes. For example, Kulldorff’s orig-
inal spatial scan statistic (Kulldorff 1997) searches over circular regions of continuously
varying radius, centered at each location si . In this case, the number of distinct regions
varies quadratically with the number of locations. We consider regions with time durations
W(S) = 1 . . .Wmax, for some constant Wmax. For example, if we are performing daily sur-
veillance, Wmax = 7 would consider temporal windows up to 1 week in duration. This formu-
lation assumes that we are performing prospective surveillance (each time series stretches
back from the current time step, t = 0), and that we are interested only in events that are cur-
rent (still affecting the data during the current time step t = 0) and recent (with time duration
up to Wmax). Retrospective surveillance methods would instead allow both the start and end
times of the temporal window to vary. We can also generalize the scan statistic to allow the
set of locations affected to change over the duration of the event, in which case region S can
denote a separate set of locations {si}t for each time step t = 0 . . .W(S) − 1. Here we focus
on the simpler case, where the set of affected locations remains constant over time.

Given the set of event types E, set of space-time regions S , and the multivariate
dataset D, our goal is to compute the posterior probability Pr(H1(S,Ek) | D) that each
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event type Ek has affected each space-time region S, as well as the posterior probability
Pr(H0 | D) that no event has occurred. To do so, we must have the prior probability of each
event type occurring in each space-time region, Pr(H1(S,Ek)), as well as the prior proba-
bility Pr(H0) that no events have occurred. We must also be able to compute the likelihood
of the multivariate data given each alternative hypothesis, Pr(D | H1(S,Ek)) for all S and
Ek under consideration, and the likelihood of the data given the null hypothesis, Pr(D | H0).
We then apply Bayes’ Theorem to compute the posterior probability of each hypothesis:

Pr(H1(S,Ek) | D) = Pr(D | H1(S,Ek))Pr(H1(S,Ek))

Pr(D)

Pr(H0 | D) = Pr(D | H0)Pr(H0)

Pr(D)

In this expression, the posterior probability of each hypothesis is normalized by the total
probability of the data, Pr(D)=Pr(D | H0)Pr(H0)+∑

S,Ek
Pr(D | H1(S,Ek))Pr(H1(S,Ek)).

In the following sections, we consider how the priors Pr(H) and the likelihoods Pr(D | H)

can be computed for each hypothesis under consideration.

3 Obtaining priors

As discussed above, our inputs into the MBSS method include the prior probability of each
event type Ek occurring in each space-time region S, Pr(H1(S,Ek)), as well as the probabil-
ity that no events occur, Pr(H0). Each prior probability Pr(H1(S,Ek)) can be decomposed
as the product of the prior probability of event type Ek and the conditional probability that
subset S is affected by Ek : Pr(H1(S,Ek)) = Pr(Ek)Pr(H1(S,Ek) | Ek). In this expression,
Pr(Ek) represents the overall prevalence of event type Ek , while Pr(H1(S,Ek) | Ek) rep-
resents its distribution in space and time. As noted above, we assume that all event types
are mutually exclusive, so that Pr(H0) + ∑

k Pr(Ek) = 1. We also assume that each event
only affects a single space-time region S, so that

∑
S Pr(H1(S,Ek) | Ek) = 1 for each event

type Ek .
The prevalence of each event type can be obtained from expert knowledge, and can be

allowed to vary over time (e.g. seasonal influenza peaks between December and March).
Alternatively, we can learn these probabilities from labeled data: given a large training set
of N days of data, where each day is labeled with an event type (Ek or H0), we can use
the smoothed maximum likelihood estimates Pr(Ek) = Nk+Mk

N+M
, where Nk and Mk are the

observed count and prior weight of event type k respectively, and N and M are the total
number of days observed and the total prior weight respectively (Neill 2007b). For the ex-
periments described below, we assume a uniform prior over event types, with a fixed prior
probability Pr(H1) = 0.01. In this case, we have Pr(H0) = 0.99, and Pr(Ek) = 0.01

K
for all

k = 1 . . .K .
Similarly, for the distribution of a given event type over regions S, we can either assume a

uniform region prior Pr(H1(S,Ek) | Ek) = 1
NS

, where NS is the total number of space-time
regions, obtain region priors from expert knowledge (e.g. the affected area for a water-
borne illness can be predicted based on water distribution information), or use a smoothed
maximum likelihood estimate from labeled data. Because the number of possible space-
time regions is huge, we typically parameterize the prior based on the region size and shape,
and learn each parameter separately (Neill 2007b). For the experiments described below, we
assume a uniform region prior, and thus we have prior probabilities Pr(H1(S,Ek)) = 0.01

KNS

for all S and Ek under consideration. More complex methods of prior elicitation and prior
learning will be addressed in future work.
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Fig. 1 Bayesian network
representation of the MBSS
method. Solid ovals represent
observed quantities, and dashed
ovals represent hidden quantities.
The counts ct

i,m
are directly

observed, while the baselines
bt
i,m

and the parameter priors for
each stream (αm, βm) are
estimated from historical data

4 Computing likelihoods

To compute the likelihood of the data under the null hypothesis H0 or an alternative hypoth-
esis H1(S,Ek), we assume that counts have been generated from a hierarchical Gamma-
Poisson model. A Bayesian network representation of this model is shown in Fig. 1, and we
will now describe each aspect of the model in detail. The event type k (where k = 0 . . .K)
is drawn from a multinomial distribution: here we let k = 0 represent the null hypothesis
H0 of no events, with probability Pr(H0), and k = 1 . . .K represent the occurrence of event
type Ek , with probability Pr(Ek). The region of effect S is conditional on the event type k,
with probabilities Pr(H1(S,Ek) | Ek) as described above. Under the null hypothesis H0, we
assume that no locations are affected, i.e. S = ∅.

The effects of an event H1(S,Ek) on the data are determined by a value xt
i,m for each

location si , data stream Dm, and time step t . In this general formulation, the event’s effects
can vary spatially and temporally as well as varying across data streams. These effects are
assumed to be multiplicative, increasing the expected value of each count ct

i,m by a factor of
xt

i,m, and thus a value xt
i,m = 1 would signify no effect of the event for the given location,

stream, and time step. For the null hypothesis H0, no events have occurred, and thus we
assume that xt

i,m = 1 everywhere. For an event H1(S,Ek), we assume that only locations
and time steps inside the space-time region S have been affected. Thus we assume xt

i,m = 1
for all locations si �∈ S and for all time steps t ≥ W(S), where W(S) is the time duration
for region S. We often make the further simplifying assumption that the effects of an event
H1(S,Ek) are constant for each data stream in the affected region S. In this case, we have
a vector x = (x1 . . . xM) representing the effects of the event on each data stream Dm. Then
xt

i,m = xm for all si ∈ S and t < W(S), and xt
i,m = 1 otherwise. In the simplified model

discussed here, each event type Ek can have a different joint probability distribution over
vectors x = (x1 . . . xM), while in the general case, each event type Ek can have a different
joint distribution over all xt

i,m.
We now consider how to compute the likelihood of the data under the null hypothesis H0

or under an alternative hypothesis H1(S,Ek). We first derive an expression for the likelihood
of the data given the values of xt

i,m. The likelihood of the data given H0 follows directly from
this expression, since the null hypothesis assumes xt

i,m = 1 everywhere. To calculate the mar-
ginal likelihood of the data given an alternative hypothesis H1(S,Ek), we must marginalize
over the distribution of effects xt

i,m, computing a weighted average of the data likelihoods
given each effects vector (x1 . . . xM), weighted by the conditional probability of those effects
given H1(S,Ek).
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4.1 The Gamma-Poisson model

We now compute the likelihood of the dataset D = {ct
i,m} given the effects xt

i,m for each
location si , data stream Dm, and time step t . As noted above, under the null hypothesis H0

we have xt
i,m = 1 everywhere, while the distribution of xt

i,m under an alternative hypothesis
H1(S,Ek) will be discussed below. As is evident from the Bayesian network representation
in Fig. 1, the counts ct

i,m are assumed to have been generated from a hierarchical model,
with parameters dependent on the effects xt

i,m as well as various quantities estimated from
historical data. These quantities include the baseline bt

i,m and the relative risk qt
i,m for each

location, stream, and time step, as well as the parameter priors αm and βm for each data
stream Dm. The baseline bt

i,m represents the expected value of the count ct
i,m assuming that

no events are taking place, and is learned from time series analysis of historical data. Each
count ct

i,m is assumed to be generated from a distribution with mean proportional to bt
i,m

times the relative risk qt
i,m, where the relative risk is a latent (unobserved) variable dependent

on the effect xt
i,m. If xt

i,m = 1, the distribution of relative risks is determined by the parameter
priors αm and βm, also learned from historical data. For xt

i,m �= 1, the expected value of the
relative risk qt

i,m, and thus the expected value of the count ct
i,m, is multiplied by xt

i,m. This
model, where the relative risks can vary spatially and temporally as well as between streams,
is more flexible than the previously proposed frequentist and Bayesian scan statistic models
(Kulldorff 1997; Neill et al. 2006), in which the relative risk for each stream was assumed
to be constant both inside and outside the affected region.

Within this general framework, we have much flexibility in defining the generative model
for the counts ct

i,m. Here we assume a hierarchical Gamma-Poisson model, since these mod-
els are commonly used to represent the distribution of counts in the disease surveillance do-
main. Gamma-Poisson models have been used successfully for disease surveillance by Clay-
ton and Kaldor (1987), Mollié (1999), and others, though most of these models focus on
inferring the relative risks rather than detecting clusters of increased counts.

At the bottom level of our Gamma-Poisson model, each count ct
i,m is assumed to have

been drawn from a Poisson distribution with mean proportional to the product of the ex-
pected count bt

i,m and the relative risk qt
i,m: ct

i,m ∼ Poisson(qt
i,mbt

i,m).
As noted above, the baselines bt

i,m are learned from the historical data by time series
analysis. Here we use the method suggested by Kulldorff et al. (2005), in which the expected
count for a given location on a given day is equal to the total count for that day multiplied
by the proportion of all counts corresponding to that location:

bt
i,m =

∑
i c

t
i,m

∑
t c

t
i,m∑

i

∑
t c

t
i,m

This baseline method has the advantage of adjusting for seasonal and day of week trends,
reducing the impact of misestimation of baselines on the detection methods. On the other
hand, it has reduced power to detect spatially dispersed events, since it conditions on the
total count of the current day. In application domains where events may simultaneously
affect a large fraction of the monitored locations, other time series analysis methods (such
as a moving average, adjusted for day of week and seasonality) should be used. Also, we
note that only counts from the given location si and data stream Dm are used to compute
the expected counts bt

i,m. We could also share information across multiple locations and
multiple streams when computing expected counts.

For given values of the parameter priors (αm, βm) and the effect xt
i,m, the relative risk

qt
i,m is assumed to have been drawn from a Gamma distribution with parameters α = xt

i,mαm
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and β = βm: qt
i,m ∼ Gamma(xt

i,mαm,βm). Thus we have qt
i,m ∼ Gamma(αm,βm) under the

null hypothesis H0, i.e. all relative risks for a given data stream are drawn from the same
distribution. If some event is taking place and has effect xt

i,m �= 1, the mean (and variance)
of the relative risk distribution are multiplied by xt

i,m, thus multiplying the expected value of
the count ct

i,m by a factor of xt
i,m.

We now compute the marginal likelihood of each observed count ct
i,m, given the ef-

fect xt
i,m, the baseline bt

i,m, and the parameter priors αm and βm. To do so, we must integrate
over all possible values of the relative risk qt

i,m, weighted by their respective probabilities.
But since we have a conjugate prior, we can obtain a closed form solution for the marginal
likelihood, as given below. For simplicity of notation, we drop the sub- and superscripts in
our derivation, and simply write c = ct

i,m, b = bt
i,m, q = qt

i,m, x = xt
i,m, α = αm, and β = βm:

Pr(c | b, x,α,β) =
∫

Pr(q ∼ Gamma(xα,β))Pr(c ∼ Poisson(qb)) dq

=
∫

βxα

�(xα)
qxα−1e−βq (qb)ce−qb

c! dq

= βxαbc

�(xα)c!
∫

qxα−1e−βqqce−qb dq

= βxαbc

�(xα)c!
∫

qxα+c−1e−(β+b)q dq = βxαbc�(xα + c)

(β + b)xα+c�(xα)c!
Thus each count ct

i,m follows a negative binomial distribution with parameters xt
i,mαm

and βm

βm+bt
i,m

. The mean of this distribution is xt
i,m

αm

βm
bt

i,m, and the variance is xt
i,m( αm

β2
m
(bt

i,m)2 +
αm

βm
bt

i,m).
Since the counts are conditionally independent given the values of bt

i,m, xt
i,m, αm, and βm,

the likelihood of the entire dataset D = {ct
i,m} for a given set of effects X = {xt

i,m} is the
product of these conditional probabilities:

Pr(D | X) =
∏

i,m,t

Pr(ct
i,m | bt

i,m, xt
i,m,αm,βm)

∝
∏

i,m,t

(
βm

βm + bt
i,m

)xt
i,m

αm �(xt
i,mαm + ct

i,m)

�(xt
i,mαm)

In this expression, terms not dependent on the xt
i,m have been removed, since these are

constant for all hypotheses under consideration. For the null hypothesis H0, we have xt
i,m = 1

everywhere:

Pr(D | H0) ∝
∏

i,m,t

(
βm

βm + bt
i,m

)αm �(αm + ct
i,m)

�(αm)

For the alternative hypothesis H1(S,Ek), we must marginalize over the values of xt
i,m:

Pr(D | H1(S,Ek)) =
∑

X

Pr(D | X)Pr(X | H1(S,Ek))

The distribution of the xt
i,m is conditional on the event type Ek and affected region S, as

discussed below. We note that, even though the counts are assumed to be conditionally
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independent given the baselines, effects, and parameter priors, we are still able to model
correlations between counts both under the null and alternative hypotheses. Since the values
of the baselines bt

i,m are learned by time series analysis of historical data, accounting for day-
of-week and seasonal variation (and any other relevant covariates), these values introduce
correlations between counts under the null hypothesis. The relative risks qt

i,m are assumed
to be conditionally independent under the null hypothesis, given the values of αm and βm.
Under the alternative hypothesis H1(S,Ek), the relative risks in region S are correlated by
the dependence on the effects xt

i,m, which are dependent not only on the event type Ek but
also the magnitude of the event (as discussed below). While the conditional independence
assumptions made by our model may not be valid in all cases (e.g. if relative risks qt

i,m

are correlated under the null hypothesis), we believe that this model is substantially more
realistic than the typical multivariate scan statistic assumption of independent streams.

4.2 Computing the parameter priors

We can obtain estimated values of the parameter priors αm and βm for each data stream
using a “parametric empirical Bayes” procedure, matching the first two moments (mean
and variance) of the Gamma-Poisson model to their observed values from historical data.
For this computation, we assume that no events have taken place in the historical data;
any counts and baselines corresponding to known events should be removed. For each data
stream Dm, we can compute the values of αm and βm using only the historical counts ct

i,m

and computed baselines bt
i,m for that stream. From above, we know that the marginal distri-

bution of each count ct
i,m under the null is negative binomial, with mean αm

βm
bt

i,m and variance

αm

β2
m
(bt

i,m)2 + αm

βm
bt

i,m. We can then consider the ratios rt
i,m = ct

i,m

bt
i,m

, each of which will be dis-

tributed with mean αm

βm
and variance αm

β2
m

+ 1
bt
i,m

αm

βm
. This means that the expected value of the

sample mean of the rt
i,m, r̄m, is equal to αm

βm
. Thus we can use the observed value of r̄m as

an estimate for αm

βm
. Similarly, the expected value of the sample variance of the rt

i,m, s2
rm

, is

equal to αm

β2
m

+ E[ 1
bt
i,m

] αm

βm
, where E[ 1

bt
i,m

] is the sample mean of the values 1
bt
i,m

. Thus we solve

for αm and βm, in terms of the sample means r̄m and E[ 1
bt
i,m

] and sample variance s2
rm

:

r̄m = αm

βm
αm = r̄2

m

s2
rm−r̄mE[ 1

bt
i,m

]

�⇒
s2
rm

= αm

β2
m

+ E
[

1
bt
i,m

]
αm

βm
βm = r̄m

s2
rm −r̄mE

[ 1
bt
i,m

]

4.3 Event models

As noted above, each event type Ek is assumed to have a different joint probability dis-
tribution over xt

i,m; we call this the “event model” corresponding to event type Ek . Here
we assume a simplified event model, in which the effect on each data stream Dm is
some constant xm. In this case, we have xt

i,m = xm for affected locations and time steps
(si ∈ S, t < W(S)) and xt

i,m = 1 otherwise. We further simplify the event model by parame-
terizing this specification in terms of the average effects xkm,avg of each event type Ek on each
data stream Dm and the event magnitude θ . For a given event type Ek with average effects
xkm,avg on each stream, and for a given value of θ , we set each xm equal to 1+ θ(xkm,avg −1).
For example, if a given event type Ek has average effects (1.5, 1, 1.2) on three data streams,
this would mean that it increases counts for streams 1 and 3 by an average of 50% and
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20% respectively in the affected region, and has no effect on counts for stream 2. Then an
event of this type with magnitude θ = 1 would have x1 = 1.5, x2 = 1, and x3 = 1.2, while
an event with θ = 2 would have x1 = 2, x2 = 1, and x3 = 1.4. We assume a fixed, discrete
distribution for θ , mixing uniformly over θ ∈ { 1

4 , 1
3 , 1

2 , 2
3 ,1, 3

2 ,2,3,4}. The average effects
of each event type on each stream, xkm,avg, can either be specified by a domain expert or
learned from training data. One simple way to learn these average effects is by maximum
likelihood: given multiple days of data, each with a labeled event of type Ek in some re-
gion S, each value xkm,avg can be computed as the average ratio of total count

∑
i,t c

t
i,m to

total baseline
∑

i,t b
t
i,m for stream m in regions affected by event type Ek . This method of

maximum likelihood learning is used in our “MBSS-FIT” method described below.

5 Computational considerations

In practice, rather than explicitly computing the data likelihoods Pr(D | H) for each hy-

pothesis, we compute the likelihood ratios Pr(D|H1(S,Ek))

Pr(D|H0)
for each alternative hypothesis

H1(S,Ek). These likelihood ratios are faster to compute since they depend only on the
counts inside region S, and (along with the prior probabilities of each hypothesis) are suffi-
cient to compute the posterior probabilities. For the simplified event model described above,
we have the following expression for the likelihood ratio:

Pr(D | H1(S,Ek))

Pr(D | H0)

=
∑

x1...xM

Pr(x1 . . . xM | Ek)
∏

i,m,t∈S

Pr(ct
i,m | bt

i,m, xmαm,βm)

Pr(ct
i,m | bt

i,m,αm,βm)

=
∑

x1...xM

Pr(x1 . . . xM | Ek)
∏

i,m,t∈S

(
βm

βm + bt
i,m

)(xm−1)αm �(αm)�(xmαm + ct
i,m)

�(xmαm)�(αm + ct
i,m)

=
∑

x1...xM

Pr(x1 . . . xM | Ek)
∏

i,t∈S

∏

m

(LRt
i,m | xm)

For a given vector of effects (x1 . . . xM ), we can precompute the log-likelihood ratios
LLRt

i = ∑
m log(LRt

i,m | xm) for each spatial location si and each time step t < Wmax. Then
to compute the log-likelihood ratio for a given spatial region S and vector of effects, we need
only to sum the log-likelihood ratios (given x1 . . . xM ) for all locations si and time steps t

in S. This formulation has the added benefit that the expensive likelihood ratio computations
are only performed a number of times proportional to the number of locations, rather than
the (much larger) number of regions.

Thus the multivariate Bayesian scan statistic can be computed in five steps. First, we
load the counts ct

i,m for each spatial location si , data stream Dm, and time step t . This step
requires time O(IMT), where I , M , and T are the numbers of locations, streams, and time
steps respectively. Second, we compute the baselines bt

i,m for each location, stream, and time
step. A separate set of baseline computations must be performed for each of the I locations
and M data streams. For a given location si and stream Dm, computation of the baselines bt

i,m

(for all t = 1 . . . T ) requires O(T ) time, giving a total time complexity of O(IMT) for this
step. Third, we compute the parameter priors (αm, βm) for each of the M streams. Each

such computation requires us to compute the mean and variance of the ratios
ct
i,m

bt
i,m

for the I
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locations and T time steps for that stream, giving a total time complexity of O(IMT) for
this step as well. Thus the first three steps have complexity proportional to the total size of
the dataset, O(IMT), but independent of the number of event models K and the number of
search regions NS .

The fourth step is to compute the log-likelihood ratios LLRt
i for each location si and time

step t , given each hypothesis Ek and corresponding vector of effects (x1 . . . xM). This com-
putation only needs to be performed for the most recent Wmax time steps, where Wmax is
the maximum temporal window size, rather than for all T time steps. However, a separate
computation must be done for each of the K event models and Nθ vectors of effects for each
event model, and each computation requires us to compute the likelihood ratios LRt

i,m for the
M data streams. This gives a total time complexity of O(IMWmaxKNθ) for the fourth step.
The fifth and final step is to compute the posterior probability for each hypothesis H1(S,Ek).
Each likelihood Pr(D | H1(S,Ek)) can be computed by averaging over the Nθ possible para-
meter vectors (x1 . . . xM) for that hypothesis, adding the corresponding log-likelihood ratios
LLRt

i for all si ∈ S and all t = 0 . . .W(S) − 1. For each hypothesis H1(S,Ek) and parame-
ter vector (x1 . . . xM), we can compute the likelihood in time proportional to the number of
locations in S. However, for many common region shapes (e.g. circles, rectangles) we can
reduce this to an amortized O(1) per region (Neill 2006). Once we have the likelihoods and
priors for each hypothesis, the posteriors can be computed using Bayes’ Theorem in O(1)

per hypothesis, or O(NSK) total time. This gives us a total time complexity of O(NSKNθ)

for this step, and a total time complexity of O(IMT + IMWmaxKNθ + NSKNθ) for the en-
tire algorithm. In practice, any of these steps can dominate the run time, since T 
 Wmax,
NS 
 I , and the fourth step has the most expensive computations (i.e. computing the log-
likelihoods). To give an idea of the relative sizes of these quantities, our set of experiments
described below used I = 58, M ≤ 3, T = 56, Wmax = 1, K ≤ 7, Nθ = 9, and NS = 1292.

6 Related work

The multivariate Bayesian scan statistic builds most directly on the univariate Bayesian scan
statistic (Neill et al. 2006), extending the Bayesian event detection framework to multiple
data streams and multiple event types. This extension allows us to achieve higher detection
power by integrating information from the multiple streams, and also allows event charac-
terization (by modeling and distinguishing between multiple types of event). The Bayesian
scan statistic framework is a variant of the more traditional, hypothesis testing approach
to spatial scan statistics, first developed by Kulldorff and Nagarwalla (1995) and Kulldorff
(1997), and incorporated into a general cluster detection framework by Neill and Moore
(2005). As we demonstrated in Neill et al. (2006), the Bayesian scan statistic approach
has several advantages over the frequentist methods, including higher detection power, fast
computation, easy interpretability of results, and ability to incorporate prior knowledge; all
of these advantages also apply to our current work. While Kulldorff’s original spatial scan
statistic (Kulldorff 1997) did not take the time dimension into account, later work general-
ized this method to the “space-time scan statistic” by scanning over variable size temporal
windows (Kulldorff et al. 1998; Kulldorff 2001). Recent extensions such as the expectation-
based scan statistic (Neill et al. 2005b) and model-based scan statistic (Kleinman et al. 2005)
also take the time dimension into account by using historical data to model the expected dis-
tribution of counts in each spatial location.

Many other variants of the spatial and space-time scan statistics have been proposed,
differing in both the set of regions to be searched and the underlying statistical mod-
els. While Kulldorff’s original method (Kulldorff 1997) assumed circular search regions,
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other methods have searched over rectangles (Neill et al. 2005a), ellipses (Kulldorff et
al. 2006), and various sets of irregularly shaped regions (Duczmal and Assuncao 2004;
Patil and Taillie 2004; Tango and Takahashi 2005). In past work, we demonstrated that
the “fast spatial scan” method can be used to speed up scan statistic calculations by 2–3
orders of magnitude when searching over rectangular regions (Neill and Moore 2004). Vari-
ous statistical models have been proposed for the spatial scan, ranging from simple Poisson
and Gaussian statistics (Neill et al. 2005b; Neill 2006) to robust and nonparametric mod-
els (Neill and Sabhnani 2007; Neill and Lingwall 2007). In Neill (2007a), we compared 25
different variants of the frequentist spatial scan statistic (Kulldorff 1997) on various disease
surveillance tasks, and demonstrated that the expectation-based Poisson statistic (Neill et al.
2005b) outperformed Kulldorff’s original statistic across a variety of datasets and outbreak
sizes. Our current approach builds on the expectation-based Poisson model by incorporat-
ing it into a hierarchical Gamma-Poisson model and computing marginal likelihoods in a
Bayesian framework.

Additionally, two multivariate extensions of the frequentist spatial scan have recently
been proposed: Kulldorff’s parametric scan (Kulldorff et al. 2007), which directly extends
the original spatial scan statistic to multiple data streams by assuming that all data streams
are independent, and the nonparametric scan (Neill and Lingwall 2007), which combines
empirical p-values from multiple data streams without relying on an underlying paramet-
ric model. As we demonstrate in Neill and Lingwall (2007), the nonparametric scan can
accurately characterize events by identifying which data streams have been affected, since
it scans over subsets of the data streams as well as over space and time. However, neither
of these two methods can differentiate between multiple types of event that might result in
space-time clusters. We compare the detection power of the MBSS method to Kulldorff’s
multivariate scan in several outbreak detection scenarios below.

Several other multivariate surveillance methods have been proposed and applied to the
disease surveillance domain, including multivariate extensions of traditional time series
analysis methods (Burkom 2003; Burkom et al. 2005) and network-based methods (Reis
et al. 2007) that detect anomalous ratios of counts between streams. These “purely tempo-
ral” detection methods do not take spatial information into account: they may be used to
detect anomalous increases in the aggregate time series of the entire area being monitored,
rather than detecting and pinpointing a spatial cluster of affected locations. Additionally,
these methods cannot model and differentiate between multiple event types. Finally, the
PANDA system (Cooper et al. 2004, 2007) uses Bayesian network models to differenti-
ate between multiple outbreak types (e.g. the CDC Category A diseases), assuming an un-
derlying entity-based model of Emergency Department visits. We have recently developed
a multivariate model that incorporates spatial information into PANDA, using Emergency
Department chief complaint data as evidence (Jiang et al. 2008).

7 Evaluation

We evaluated the event detection and characterization performance of the MBSS method,
as compared to several previously proposed detection methods, on two sets of prospective
disease surveillance tasks. The first set of experiments focused on outbreak detection, while
the second set of experiments focused on outbreak characterization (discriminating between
multiple types of outbreak). In all of our experiments, multiple streams of over-the-counter
medication sales data (from Allegheny County, Pennsylvania) were monitored on a daily
basis. The goal of this surveillance was to achieve timely detection and accurate character-
ization of emerging outbreaks of disease, while keeping the number of false positives low.
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Table 1 Minimum, maximum, mean, and standard deviation of daily counts for each of the three public
health datasets

Dataset Minimum Maximum Mean Standard deviation

CC 338 5474 2428.46 923.47

AF 83 2875 1321.70 279.88

TH 4 99 41.44 17.96

Fig. 2 Time series of daily counts for three public health datasets from October 1, 2004 to January 4, 2006.
(a)–(c) represent the CC, AF, and TH datasets respectively

We used a semi-synthetic testing framework, injecting simulated disease outbreaks into real-
world datasets, and analyzing the proportion of outbreaks detected and the time to detection.
We obtained daily counts for three categories of OTC sales (cough/cold, anti-fever, and ther-
mometers) for 58 Allegheny County zip codes, from October 1, 2004 to January 4, 2006. We
denote these three datasets by CC, AF, and TH respectively. The first 84 days of data were
used for baseline calculations only, giving 377 days of data for testing. Information about
each dataset’s daily counts (minimum, maximum, mean, and standard deviation) is given in
Table 1. From this table, it is evident that the CC and AF datasets have much larger average
counts than the TH dataset, and that all three datasets are overdispersed. The datasets also
demonstrate significant day-of-week and seasonal trends; the time series of daily counts for
each dataset is shown in Fig. 2.

We considered a simple class of circular outbreaks with a linear increase in the ex-
pected number of cases over the duration of the outbreak. More precisely, our outbreak
simulator takes four parameters: the outbreak duration T , the outbreak severity �m for each
stream Dm, and the minimum and maximum number of zip codes affected, kmin and kmax.
Then for each injected outbreak, the outbreak simulator chooses the start date of the outbreak
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tstart, the number of zip codes affected k, and the center zip code scenter uniformly at random.
The outbreak is assumed to affect zip code scenter and its k − 1 nearest neighbors, as mea-
sured by distance between the zip code centroids. On each day t of the outbreak, t = 1 . . . T ,
the outbreak simulator injects Poisson(twi,m�m) cases into each stream of each affected

zip code, where wi,m is the “weight” of the zip code for that stream, wi,m =
∑

t ct
i,m∑

i

∑
t ct

i,m

. We

used a constant value of T = 7 for all outbreaks, and thus all outbreaks were assumed to be
one week in duration; outbreak size was allowed to vary between kmin = 5 and kmax = 35
affected zip codes.

We note that simulation of outbreaks is an active area of ongoing research in biosurveil-
lance. The creation of realistic outbreak scenarios is important because of the difficulty of
obtaining sufficient labeled data from real outbreaks, but is also very challenging. State-
of-the-art outbreak simulations such as those of Buckeridge et al. (2004) and Wallstrom et
al. (2005) combine disease trends observed from past outbreaks with information about the
current background data into which the outbreak is being injected, as well as allowing the
user to adjust parameters such as outbreak duration and severity. While the simple linear
outbreak model that we use here is not a realistic model of the temporal progression of an
outbreak, it is sufficient for testing spatial detection methods, with the idea that we gradually
ramp up the amount of increase until the outbreak is detected.

For all of the methods under consideration, we scanned over the same predetermined
set of search regions S . This set of regions was formed by mapping the Allegheny County
zip codes to a 16 × 16 grid, and searching over all rectangular regions on the grid with
size up to 8 × 8. Note that this set of search regions is substantially different than the
set of inject regions used by our outbreak simulator: this is typical of real-world outbreak
detection scenarios, where the size and shape of potential outbreaks is not known in ad-
vance. In general, searching over rectangles has the advantages of computational efficiency
as well as high power to detect both compact and elongated clusters (Neill and Moore 2004;
Neill et al. 2005a). Of course, if we had assumed some prior knowledge of the set of inject
regions, this knowledge could be used to refine our search accordingly. We used Wmax = 1,
and thus only searched over regions of 1-day duration; a larger value of the maximum tem-
poral window size would be useful for more slowly growing outbreaks. Choosing a different
set of search regions would most likely affect the detection power of our methods, however,
we expect that the relative performance of different methods will remain approximately
the same. The question of choosing an optimal set of search regions (in order to maintain
high detection power over a wide range of outbreak shapes and sizes) is orthogonal to our
question of choosing the correct statistical method, and has been investigated in detail by
Duczmal and Assuncao (2004), Patil and Taillie (2004), Tango and Takahashi (2005), and
many others.

7.1 Evaluation of event detection

In our first set of experiments, we ran 26 outbreak simulations in order to compare the detec-
tion power of different methods across a variety of outbreak detection scenarios. Each simu-
lation was characterized by a different set of parameters (�CC , �AF , and �TH) representing
the effects on each data stream, as described above. The 26 simulations included combi-
nations of �CC ∈ {100,50,0}, �AF ∈ {60,30,0}, and �TH ∈ {4,2,0}. The “base value” for
each data stream (�CC = 100, �AF = 60, �TH = 4) was chosen proportional to its total
count; hence we inject far fewer cases into the TH stream as compared to CC or AF. We
then allowed each �m to be equal to the base value, half the base value, or zero (in which
case the outbreak has no effect on that data stream), but excluded the case where no cases are
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injected into any of the streams. For each of the 26 simulations, we averaged results over 250
different, randomly generated outbreaks, giving a total of 6,500 outbreaks for evaluation.

We compared a total of seven methods for this evaluation: three variants of the MBSS
method (MBSS-EQ, MBSS-FIT, MBSS-7M), three univariate Bayesian detectors (BSS-CC,
BSS-AF, BSS-TH), and Kulldorff’s multivariate spatial scan (Kulldorff et al. 2007) (KULL).
All methods assumed the same set of search regions (as discussed above), and the Bayesian
methods assumed a uniform prior over search regions. MBSS-EQ used a single event model
xkm,avg = (1.5,1.5,1.5), which assumed equal average effects on the three data streams.
MBSS-7M used 7 event models, each assuming that a different subset of streams has been
affected: {CC-AF-TH, CC-AF, CC-TH, AF-TH, CC, AF, TH}. Each model assumes equal
relative effects on the affected data streams and no effects on the other streams; for example,
the CC-AF-TH model has average effects xkm,avg = (1.5,1.5,1.5), and the AF-TH model
has average effects xkm,avg = (1,1.5,1.5) on the CC, AF, and TH streams respectively.

As opposed to the more general models of MBSS-EQ and MBSS-7M, the MBSS-FIT
method assumes a single, specific event model which is fitted to the event type under con-
sideration. We learned the vector of “average effects” on each stream by maximum like-
lihood estimation, as described above. Learning was performed incrementally, using each
labeled outbreak (S, Ek) to update the average effects of the given outbreak type Ek on
each stream. The vector of average effects converged quickly (within 10–15 training exam-
ples), and thus we focus on the performance of the fitted model rather than the dynamics of
the learning process. BSS-CC, BSS-AF, and BSS-TH are univariate versions of the MBSS
method that each only monitor one data stream, as in our previous univariate Bayesian scan
statistics work (Neill et al. 2006). The average effect on that data stream was assumed to
be xkm,avg = 1.5. Finally, KULL is the recently proposed multivariate version of Kulldorff’s
spatial scan statistic, as described in Kulldorff et al. (2007). This method extends the original
spatial scan statistic by assuming that streams are independent, giving a total region score
equal to the sum of the region’s log-likelihood ratio scores for each individual data stream.

We computed each method’s proportion of outbreaks detected and average number of
days to detect, on each of the 26 simulations, as a function of the allowable false positive rate.
To do this, we first computed the total posterior probability of an outbreak, Pr(H1 | D) =∑

S,Ek
Pr(H1(S,Ek) | D), for each day of the original dataset with no outbreaks injected

(as noted above, the first three months of data are excluded, since these are used to calculate
baselines for our methods). Then for each injected outbreak, we computed the total posterior
probability of an outbreak for each day of the outbreak, and determined what proportion
of the days for the original dataset have higher outbreak probabilities. Assuming that the
original dataset contains no outbreaks, this is the proportion of false positives that we would
have to accept in order to have detected the outbreak on day t . For a fixed false positive
rate r , the “days to detect” for a given simulated outbreak is computed as the first outbreak
day (t = 1 . . .7) with proportion of false positives less than r . If no day of the outbreak has
a proportion of false positives less than r , the method has failed to detect that outbreak. As
a useful summary measure, we can consider the average “adjusted days to detect” for each
method, at a fixed false positive rate of 1/month. For this measure, any missed outbreaks are
penalized by the entire duration of the outbreak, and thus counted as requiring t = 14 days
to detect. The detection performance (average adjusted days to detect) for each method, for
each of the 26 simulations, is presented in Table 2. The mean performance (adjusted days to
detect) was also computed for each method, giving an aggregate measure of each method’s
ability to detect a variety of different outbreak types.

As expected, the three univariate detectors achieved timely detection when an outbreak
type had high impact on the monitored data stream, and performed poorly otherwise; thus
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Table 2 Average adjusted days to detection at 1 false positive per month, for each of the 26 simulations.
Methods in bold are not significantly different (at α = .05) from the best-performing method

(�CC , �AF , �TH ) MBSS-EQ MBSS-7M MBSS-FIT BSS-CC BSS-AF BSS-TH KULL

(100, 60, 4) 2.512 2.672 2.492 2.836 3.228 3.648 2.660

(100, 60, 2) 2.640 2.756 2.604 2.880 3.272 6.340 2.680

(100, 60, 0) 2.768 2.860 2.720 3.064 3.364 12.228 2.572

(100, 30, 4) 3.168 3.204 2.832 2.780 6.016 3.496 2.796

(100, 30, 2) 3.448 3.512 3.160 2.980 6.420 6.568 2.916

(100, 30, 0) 3.548 3.584 3.456 3.224 6.648 11.684 3.136

(100, 0, 4) 4.608 3.744 2.632 2.896 12.088 3.604 3.224

(100, 0, 2) 5.416 4.296 3.284 3.084 12.052 6.708 3.340

(100, 0, 0) 4.872 3.840 3.080 2.728 12.056 12.000 3.088

(50, 60, 4) 3.112 3.216 2.836 5.328 3.140 3.464 3.188

(50, 60, 2) 3.344 3.352 2.980 5.692 3.088 6.204 3.280

(50, 60, 0) 3.552 3.528 3.344 5.648 3.060 12.104 3.396

(50, 30, 4) 4.428 4.732 3.944 5.244 6.572 3.528 4.660

(50, 30, 2) 5.184 5.384 4.976 5.884 7.112 6.728 5.276

(50, 30, 0) 5.392 5.372 5.208 5.812 6.940 11.868 5.004

(50, 0, 4) 7.392 6.612 3.720 5.728 11.468 3.744 5.792

(50, 0, 2) 8.228 7.212 5.096 5.656 12.008 6.732 6.228

(50, 0, 0) 9.256 8.204 6.472 5.972 11.648 11.740 6.804

(0, 60, 4) 5.288 3.880 2.536 12.264 3.196 3.468 4.036

(0, 60, 2) 5.956 4.272 2.700 11.772 3.032 6.056 4.004

(0, 60, 0) 6.316 4.364 2.860 12.664 3.248 12.228 4.764

(0, 30, 4) 7.772 6.476 3.212 11.700 6.172 3.604 7.212

(0, 30, 2) 9.120 8.296 4.648 12.252 7.040 6.600 8.744

(0, 30, 0) 10.068 8.288 5.612 12.120 6.596 12.044 8.876

(0, 0, 4) 11.384 11.112 3.500 12.104 12.120 3.764 12.148

(0, 0, 2) 11.584 11.696 7.184 11.992 11.648 6.584 12.068

Mean 5.783 5.249 3.734 6.704 7.047 7.182 5.073

we would expect that higher average performance could be achieved by integrating infor-
mation from multiple data streams. The results of Table 2 confirm our expectations: all four
of the multivariate detectors were able to detect a full day faster (on average) than any of
the univariate detectors, though the univariate detectors performed significantly better than
the MBSS-EQ, MBSS-7M, and KULL methods when the outbreak only affected the corre-
sponding single data stream. This effect was particularly evident for the thermometers (TH)
data stream: since TH had much smaller average counts than the other streams, signals in this
stream were overwhelmed by noise from the other streams, and the MBSS-EQ, MBSS-7M,
and KULL methods had low detection power for these outbreaks.

On the other hand, the MBSS-FIT method was able to achieve timely detection of all
outbreak types by learning which data streams were most affected, and fitting a model of
the average effects on each stream. As a result, MBSS-FIT was able to detect outbreaks
an average of 1.3 days faster than any of the other methods. MBSS-FIT achieved perfor-
mance comparable to the best univariate detector (4.78 vs. 4.82 adjusted days to detect) for
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outbreaks affecting only a single data stream, and significantly better performance than the
best univariate detector (3.42 vs. 3.70 adjusted days to detect) for outbreaks affecting multi-
ple data streams. The high performance of MBSS-FIT demonstrates one major advantage of
MBSS over other detection methods: much higher detection power can be achieved by incor-
porating information about an event’s effects on the different data streams. This knowledge
can either be pre-specified by a domain expert, or learned from labeled training examples,
creating a specific detector with high power to detect the given event type.

However, the performance of the MBSS-EQ method demonstrates the dangers of an in-
correctly specified event model: MBSS-EQ achieved high detection performance for out-
break types corresponding to its model (i.e. equal effects on the three data streams) but
performed substantially worse than the two more general multivariate detectors (MBSS-
7M and KULL) when its models were incorrect. As a result, both MBSS-7M and KULL
were able to detect outbreaks over half a day faster (on average) than MBSS-EQ. These
results demonstrate that a single, specific event model should only be used if we have prior
knowledge of the event’s effects. If we have no prior knowledge, and want to maintain high
detection power across a variety of event types, a more general detector such as MBSS-
7M or KULL should be used. The MBSS-7M and KULL methods achieved comparable
average performance across outbreak types, demonstrating that MBSS can also be used for
general event detection by including multiple event models. The KULL method tended to
place more weight on the cough/cold data stream, outperforming MBSS-7M (2.93 vs. 3.39
adjusted days to detect) when this stream was highly affected by an outbreak and performing
worse (7.73 vs. 7.30 adjusted days to detect) when cough/cold sales were unaffected, but the
results were otherwise very similar for these two methods.

7.2 Evaluation of event characterization

In our second set of experiments, we examined the ability of the MBSS method to charac-
terize events in the disease surveillance domain, by differentiating between multiple types
of disease outbreak. For each of these experiments, we injected several types of outbreak
into the cough/cold and anti-fever sales for Allegheny County; each outbreak type had dif-
ferent effects on these two streams. In our first experiment, we injected two outbreak types:
one type with larger effects on the CC stream (�CC = 100, �AF = 30) and one type with
larger effects on the AF stream (�CC = 50, �AF = 60). In our second experiment, we in-
jected three outbreak types: one type only affecting the CC stream (�CC = 100, �AF = 0),
one type only affecting the AF stream (�CC = 0, �AF = 60), and one type affecting both
streams (�CC = 50, �AF = 30). In each experiment, we used a total of 500 outbreaks for
evaluation, alternating examples of each outbreak type. We used the MBSS-FIT method to
learn a different event model for each outbreak type: two models were learned for the first
experiment, and three models were learned for the second experiment. As in our first set
of experiments, learning was performed incrementally from each outbreak (labeled with the
appropriate outbreak type), and the vector of average effects for each event model converged
quickly (within 10–15 examples of that type) to a fixed value.

To evaluate the event characterization ability of the MBSS-FIT method, we recorded
the posterior probability of each outbreak type, Pr(Ek | D) = ∑

S Pr(H1(S,Ek) | D), and
the posterior probability of the null hypothesis, Pr(H0 | D), on each outbreak day. We then
computed the average posterior probabilities of the correct outbreak type, the incorrect out-
break type(s), and the null hypothesis as a function of the number of days since the start of
the outbreak. Figure 3 shows the results for the first experiment, using two event models.
From this figure, it is evident that MBSS is able to accurately characterize outbreaks by
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Fig. 3 Event characterization,
2 models. Average posterior
probability (percent) of correct
outbreak type, incorrect outbreak
type, and null hypothesis on each
outbreak day

Fig. 4 Event characterization,
3 models. Average posterior
probability (percent) of correct
outbreak type, incorrect outbreak
type, and null hypothesis on each
outbreak day

the second outbreak day: the average posterior probability of the correct outbreak type was
31% on day 2, while the posterior probability of the incorrect outbreak type was only 7%.
By the midpoint of the outbreak (day 4), the average posterior probability of the correct
model increased to 70%, while the posterior probability of the incorrect model remained
approximately constant. We see similar results for the second experiment, using three event
models, in Fig. 4. By the third outbreak day, the average posterior probability of the correct
outbreak type was 34%, while the posterior probability of the two incorrect outbreak types
was only 6%. By the fifth outbreak day, the average posterior probability of the correct out-
break type increased to 65%, while the posterior probability of the incorrect outbreak types
decreased slightly to 4%. Thus the MBSS method is able to accurately characterize and dis-
tinguish between different types of outbreak, using a learned model of the effects of each
outbreak type.

We also compared the detection power of the MBSS-FIT method when learning a sepa-
rate event model for each outbreak type to its detection power when learning only a single
event model. As in our first set of experiments, we compared the average adjusted days to
detect for each method, at a fixed false positive rate of 1/month. In the first experiment,
learning two separate event models only achieved a slight (but not statistically significant)
increase in performance as compared to learning a single model, reducing the average ad-
justed days to detect from 3.312 to 3.232. This result demonstrates that when the models
for different event types are very similar, a single model is sufficient for good detection
performance; however, having multiple models enables MBSS to accurately differentiate
between the event types. In the second experiment, learning three separate models for the
three outbreak types led to a significant improvement in performance, reducing the average
adjusted days to detect from 5.404 to 4.272. This result demonstrates that when the different
event types have very different effects on the data streams, multiple models are necessary to
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achieve high detection power, as well as enabling accurate characterization of which type of
event has occurred.

8 Discussion

Our evaluation results demonstrate three major advantages of the MBSS method for event
detection and surveillance. As in two other recently proposed multivariate detection methods
(Kulldorff et al. 2007; Neill and Lingwall 2007), MBSS achieves high detection power by
combining information from multiple data streams, spatial locations, and time steps. This
integration of information is essential for detecting emerging patterns (e.g. the early stages
of an emerging outbreak of disease) that would not be visible from monitoring only a single
data stream, spatial location, or time step. As demonstrated by our first set of experiments,
MBSS can be used as a general event detector (by including multiple event models and using
uninformative priors), and can achieve detection power comparable to the current state of
the art (Kulldorff et al. 2007) across a wide range of event types.

However, MBSS improves substantially on the current state of the art in two other re-
spects. First, we can incorporate informative priors into the MBSS models, and thus use
MBSS as a specific event detector with much higher detection power for the specified event
types. Our first set of experiments demonstrated that the effects of each event type on the
multiple data streams can be learned from a small number of labeled training examples, and
that the fitted models gained a large improvement (average of 1.3 days faster detection) as
compared to the general multivariate detectors. In the disease surveillance domain, the event
models for common outbreak types (such as seasonal influenza and rotavirus) or general
outbreak classes (e.g. influenza-like illness) can be learned from real outbreaks labeled by
domain experts, while models of rare events (e.g. terrorist bio-attacks) would need to be
pre-specified (or learned from sufficiently realistic simulations) due to the sparsity of real-
world examples. Other aspects of the MBSS models, including the prevalence, size, shape,
and duration of events, can also be specified or learned from data, and these priors can also
be used to improve detection performance.

Our second set of experiments demonstrates perhaps the most important advantage of
MBSS: the ability to characterize events by specifying models for multiple event types
and computing the probability that each type of event has occurred. As noted above, event
characterization is necessary for several reasons: different types of event may be more or
less relevant to the user (some events may require urgent responses, while some can safely
be ignored), and different event types may also require the user to take different courses of
action. By characterizing events as well as detecting them, the MBSS system can not only
alert the user when relevant events are taking place (avoiding false positives due to irrelevant
events), but also provide the user with a complete situational awareness including the type
of event and which subset of the data (spatial region and time duration) has been affected.

Thus MBSS can detect faster and more accurately by integrating multiple data streams,
and can model and differentiate between multiple event types. We now briefly consider
several other advantages of using our Bayesian event detection framework, as compared to
the standard frequentist hypothesis testing approach originated by Kulldorff’s spatial scan
statistic (Kulldorff 1997). First, unlike the frequentist approach, randomization testing is not
necessary in the Bayesian framework. Since 999 or more Monte Carlo replications must
typically be performed to obtain accurate p-values for the frequentist approach, we can
obtain a 1000× speedup by avoiding the need for randomization. Computation is fast in
the Bayesian framework for several reasons: the marginal likelihoods can be computed in
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closed form (thanks to the use of conjugate priors, with empirical Bayes estimates of the
hyperpriors), and the expensive log-likelihood computations need only be done a number
of times proportional to the number of locations, not the number of regions. As a result,
computation of the multivariate Bayesian scan statistic (for a single event model) can be
performed in 0.84 seconds per day of data on our systems, approximately the same run time
as Kulldorff’s multivariate scan statistic without randomization testing (0.79 seconds per
day of data). Using multiple event models increases the time needed to compute likelihoods,
proportional to the number of models, but does not affect the fixed costs of loading the data
and computing baselines. For our first set of experiments, using seven event models instead
of one increased the total run time only 15%, from 0.84 to 0.97 seconds per day of data.

A second advantage of not requiring randomization testing is that calibration of the
Bayesian statistic is easier than calibration of the frequentist statistic. As we showed in Neill
(2007a), the p-values reported by frequentist scan statistics tend to be oversensitive, in that
the proportion of false positives reported at level α is much higher than α, e.g. 20–40% false
positive rate at α = .05 on OTC data. Using 999 Monte Carlo replications, many regions will
have the smallest possible p-value (p = 0.001), making it difficult to distinguish between
these regions. In our Bayesian approach, on the other hand, we can simply choose a thresh-
old for the total posterior probability of relevant event types, and notify the user whenever
the probability exceeds this threshold. The total number of alerts produced by the MBSS
method tends to be very reasonable: for example, in our first set of disease surveillance ex-
periments, the MBSS-EQ method found 15 days with posterior outbreak probabilities over
50%, i.e. slightly more than 1 alert per month.

Finally, the results produced by the MBSS method are easy to interpret, visualize, and
use for decision-making. MBSS outputs the total posterior probability of each event type,
Pr(Ek | D) = ∑

S Pr(H1(S,Ek) | D), as well as the posterior probability that no events have
occurred, Pr(H0 | D). These probabilities enable the user to decide whether to respond to the
detected events, based on the costs of false positives and false negatives for each event type.
Additionally, MBSS gives information about the space-time region affected by the event,
distributing the total event probability Pr(Ek | D) over possible regions of effect S. One
useful way to visualize these probabilities is to compute the total probability that each spatial
location si has been affected by a given event type on a given day: this posterior probability
Pr(H1(si,Ek) | D) can be obtained by summing the probabilities Pr(H1(S,Ek) | D) for all
space-time regions S containing si . We can then display separate probability maps for each
event type Ek for each day of data. For example, Fig. 5 shows the probability maps created
by monitoring the OTC cough/cold, anti-fever, and thermometer sales in Allegheny County
during a (simulated) outbreak from July 4–10, 2005, assuming a single MBSS event model
with equal effects on the three data streams. Days 1, 3, 5, and 7 of the outbreak are shown
here; the outbreak is not visible on Day 1, but becomes increasingly apparent (as represented
by darker shading of the affected zip codes) over the course of the outbreak. Additionally,
the variation in shading for Day 3 reveals uncertainty about the precise spatial extent of the
outbreak during its early stages; by Day 5, MBSS is able to much more precisely identify
which zip codes have been affected.

Another possibility for visualizing the outputs of MBSS is to combine the posterior prob-
abilities of multiple event types into a single map. One way to do this is to use color: if the
number of event types is at most three, we can encode the event posteriors for a given spa-
tial location into the red, green, and blue components of its RGB-coded color. Then the
total brightness of each area represents its total event probability, and whether the color is
predominantly red, green, or blue indicates which event type is most likely. Many other vi-
sualization techniques are possible, and we are currently evaluating the utility of different
approaches to visualization in the disease surveillance domain.
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Fig. 5 Map of posterior outbreak probabilities computed by MBSS for a simulated outbreak injected into
three OTC data streams from July 4–10, 2005. Days 1, 3, 5, and 7 of the outbreak are shown here. Darker
shading indicates a higher probability that the given zip code has been affected

We are also currently working to extend the MBSS framework in several other ways, in-
cluding the incorporation of incremental model learning from labeled data and active learn-
ing from user feedback, as well as extending the underlying statistical models to dynami-
cally changing patterns and more general multivariate datasets. In the disease surveillance
domain, we are currently developing models of several outbreak types (e.g. influenza, an-
thrax) in order to better detect and distinguish between these outbreaks. We are also de-
veloping models of other (non-outbreak) causes of a detected cluster, such as tourism and
promotional sales of OTC medications. These models will allow us to discriminate between
detected clusters that are due to outbreaks and those due to other irrelevant causes, reducing
the number of false positives and increasing the system’s power to detect true outbreaks.
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