
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

A Method for Using Belief Networks as Influence Diagrams 

ABSTRACT 

Gregory F. Cooper 
Medical Computer Science Group 

Medical School Office Building 
Stanford University 
Stanford, CA 94305 

This paper demonstrates a method for using belief-network algorithms to solve influence
diagram problems. In particular, both exact and approximation belief-network algorithms may 
be applied to solve influence-diagram problems. More generally, knowing the relationship 
between belief-network and influence-diagram problems may be useful in the design and 
development of more efficient influence diagram algorithms. 

1. Introduction 

A belief network is an acyclic, directed graph that represents the probabilistic dependencies 
among a set of chance variables (see Pearl86a for a detailed discussion). Belief-network 
algorithms perform probabilistic inference on belief networks. Figure 1 shows a simple, 
abstract belief network. The absence of an arc from A to C indicates that node C is conditionally 
independent of node A given the value of node B. The calculation of P(A= T 1 C= T) is an example 
of a belief network inference problem; the solution in this case is 0.62. 

P(A = T) = 0.4 

P(B = T I A = T) = 0.8 
P(B = T I A = F) = 0.1 
P(C = T I B = T) = 0.7 
P(C = T I B = F) = 0.2 

Figure 1. A example of a simple belief network. A circle represents a 
chance node. 

An influence diagram is a belief network that is augmented with decision nodes and a value node 
(see Howard84 and Shachter86a for a detailed discussion). The relationships among chance 
nodes, decision nodes, and a value node are explicitly represented in the network of the influence 
diagram. A primary task of an influence-diagram inference system is the determination of the 
decision alternatives that maximize expected value. We focus on this task in this paper, although 
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extensions to other inference tasks, such as calculating value�of-information and sensitivity 
analysis, are possible using slight modifications of the techniques we present below. 

Figure 2 is an example of an influence diagram that has been generated by the addition of binary 
decision-node 01 and a binary value-node V to the belief network in Figure 1 . The arc from C to 
01 indicates that the value of C will be available when decision D1 is made. In other words, A 
and B are hidden variables when decision 01 is made, whereas the value of C will be available as 
evidence. The arcs from A and 01 to V indicate that the value of the state of the diagram is a 
function of A and 01. Determining the value of node D1 (i.e., Action1 or Action2) that maximizes 
the expected value of the model in light of available ey_idence C is the primary influence
diagram deCision problem we consider here. Suppose that C=T; then, it so happens that Action1 
is the solution to the decision problem in Figure 2, and the expected value of taking Action1 is 
2.1. 

��----------··<£> 

P(A = T) = 0.4 

P(8 = T I A = T) = 0.8 
P(8 = T I A= F) = 0.1 
P(C = T I 8 = T) = 0.7 
P(C = T I 8 = F) = 0.2 

v(D 1 = Action 1, A = T) = 4 
v(D 1 = Action 1, A = F) = -1 
v(D 1 = Action 2, A = T) = -3 

v(D 1 = Action 2, A = F) = 7 

Figure 2. An example of a simple influence diagram. A circle represents a 
chance node, a square represents a decision node, and a diamond 
represents a value node. 

A well-known influence diagram algorithm has been developed by Shachter [Shachter86a, 
Shachter87b] which also can be used as a belief network algorithm [Shachter86b]. Conversely, 
Shachter has shown that a belief network algorithm (i.e., a probabilistic influence-diagram 
algorithm , in his terminology) of a particular type (i.e., that uses arc reversal and node 
removal operations) can be used to solve influence-diagram problems [Shachter86b, 
Shachter87a]. The remainder of this paper builds on Shachter's results by providing a mapping 
from influence diagrams to belief networks that differs from his mapping in several key 
respects. First, the transformation in this paper is applicable to any belief network algorithm, 
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rather than assuming that a belief-network algorithm uses arc-reversal and node-elimination 
operations. In particular, the general transform covered here allows the application of any 
exact, approximation, or heuristic belief-network algorithm in solving influence-diagram 
problems. Second, the transformation in this paper uses recursion to solve a decision problem 
without requiring the storage of potentially large tables of intermediate results. Third, our 
formulation allows the instantiation of chance-variables before a decision problem is solved; 
this capability is important in the use of influence diagrams in expert systems, where 
background information (i.e., instantiated chance-variables) often is available when a system 
is asked to make a decision recommendation. 

2. Transforming an Influence Diagram to a Belief Network 

The basic steps in transforming a generic influence diagram 10 that is oriented and regular (for 
formal definitions see [Shachter86a], page 875) to a belief network BN involve converting 
decision nodes to chance nodes, converting the value node to a chance node, and transforming the 
value function to a probability function. Let 0 be the set of all n decision nodes in ID. A regular 
influence diagram specifies a total order on all the decision nodes in D. This total order is used to 
determine the time precedence in which decisions must be made. For notational convenience, 
assume that the decision nodes are relabeled if necessary such that the total order is D1, ... , Dn. 
Let L be a list with the structure ((D1, Tio1. TI'o1), (D2, Tio2• TI'o2), ... , (Dn. Tion• TI'on)}, 
where Tioi is a list of all the nodes in ID with information arcs into Di (including implicit no

forgetting arcs), and Il'oi is the set of all chance nodes in Tioi. After list L is constructed, the 
arcs into each Dr are deleted from I D. Each decision node Di in ID is converted to a chance node, 
and is relabeled if necessary to maintain consistency with the labeling of chance nodes already in 
ID. Each decision alternative of each chance node Di is assigned some prior probability that is 
greater than o and less than 1 such that the prior probabilities of the alternatives for a given Di 
sum to 1 ;  as discussed in Section 3, each Di will always be instantiated, and therefore the 
specific prior-probability assignment to Di is not critical. 

Without loss of generality, we will consider·only the case in which an influence diagram has a 
single vai!Je node V. Let v(Ilv) denote the value function in ID, where Tiv represents those 
variables (nodes) in ID with arcs to value node V. We will transform function v to a probability 
function. Define node V to be binary-valued with possible values T and F. The probability 
function relating nodes in Tiv to node V is defined as follows: 

where k1 = (maxrv(l1v)1- min[v(rrv)]) 
IIv IIv 

and k2 = - min[v(ITy)] 
IIv 

(1) 

In essence, Equation 1 linearly maps the range of v from an arbitrary subset of an interval of 
the real numbers to a subset of the real numbers that is inclusively between o and 1 .  Figure 3 
shows the belief network representation of the influence diagram in Figure 2. 
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P(A = T) = 0.4 

P (8 = T I A = T) = 0.8 
P(8 = T I A = F) = 0.1 

P(C = T I 8 = T) = 0.7 
P(C = T I 8 = F) = 0.2 

P(V = T 101 = Action 1, A = T) = 0.7 

P(V = T I 01 = Action 1, A = F) = 0.2 

P(V = T I 01 = Action 2, A = T) = 0.0 

P(V = T I 01 = Action 2, A = F) = 1 .0 

k1 = 10 
k2 = 3 

L = ((D1 (C) (C))) 

Figure 3. A belief-network representation of the influence diagram in Figure 2. 

3. Solving an Influence-Diagram Problem Using Its Belief-Network 
Representation 

3. 1 Solving a Single-Decision Problem 

Let E be a set containing chance variables in BN with known values (i.e., evidence), including 
those decisions D1, ... , Dn-1 in 0 that have already been made. Let Dn represent the remaining 
decision to be made. At this stage in the decision-making process assume that all variables in 
IIon are instantiated and are therefore in E. The influence diagram inference problem at this 
point is to determine the instantiation of Dn that produces a maximization of expected value 
(MEV): 

MEV(Dn, E) = m ax [ I v(Tiv) P(TI 'v I Dn, E) ] 
Dn TI'v ( 2 ) 

Equation 2 determines the instantiation of Dn. termed o* n. that maximizes expected value in 
light of evidence E. We can replace v(Ilv) in Equation 2 by an equivalent function derived from 
Equation 1: 
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MEV(Dn, E) = max[ I v(Tiv) P(II 'v I Dn, E)] 
Dn II'v 

= max[ I (k1 P(V = T I Tiv)- k2) P(II 'v I Dn, E)] 
Dn II'v 

= k1 max[ P(V = T I Dn. E)] - k2 
Dn 

( 3 ) 

Equation 3 illustrates, that to maximize expected value of a single decision, it is sufficient to 
determine the instantiation of the decision variable On that maximizes the probability 
P(V=T 1 Dn, E). The calculation of P(V=T I Dn . E) for a given instantiation of Dn is the standard 
calculation periormed by belief-network inference algorithms. Therefore, the overall inference 
mechanism involves applying a belief-network algorithm to calculate P(V= T 1 Dn, E) for each 
instantiation of Dn and then choosing the instantiation that produces the maximal value of 
P(V=T 1 Dn . E). This instantiation is equivalent to o* n calculated by applying an influence� 

diagram algorithm to the corresponding influence-diagram problem. For example, the solution 
to the decision problem in Figure 3 is D ·, = Action1, which as expected is the same decision 
alternative calculated previously using the influence diagram in Figure 2� In particular, 
P(V = T 1 o*1, C = T) - 0.51, and by Equation 3 the expected value of taking Action1 is k1 x 
0.51- k2 = 10 x 0.51-3 = 2.1, as before. 

3.2 Solving a Multiple-Decision Problem 

Let E be a set containing chance variables in BN with known values (i.e., evidence), including 
those decisions D1, . .. , Di-1 in D that have already been made. Let Dr ... Di, ... , Dn be an ordered 
list of the remaining decisions to be made. Among the primary influence-diagram inference 
problems is the determination of the instantiation of Di that produces a maximum expected 
value. To determine the maximum expected value, the following steps are taken. All 
uninstantiated chance nodes are removed from TIDi and TI'oi , because decision Di must be made 
only in light of currently available information. Alternatively, uninstantiated nodes in Tioi and 

TI'oi may be instantiated to desired values in order to determine the optimal decision Di, 
contingent on those instantiated values existing. Equation 4 is a recursive version of Equation 3 
that determines the maximum expected value based on the optimal decision value for decision Di 
in light of evidence E, when called with MEV(Dr, E). The arg-max version of the function in 
Equation 4 can be used similarly to determine the optimal decision value of decision Di in light 
of evidence E. The optimal decision values for each of the future decisions D i+ 1 , ... , Dn can be 
computed, contingent on the values of each of their information predecessors, by storing 
intermediate calculations of the recursive function in Equation 4. 
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MEV(d,e) = k1f(d,e)- k2 

where 

f(d, e) = max[ I f(t[d], e u rrh(t(dJJ) P(IT'h(t(dJJ I h[d], e)] 
h[d] ll'h[t[d]] 

and where h[d] returns the first element of d (i.e., in LISP notation, h [d] = 

·· (CAR d)), t[dl returns the list that remains when the first element of d 

is removed (i.e., in LISP notation, t[d] = (CDR d)), 0 - the empty list, 

II'0 = Ilv, f(0, e) = P(V = T I IIvL and P(0 I h[dJ, e) - 1. 

( 4 ) 

Equation 4 provides a constructive inductive proof that MEV(d, e) computes the maximum 
expected value based on the optimal decision value for decision Di. In essence, the function 

dynamically constructs and solves a decision-tree version of the corresponding influence
diagram problem. Functions similar to MEV in Equation 4 have been developed previously, as 
for example to solve stochastic dynamic programming problems (Bellman571. Thus, the general 
form of MEV in Equation 4 is not new. Rather, MEV is a specific version of the general form that 
provides a concrete bridge between belief network and influence diagram inference. 

Although we have focused the discussion on the calculation of maximum expected value, other 
calculations can be performed using minor modifications of Equation 4, as for example 
sensitivity analyses and value lotteries. In addition, if an influence diagram is placed in Howard 
canonical form [Matheson88] then Equation 4 can be applied with only minor modification to 
calculate value of information. 

3.3 Computational Efficiency 

It is possible to significantly increase the efficiency of solving some types of influence-diagram 
problems. Here we consider two techniques that are used by Shachter's influence diagram 
algorithm [Shachter86aJ. First, dynamic programming can be used, when the principle of 
optimality holds, to solve individual decision subproblems as a means of solving the global 
decision problem. In the best case, for binary decisions in Dr. this technique will decrease the 
computational time complexity by a factor on the order of 21Drl. Dynam ic programming is 
equally applicable to efficiently solving belief network versions of influence diagram prob lems. 
Second, the time complexity may be reduced by effectively summing-out only once the 
intermediate uninstantiated nodes in an influence diagram. For example, in solving the decision 
problem for the influence diagram in Figure 2, node B can be effectively summed-out once to 
give a direct probabilistic relationship between A and C, thereby yielding a smaller influence 
diagram that can be used more efficiently to find the optimal decision. A similar summing-out 
process is applicable to solving the corresponding problem for the belief network in Figure 3. 
In general, it appears that the techniques for solving influence diagrams efficiently can be 
applied to solve efficiently belief-network versions of influence-diagram problems. 
Conversely, efficient algorithms exist for solving belief networks with particular topologies 
and, as discussed in Section 4, these algorithms can be used for solving influence diagrams that 
contain the same topological features. 
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4. Discussion 

The close relationship between influence diagrams and belief networks, as discussed above, 
makes it apparent that previously developed belief network algorithms can be adapted readily to 
solve influence-diagram problems. For example, the message-passing algorithm of Pearl for 
belief-network inference can be used to solve efficiently many influence diagrams that are 
singly connected [Pearl86a]. Those belief-network algorithms that are designed for performing 
probabilistic inference using multiply-connected belief networks can be used to perform 
expected-value decision making with multiply-connected influence diagrams. One example of an 
applicable multiply-connected belief-network algorithm is the method of cutset conditioning, 
developed by Pearl [Pearl86b]. . An adaptation of Pearl's algorithm [Suermondt88a] has been 
successfully applied to implement an influence diagram algorithm using the techniques in this 
paper [Suermondt88b]. Lauritzen and Spiegelhalter also have developed an algorithm for 
dealing with multiply-connected networks [Lauritzen88]. Their algorithm seems particularly 
efficient for performing inference using multiply-connected networks that have small clusters 
of nodes. 

Unfortunately, inference using either belief networks or influence diagrams is NP-hard 
[Cooper87]. Therefore, for some complex, multiply-connected networks,. it may be necessary 
to use approximation algorithms. Approximation algorithms produce an inexact, bounded 
solution, but guarantee that the exact solution is within those bounds. Several approximation 
algorithms have been developed recently to address the computational complexity of belief 
network inference. For example, algorithms have been developed that bound the goal probability 
that constitutes a belief-network inference problem [Cooper84, Peng87a, Henrion88]. These 
bounds are incrementally tightened as more computation time is expended. The application of 
these algorithms to influence-diagram problems leads to incremental tightening of the bounds 
on expected utility. For a decision to be made, sufficient computation must be expended so that 
the lower bound of some decision alternative is greater than the upper bounds of all other 
possible alternatives. The question then is whether such bounds can be made sufficiently tight 
in an acceptable amount of time for the inference problems in a particular domain. 

Another type of belief network approximation method uses a Monte Carlo technique to produce a 
unique, point-valued probability estimate of some node of interest, plus a standard error of that 
estimate [Henrion86]. As more computation time is expended, the standard error of the 
probability decreases. When the algorithm is applied to an influence-diagram problem using 
Equation 4, it calculates an estimate of the expected-value of each decision alternative and a 
standard error of that estimate. For example, consider a modification of the influence diagram in 
Figure 2 where A is a disease, C is a binary-valued finding with known value T, 01 is a 
treatment choice, and B is replaced by a complex pathophysiological network that represents 
the causal mechanisms by which disease A can cause the finding C. Suppose the immediate 
objective is to determine the treatment option that maximizes the expected value of the patient. 
Then, the Monte Carlo algorithm is applied in stages, with each stage corresponding to a 
different instantiation of treatment variable 01. If the marginal probability of finding C is not 
too small, then for each treatment option the Monte Carlo method will rapidly converge on an 
estimate of the expected value which has a small standard error. The option with the maximum 
expected-value estimate is chosen as the optimal treatment. Note that the longer the Monte Carlo 
algorithm is applied, the smaller the standard error becomes. In contrast, if network B is 
highly connected secondary to complex pathophysiological interactions, exact influence diagram 
algorithms may require computation time that is exponential in the number of nodes in B in 
order to determine the expected value for each treatment option. The contrast in this case is 
between knowing the expected values exactly but after a long delay versus knowing only 
estimates of the expected values but knowing them quickly. Although Henrion's Monte Carlo 
method appears promising for some types of problems, it generally converges very slowly 
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when there are numerous evidence nodes or when the marginal probability of evidence is very 
small [Henrion86, Chin87]. Thus, the method is not always practical. Nonetheless, there may 
be numerous instances in which the application of approximate algorithms, such as Henrion's 
algorithm, is preferable to the application of exact algorithms. 

Heuristic algorithms constitute another approach to the search for acceptable inference 
efficiency. Heuristic belief-network algorithms, as we use the term here, are not formally 
guaranteed to yield a correct probability in either the exact or the nontrivially bounded sense. 
Nonetheless, they may yield probabilities that are acceptably accurate. Furthermore, heuristic 
algorithms generally are fast, even in the worst case. For example, one potential approach 
involves converting belief networks to probabilistic neural networks [Geffner87, Peng87b] 
and using neural network inference algorithms to heuristically perform belief network 
inference. 

· 

Previous work in developing belie1-network algorithms can be applied to solving influence
diagram problems. It seems important to analyze in detail, both theoretically and empirically. 
the relative efficiency of current belief-network algorithms and influence-diagram algorithms 
for solving various types of influence-diagram problems. This analysis may provide insights 
into designs for more efficient belief-network and influence-diagram algorithms. In addition, 
the design and analysis of such new algorithms may be facilitated by the relative uniformity of 
the belief-network representation and by the conceptual simplicity of the belief-network 
inference task. 
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