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Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and char-
acterizing outbreaks quickly and accurately remains an important problem. This paper describes a Bayes-
ian framework that links clinical diagnosis of individuals in a population to epidemiological modeling of
disease outbreaks in the population. Computer-based diagnosis of individuals who seek healthcare is
used to guide the search for epidemiological models of population disease that explain the pattern of
diagnoses well. We applied this framework to develop a system that detects influenza outbreaks from
emergency department (ED) reports. The system diagnoses influenza in individuals probabilistically from
evidence in ED reports that are extracted using natural language processing. These diagnoses guide the
search for epidemiological models of influenza that explain the pattern of diagnoses well. Those epide-
miological models with a high posterior probability determine the most likely outbreaks of specific dis-
eases; the models are also used to characterize properties of an outbreak, such as its expected peak day
and estimated size. We evaluated the method using both simulated data and data from a real influenza
outbreak. The results provide support that the approach can detect and characterize outbreaks early and
well enough to be valuable. We describe several extensions to the approach that appear promising.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

There remains a significant need for computational methods
that can rapidly and accurately detect and characterize new out-
breaks of disease. In a cover letter for the July 2012 ‘‘National Strat-
egy for Biosurveillance’’ report, President Obama wrote: As we saw
during the H1N1 influenza pandemic of 2009, decision makers—from
the president to local officials—need accurate and timely information
in order to develop the effective responses that save lives [1]. The
report itself calls for ‘‘situational awareness that informs decision
making’’ and innovative methods to ‘‘forecast that which we can-
not yet prove so that timely decisions can be made to save lives
and reduce impact.’’ The report echoes a call made by Ferguson
in 2006 in Nature for similar forecasting capabilities [2].

The current paper describes a Bayesian method for detecting
and characterizing infectious disease outbreaks. The method is part
of an overall framework for probabilistic disease surveillance that
we have developed [3], which seeks to improve situational aware-
ness and forecasting of the future course of epidemics. As depicted
in Fig. 1, the framework supports disease surveillance end-to-end,
from patient data to outbreak detection and characterization.
Moreover, since detection and characterization are probabilistic,
they can serve as input to a decision-theoretic decision-support
system that aids public-health decision making about disease-con-
trol interventions, as we describe in [3].

In the approach, a case detection system (CDS) obtains patient
data (evidence) from electronic medical records (EMRs) [4]. The
patient data include symptoms and signs extracted by a natural
language processing (NLP) system from text reports. CDS uses data
about the patient and probabilistic diagnostic knowledge in the
form of Bayesian networks [5] to infer a probability distribution
over the diseases that a patient may have. For a given patient-case
j, the result of this inference is expressed as likelihoods of the
patient’s data Ej, both with and without an outbreak disease dx.
In a recently reported study, CDS achieved an area under the
ROC curve of 0.75 (95% CI: 0.69 to 0.82) in identifying influenza
cases from findings in ED reports [6].

A second component of the system, which is the focus of this
paper, is the outbreak detection and characterization system
(ODS). ODS receives from CDS the likelihoods of monitored
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Fig. 1. Schematic of the probabilistic disease surveillance system. CDS transmits to ODS the likelihoods of each patient’s findings, given the diseases being monitored (see arc
A). ODS computes the probabilities of the epidemic models that were found during its model search. From these models, ODS can compute the probability of an outbreak, as
well as estimate outbreak characteristics, such the outbreak size. For each of the monitored diseases, ODS also computes the prior probability that the next patient has that
disease; it passes this information to CDS to use in deriving the posterior probability distribution over the diseases for that patient (see arc B). Thus, in an iterative, back-and-
forth fashion, diagnostic information on past patients supports outbreak detection, and outbreak detection supports diagnosis of the next patient. This paper focuses on ODS
and arcs A and C in the figure.
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diseases for all patients over time. ODS searches a space of possible
epidemic models that fit the likelihoods well, and it computes the
probability of each model, denoted as P(epidemic modeli | dataall).
The distribution over these epidemic models can be used to
detect, characterize, and predict the future course of disease
outbreaks. The output of ODS may be used to inform decisions
about disease control interventions.

For each day, ODS also computes a prior probability that a
patient seen on that day will have disease dx. To do so, ODS uses
its estimate of (1) the extent of dx in the population, and (2) the
fraction of people in the population with dx who will seek medical
care. These ODS-derived patient priors can be used by CDS to com-
pute the posterior probability that patient j has disease dx, that is,
P(dx | dataj). The probability that a patient has a disease can inform
clinical decisions about treatment and testing for that patient, pub-
lic health case finding, and public health disease reporting.

We previously described the overall disease surveillance system
architecture shown in Fig. 1, including a high-level description of
ODS [3]. The purpose of the current paper is to provide a detailed
mathematical description of the current ODS model and inference
methodology, as well as an initial evaluation of it using data from a
real outbreak and from simulated disease outbreaks. The paper
focuses on epidemiologic applications of ODS, which includes all
the information flowing from left to right that are shown with solid
arrows in Fig. 1.

2. Background

Outbreak detection and characterization (OD&C) is a process
that detects the existence of an outbreak and estimates the number
of cases and other characteristics, which can guide the application
of control measures to prevent additional cases [7]. In this section,
we review representative prior work on OD&C algorithms, and we
describe the novel characteristics of our approach.

Non-Bayesian OD&C algorithms can be classified as temporal
[8–15], spatial [16–22], or spatio-temporal [23]. Almost all of these
approaches follow a frequentist paradigm and share a key limita-
tion: they only compute a p value (or something related to it) of
a monitored signal; given the signal, they do not derive the poster-
ior probability that there is an outbreak of disease dx, which is
what decision makers typically need. It is also difficult for frequen-
tist approaches to incorporate many types of prior epidemiological
knowledge about disease outbreaks.

Bayesian algorithms have been developed for outbreak detec-
tion [24–39]. These algorithms can derive the posterior probabili-
ties of disease outbreaks, which are needed in setting alerting
thresholds and performing decision analyses to inform public-
health decision-making. Bayesian algorithms have also been devel-
oped to perform some types of outbreak characterization
[31,38,40,41]. However, all of these algorithms have a major
limitation: the evidence they receive as input is constrained to
be counts, such as the daily number of patients presenting to out-
patient clinics with symptoms of cough and fever. Although such
counts are informative about outbreaks, they cannot feasibly
express many rich sources of information, such as that found in a
patient’s emergency department (ED) report, which includes a
mix of history, symptoms, signs, and lab information.

In the current paper, we describe a more flexible and general
approach that models probabilistically the available evidence
using data likelihoods, such as the probability of the findings in a
patient’s ED report conditioned on the patient having influenza
(or alternatively some other disease). This approach can use counts
as evidence, but it is not limited to doing so. It leverages the intrin-
sic synergy between individual patient diagnosis and population
OD&C. In particular, in this approach OD&C is derived based on
probabilistic patient diagnostic assessments, expressed as likeli-
hoods. In general, the more informative is available patient evi-
dence about the diseases being monitored, the more informative
are the resulting probabilities of those diseases. For example, evi-
dence that a patient has a fever, cough, and several other symp-
toms consistent with influenza will generally increase the
probability of influenza in that patient, relative to having evidence
regarding only one symptom, such as cough. The higher those
probabilities (if well calibrated), the more informed the OD&C
method will be about which patients have the outbreak disease,
which in turn supports the detection and characterization of the
outbreak in the population. In general, it is desirable to be able
to incorporate whatever evidence happens to be available for each
individual patient (including symptoms, signs, and laboratory
tests) as early as possible in order to support outbreak detection
and characterization. The method described in this paper provides
such flexibility and generality.

In addition, the diagnosis of a newly arriving patient is influ-
enced by prior probabilities that are derived from probabilistic
inference over current OD&C models. To our knowledge, no prior
research (either Bayesian or non-Bayesian) has (1) used a rich set
of clinical information in EMR records as evidence in performing
disease outbreak detection and characterization, nor (2) taken an
integrated approach to patient diagnosis and population OD&C.
While the power of this synergy is intuitive, the contribution of
this paper is in describing a concrete approach for how to realize
it computationally. In addition, we evaluate the approach.

Beyond being able to use a variety of evidence, the approach we
propose can be applied with many different types of disease out-
break models. In the current paper we investigate the use of SEIR
(Susceptible, Exposed, Infectious, and Recovered) compartmental
models that use difference equations to capture the dynamics of
contagious disease outbreaks, which is a highly relevant and
important class of outbreak diseases in public health [42]. SEIR
models have been extensively developed and applied to model
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contagious disease outbreaks [42]. In particular, this paper focuses
on modeling influenza using a SEIR model, which is an important
class of pathogens that cause disease outbreaks and pandemics.

3. Computational methods

This section first describes the general approach we have devel-
oped for deriving the posterior probabilities of epidemic models for
use in detecting and characterizing a disease outbreak. It then gives
a general description of a method for searching over models.

3.1. Model scoring

Our goal is to take clinical evidence in the form of EMR data,
such as real-time ED reports, and to then automatically infer
whether a disease outbreak is occurring in the population at large,
and if so, its characteristics. Let dataall represent all of the available
patient data and let modeli denote a specific model (epidemiologi-
cal hypothesis) of the disease outbreak in the population. By Bayes’
theorem we obtain the following:

Pðmodeli j dataallÞ ¼
Pðdataall;modeliÞ

PðdataallÞ

¼ Pðdataall jmodeliÞ � PðmodeliÞP
modeli2SPðdataall jmodeliÞ � PðmodeliÞ

; ð1Þ

where the sum is taken over all the models in set S that we assume
have a non-zero prior probability (i.e., P(modeli) > 0).

In Eq. (1), P(modeli) is the prior probability of modeli, which is
assessed based on domain knowledge about possible types of out-
breaks and their characteristics. For example, if we are using SEIR
models [42,43], then the basic reproduction number R0 is one such
characteristic of population disease. By convention, we consider
model0 to be a model that represents the absence of a disease
outbreak.

We derive P(dataall | modeli) in Eq. (1) as follows. Given a model,
we assume that the evidence over all patients on each given day,1

which we denote as E(day), is conditionally independent of evidence
on other days, given a model:

Pðdataall jmodeliÞ ¼
YEndDay

day¼StartDay

PðEðdayÞ jmodeliÞ; ð2Þ

where the product is over all the days that we are monitoring for an
outbreak, from an initial StartDay to a final EndDay, which typically
would be the most recent day for which we have data, such as EMR
data. We emphasize that in general modeli is a temporal, disease
transmission model, which represents that the evidence on one
day is related to the evidence of another day; so, the evidence from
one day to the next is not unconditionally independent; rather, in
Eq. (2) the evidence is only assumed to be independent given
modeli.

Let r be the number of patients (e.g., ED patients) on a given day
who have the outbreak disease dx (e.g., influenza) that is being
monitored.2 As we will see below, it is convenient to average over
all values of r to derive the term in the product of Eq. (2) as follows:

PðEðdayÞ jmodeliÞ ¼
X#PtsðdayÞ

r¼0

PðEðdayÞ j r;modeliÞ � Pðr jmodeliÞ; ð3Þ

where #Pts(day) is a function that returns the total number of
patients who visited the health facilities being monitored on a given
day.
1 The unit of time need not be days, but rather could be hours, for example.
2 For simplicity of presentation we assume here that only one disease is being

monitored for an outbreak.
We derive the first term in the sum of Eq. (3) as follows. The evi-
dence for each day consists of the evidence over all of the patients
seen on that day. We denote the evidence for an arbitrary patient j
as Ej(day | r, modeli); for example, it might consist of all the findings
for the patient on that day that are recorded in an EMR by a phy-
sician. We assume that the evidence of one patient is conditionally
independent of the evidence of another patient, given a model and
a value for r. Thus, we have the following:

PðEðdayÞ j r;modeliÞ ¼
Y#PtsðdayÞ

j¼1

PðEjðdayÞ j r;modeliÞ; ð4Þ

Let dx = 1 represent that patient j has the outbreak disease dx, and
let dx = 0 represent that he or she does not. Conditioned on knowing
the disease status of a patient, we assume that the evidence about
that patient’s disease status is independent of r and modeli. Under
this assumption, the term in the product of Eq. (4) is as follows:

PðEjðdayÞ j r;modeliÞ¼ PðEjðdayÞ jdx¼1Þ �Pðdx¼1 j r;modeliÞ
þPðEjðdayÞ jdx¼0Þ �Pðdx¼0 j r;modeliÞ: ð5Þ

Recall that modeli is a model of the outbreak disease dx in the pop-
ulation at large, r is the number of presenting patients on a given
day that have disease dx, and P(dx = 1 | r, modeli) is the prior proba-
bility that a given patient will have dx given r and modeli. Clearly
this probability is influenced by the value of r; however, given r,
knowing modeli would generally provide no additional information
about the chance that the patient has disease dx. Based on this line
of reasoning, we obtain the following:

Pðdx ¼ 1 j r;modeliÞ ¼ Pðdx ¼ 1 j rÞ; and ð6aÞ

Pðdx ¼ 0 j r;modeliÞ ¼ Pðdx ¼ 0 j rÞ: ð6bÞ

Substituting Eqs. (6a) and (6b) into Eq. (5), we obtain the following:

PðEjðdayÞ j r;modeliÞ ¼ PðEjðdayÞ j dx ¼ 1Þ � Pðdx ¼ 1 j rÞ
þ PðEjðdayÞ j dx ¼ 0Þ � Pðdx ¼ 0 j rÞ: ð7Þ

For a given value of r, we derive the prior probability that a patient
has disease dx as follows:

Pðdx ¼ 1 j rÞ ¼ r
#PtsðdayÞ ;

where recall that #Pts(day) is the total number of patients on that
day who sought care, which is a known quantity. We also have that
P(dx = 0 | r) = 1 – P(dx = 1 | r).

The likelihood terms P(Ej(day) | dx = 1) and P(Ej(day) | dx = 0) in
Eq. (7) are provided by CDS, which is described in detail in [4]. In
this way, CDS passes patient-centric information to ODS for it to
use in performing disease detection and characterization. An
important point to emphasize is that Ej can represent an arbitrarily
rich and diverse set of patient information; in the limit, it could rep-
resent everything that is known about the patient at the time that
care is sought. This point highlights the generality of the approach
being described here in terms of linking the clinical care of individ-
ual patients to the epidemiological assessment of disease in the
population.

We now return to Eq. (3) to derive P(r | modeli), which will com-
plete the analysis. Let n represent the number of individuals who
according to modeli are infected with a given pathogen that is caus-
ing dx in the population on a particular day and are subject to vis-
iting the ED because of their infection. Let h denote the probability
that a person in the population with dx will seek care and thereby
become a patient who is seen on the given day. Assuming these
patients seek care independently of each other, we obtain the
following:

Pðr jmodeliÞ ¼ Binomialðr; n; hÞ; ð8Þ
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where Binomial(r; n, h) denotes a binomial distribution over r, given
values of n and h. If r > n, then Binomial(r; n, h) = 0.

Eq. (8) assumes that n and h are known with certainty; however,
in general they are not. By considering the distribution of the val-
ues of n, we generalize Eq. (8) to be the following:

Pðr jmodeliÞ ¼
XNpop

n¼0

Binomialðr; n; hÞ � Pðn jmodeliÞ; ð9Þ

where Npop is the size of the population of interest, which we
assume is constant from StartDay to EndDay; if we wish to model
that it varies, we can use Npop(day), which is a function that returns
the size of the population of interest on each day.

We also can integrate over the distribution of the values of h.
Although we do not know h, we will assume that its value—what-
ever it may be—persists over the course of a given disease out-
break. Thus, we modify Eq. (2) to become the following:

Pðdataall jmodeliÞ ¼
Z 1

h¼0
f ðhÞ �

YEndDay

day¼StartDay

PðEðdayÞ jmodeliÞdh ð10Þ

where the prior probability density function f(h) must be specified,
and the term in the product is given by Eqs. (3)–(9), as before.

The combination of the above equations leads to the following
overall solution to Eq. (2):

Pðdataall jmodeliÞ ¼
Z 1

h¼0
f ðhÞ �

YEndDay

day¼StartDay

X#PtsðdayÞ

r¼0

½PðEðdayÞ j rÞ

�
XNpop

n¼r

Binomialðr; n; hÞ � Pðn jmodeliÞ�dh; ð11Þ

where P(E(day) | r) is defined as follows:

PðEðdayÞ j rÞ ¼
Y#PtsðdayÞ

j¼1

PðEjðdayÞ j dx ¼ 1Þ � r
#PtsðdayÞ

�

þPðEjðdayÞ j dx ¼ 0Þ � 1� r
#PtsðdayÞ

� ��
:

Note that the term P(E(day) | r) in Eq. (11) is independent of modeli;
thus, it can be computed once, cached, and then used in efficiently
scoring many different models.

In Eq. (11), the key modeling components are P(Ej(day) | dx) and
P(n | modeli). The first component is a clinical inference and the
second is an epidemiological one. Eq. (11) provides a principled
way of combining these two components in deriving
P(dataall | modeli), from which we derive P(modeli | dataall) in Eq.
(1), which serves as a score of modeli.

3.2. Model search

Fig. 2 provides as pseudocode a general method for searching
the space of epidemiological models, using the model-score calcu-
lations described in the previous section.

ModelSearch creates a set of models that are stored in array V,
along with the posterior probability of each model. The function
GenerateModel in ModelSearch is left general, because there are
many ways to implement it. In the next section, we discuss an
implementation that randomly samples the epidemiological
parameters of a SEIR model over specified value ranges.

Relative to the models generated, we can estimate numerous
quantities of interest. For example, the probability that an
outbreak has occurred during the period being monitored is one
minus the probability that no outbreak has occurred, which is
1 � P(model0 | dataall), where model0 is the non-outbreak model.
Recall that P(model0 | dataall) is stored in V[0].
Assuming the presence of an outbreak, we can estimate its
characteristics using the most probable outbreak model in array
V, including the outbreak’s estimated start time and epidemic
curve, as well as model parameters, such as R0. Alternatively, we
can estimate these characteristics by model averaging over all
the models in V, weighted by the posterior probability of each
model, which is also stored in V.
4. An implementation for influenza monitoring

This section describes details of applying the general approach
described in the previous section to monitor for influenza out-
breaks among humans in a given region.

4.1. SEIR model

We used a standard SEIR model to model the dynamics of an
influenza outbreak in a population using difference equations
[42,43]. The model contains a compartment called Susceptible
which represents the number of individuals in the population
who are susceptible to being infected by a given strain of influenza.
The model also represents that other individuals may be in an
Exposed and Infected compartment, in an Infectious compartment,
and finally in a Recovered compartment, which includes those indi-
viduals who are immune due to prior infection or immunization.
Since the compartments are mutually exclusive and complete,
the sum of the counts taken over the four compartments equals
the population size. We set the initial Exposed and Infected count
to zero for all models. We set the initial Recovered count to be
the population size minus the initial Susceptible. We initialized
the Susceptible and Infectious counts as described below, which
we consider as parameters of a SEIR model.

Movement of individuals from one such compartment to the
next over time is specified by a set of differential or difference
equations. We used a difference equation implementation. These
equations include three parameters that also define an instance
of the class. The basic reproduction number (R0) is the expected
number of secondary cases of infection arising from a primary case.
The latent period is the expected time from when an individual is
infected to when he or she becomes infectious. The infectious period
is the expected time an individual is infectious. Given a specifica-
tion of these parameters, a SEIR model derives the number of
individuals in each of the four compartments at each unit of time
(e.g., each day).

Thus, in our implementation for the disease Influenza a given set
of values for the parameters in a SEIR model defines a modeli in Eq.
(1). In the GenerateModel function of the ModelSearch procedure in
Fig. 2, ODS samples over a range of values of these SEIR parameters
in seeking models that score highly. The prior probability of a
modeli, P(modeli), is equal to the probability of the SEIR parameter
values; we discuss this prior probability in more detail below.

We use the SEIR model to determine the probability distribu-
tion P(n | modeli), as shown in Eq. (9), where n is the number of
individuals with influenza who are infectious on a given day. Since
a SEIR model is deterministic, the probability simplifies to
P(n | modeli) = 1 when n is the value given by the SEIR model on
that day; P(n | modeli) = 0 for other values of n. However, on a given
day the number of patients in the population with influenza who
visit the ED remains a binomial probability distribution, as shown
in Eq. (9).

4.2. Prior probabilities

ODS contains three types of prior probability distributions. One
type involves the distribution over the six parameters shown in
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Table 1. The table shows the bounds over which we sampled each
parameter independently and uniformly in performing model
search. We chose the bounds for R0, the latent period, and the
infectious period because they correspond to plausible ranges,
based on past influenza outbreaks [42]. The initial susceptible
parameter range corresponds to an estimate of the population size
of Allegheny County, Pennsylvania, where we are monitoring for
influenza outbreaks; the upper bound is the estimated population
size, based on 2009 estimates [44], and the lower bound is 90% of
the population size, corresponding to an estimate that as many as
10% of the population may have been exposed to the influenza out-
break strain previously. The number of infectious individuals on
the first day of the outbreak is assumed to be between 1 and 100.

The second type of prior probability involves the distribution
over h, as shown in Eq. (10). We used a uniform discrete distribu-
Table 1
The ranges over which the model parameters were sampled.

Parameter Lower bound Upper bound

R0 1.1 1.9
Latent period (days) 1 3
Infectious period (days) 1 8
Initial susceptible 1,096,645 1,218,494
Initial infectious 1 100
Outbreak start day 1 Day of analysis
tion over the following values for h: 0.0090, 0.0095, 0.01, 0.0105,
0.011, which correspond to a range of values with 0.01 as the med-
ian. Appendix A describes how 0.01 was derived. The other values
from 0.0090 to 0.011 correspond to a range that is ±10% around
0.01. For computational efficiency in this initial implementation,
in Eq. (10) we used a maximum a posteriori (MAP) assignment of
h in place of the integral shown there.

The third type of prior probability is the probability of an influ-
enza outbreak occurring during a yearlong period. We estimate
this probability to be 0.9 and distribute it evenly over the year. A
more refined prior would be non-uniform; we discuss this issue
in the Discussion section.
4.3. Filtering sampled models

ODS uses the previously listed parameter ranges to generate
models which can describe the disease dynamics in the population.
However, not all models generated using these ranges can be con-
sidered realistic. For example, it is possible to construct a SEIR
model from the listed ranges so that the peak date is over 600 days
after the start of an outbreak. We would not consider such a model
realistic since there is no evidence to support that a single influ-
enza outbreak can last that long.

To avoid including such models in its sample set, ODS can check
the dynamics of a sampled model, and if it does not satisfy some
basic criteria for a realistic outbreak, the model is discarded and
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replaced with a new sample, which is checked in the same way. For
real data, we assumed that a model is valid if its peak occurs within
a 1-year period from the earliest possible start date of the out-
break. For simulated data, we assumed a model is valid if it pre-
dicts an outbreak to last no more than 240 days; the predicted
outbreak is defined to be over when the number of people pre-
dicted to be infected is less than 1.

4.4. Modeling non-influenza influenza-like illness

An important task when monitoring for an influenza outbreak is
to model patients who present to an ED showing symptoms consis-
tent with influenza, but who do not actually have influenza. Such
patients are described as exhibiting a non-influenza influenza-like
illness (NI-ILI). Cases of NI-ILI are frequent enough during both out-
break and non-outbreak periods to form a baseline of influenza-like
disease. This baseline should be incorporated when applying the
modeling approach described in Section 3 to detect and character-
ize influenza outbreaks.

Recall the term P(Ej(day) | dx = 0) � P(dx = 0 | r) from Eq. (7). For
the disease influenza, dx = 0 indicates that patient j does not have
influenza. This could mean that patient j has NI-ILI, or neither
NI-ILI nor influenza, which we will denote by the term other. Thus,
we can compose this term into the following parts:

PðEjðdayÞ jdx¼0Þ �Pðdx¼0 j rÞ¼ PðEjðdayÞ jdx¼NI-ILIÞ �Pðdx¼NI-ILI j rÞ
þPðEjðdayÞ jdx¼ otherÞ �Pðdx¼ other j rÞ ð12Þ

CDS is applied to derive P(Ej(day) | dx = other) in Eq. (12). In this
paper, the evidence Ej(day) that we used consisted only of patient
symptoms and signs. In terms of symptoms and signs, influenza
and NI-ILI may appear very similar. Therefore, as a first-order
approximation, we assumed that the likelihood of NI-ILI evidence
is the same as that of influenza evidence. This assumption allows
the use of the influenza model to derive the likelihoods for the
NI-ILI model:

PðEjðdayÞ j dx ¼ NI-ILIÞ ¼ PðEjðdayÞ j dx ¼ 1Þ; ð13Þ

where dx = 1 signifies influenza being present, as above. In light of
Eq. (13), CDS uses the influenza Bayesian network model to derive
likelihoods for NI-ILI patient cases.

We now return to Eq. (12). Since we are modeling an NI-ILI
baseline, we assume the probability that a patient has NI-ILI is
independent of the number of patients with influenza, and thus:

Pðdx ¼ NI-ILI j rÞ ¼ Pðdx ¼ NI-ILIÞ ð14Þ

Using Eqs. (12)–(14), Eq. (7) becomes the following:

PðEjðdayÞ j rÞ ¼ PðEjðdayÞ j dx ¼ 1Þ � ½Pðdx ¼ 1 j rÞ þ Pðdx ¼ NI-ILIÞ�
þ PðEjðdayÞ j dx ¼ otherÞ � Pðdx ¼ other j rÞ ð15Þ

where P(dx = other | r) = 1 � P(dx = 1 | r) � P(dx = NI-ILI) such that
only values of r are considered that render non-negative values of
P(dx = other | r).

Appendix B contains a derivation of the term P(dx = NI-ILI)
immediately above. As explained there, we model this probability
as being time varying from day to day.

5. Experimental methods

We performed an evaluation of ODS using both a real influenza
outbreak as well as simulated outbreaks. We applied ODS to real
clinical data recorded by EDs in Allegheny County, PA in the time
surrounding an H1N1 influenza outbreak in the fall of 2009. These
results provide a realistic case study of how ODS might perform
during a real outbreak in the future. On the other hand, simulated
outbreaks allow the evaluation of ODS over a wide range of possi-
ble outbreak scenarios and have the advantage that the complete
and correct course of the outbreak is available for analyzing the
ability of ODS to detect and characterize outbreaks of influenza.
Since simulations are always simplifications of reality, however,
these results should be interpreted with appropriate caution.

ODS was implemented using Java. The timing results reported
here were generated when using a PC with a 64-bit Intel Xeon
E5506 processor with a 2.13 GHz clock rate and access to 4 GB of
RAM, which was running Windows 7.

5.1. A real influenza outbreak

We analyzed the performance of ODS on real data from the
2009 H1N1 influenza outbreak in Allegheny County (AC). The real
data were provided to ODS by CDS in the form of disease likeli-
hoods generated for ED patients from seven hospitals in AC for
each day from June 1, 2009 through December 31, 2009. We
selected four analysis dates during the outbreak and ran ODS on
each of those dates. In running ODS, we started the monitoring
for an influenza outbreak on June 1, 2009. We applied ODS in the
same way as described in Section 5.2.2 below, with uniform sam-
pling over the ranges just as they appear in Table 1.

As a measure of outbreak detection, we report the posterior
probability of an outbreak at each of the four analysis dates. As a
measure of outbreak characterization, we compared the peak dates
predicted by ODS with the peak dates of retail sales of thermome-
ters in AC. Previously, we showed that retail thermometer sales
have a strong positive correlation with ED cases that are symptom-
atic of influenza [45].

5.2. Simulated outbreaks

5.2.1. Generating simulated outbreak data sets
We used a SEIR model to generate 100 influenza outbreaks. The

epidemiological parameters defining the generated outbreaks were
obtained by uniformly sampling over the ranges defined in Table 1,
with the following exceptions. First, we assumed that the initial
number of infectious individuals was 50, which corresponds to a
moderate initial number. Second, we assumed that the outbreak
start day was day 32, relative to the beginning of the simulation.
For each day of an outbreak, the SEIR model determined the
number of patient cases with influenza. For an individual with
influenza, we assumed that the probability of him/her seeking care
at an ED on a given day was 1/100, for the reasons given in
Appendix A. We assumed individuals with influenza sought care
independently of each other. For a simulated ED patient with influ-
enza, we sampled with replacement his/her ED report from a pool
of real ED reports of patients who were PCR positive for influenza.
We combined this time series of simulated influenza cases with a
time series of patient cases that did not exhibit influenza, which
is described next.

We considered two types of patient cases that did not exhibit
influenza. One type had non-influenza influenza-like illness
(NI-ILI). The other type had neither influenza nor NI-ILI, and we
labeled these as Other cases. We determined the number of NI-ILI
cases on a given day by sampling from a Poisson distribution.
The mean lNI-ILI of the distribution was determined as follows.
Let lED denote the average number of total cases presenting to
the monitored EDs; based on data from the summer months of
2009, 2010, and 2011 for the EDs we are monitoring in Allegheny
County, we estimated lED to be 590 cases per day. We used
summer months, because an influenza outbreak is unlikely to have
occurred during those periods. We used lNI-ILI = 0.1 � lED, where
the fraction of 0.1 is based on an estimate of the fraction of
NI-ILI cases during the summer months (see Appendix B for
details). If n NI-ILI cases were simulated as presenting to the ED
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on a given day, we sampled with replacement n ED reports from
the set of real influenza cases described above. Since in this
evaluation CDS used only symptoms and signs in the ED reports
to diagnosis influenza, we used influenza cases to represent the
presentation of other types of influenza-like illness.

We determined the number of Other cases on a given day by
sampling from a Poisson distribution with a mean fraction of
0.9 � lED. For each of these cases, we sampled an ED report from
a pool of real ED reports of patients who (1) were negative for
influenza according to a PCR test, or who did not have a PCR test
ordered, and (2) did not have symptoms consistent with
influenza-like illness.

All cases were provided to CDS, which processed them and pro-
vided likelihoods to ODS. For each day of a simulation, the simu-
lated influenza patients who visited the ED were combined with
the simulated non-influenza patient cases who visited the ED
(NI-ILI and Other cases) to create the set of all patients who visited
the ED on that day. One hundred such simulated datasets were
generated.

5.2.2. Applying ODS to the simulated outbreaks
We applied a version of ODS that implements the ModelSearch

algorithm in Fig. 2. ModelSearch sampled 10,000 SEIR models; that
is, once 10,000 SEIR models were sampled, the stopping condition
in the repeat statement of ModelSearch was satisfied. The Generate-
Model function generated these SEIR models according to the
methods described in Sections 4.1–4.3. In particular, in generating
a SEIR model the parameters in Table 1 were uniformly randomly
sampled over the ranges shown there and then filtered to retain
realistic models.

We performed Bayesian model averaging over the 10,000 SEIR
models to predict the total size of the outbreak for each of the
100 simulated outbreaks. Thus, the prediction of outbreak size
from each model was weighed by the posterior probability of that
model, which was normalized so that the sum of the posterior
probabilities over all 10,000 models summed to 1. To predict the
peak date, we derived a model averaged daily influenza incidence
curve, by Bayesian model averaging over the 10,000 influenza
incidence curves. We then identified the peak date in the model
averaged curve and used it as the predicted peak date.

5.2.3. Analyzing ODS performance on simulated outbreaks
We quantified outbreak progression as being the fraction at

some point of the total number of outbreak cases that occurred over
the entire course of the outbreak. For example, 0.5 corresponds to
half of the total cases having had occurred. We also derived the
corresponding number of days into the outbreak.

We analyzed the ability of ODS to detect and characterize out-
breaks. We analyzed the posterior probability that an outbreak is
occurring on a given date, as computed by ODS, in order to assess
the timeliness of detection. An outbreak probability is only useful
if it is high when an outbreak is occurring and low when an out-
break is not occurring. Thus, for a given outbreak posterior proba-
bility P, we also report an estimate of the fraction of days during a
non-outbreak period when ODS would predict an outbreak proba-
bility as being greater than or equal to P. We assume that outbreak
probabilities from ODS are being generated on a daily basis.

We used two measures of population-wide outbreak character-
ization performance. First, we measured how well ODS estimated
the total number of outbreak cases (including future cases) as the
outbreak progressed. As a quantitative measure, we used |
actual_number – estimated_number | /actual_number, which is
the relative error (RE). Second, we measured how well ODS
estimated the peak day of an outbreak, using | actual_peak_date –
estimated_peak_date |, which is the absolute error that is
measured in days.
6. Experimental results

6.1. Results using real data

On August 15, 2009 the posterior probability of an influenza
outbreak according to ODS was about 26%, which is moderate,
but certainly not definitive. By September 8 the probability had
risen to about 97%, which is 41 days before the October 19 peak
date of the outbreak, as discussed below. Table 2 shows the poster-
ior probabilities on September 8 and three subsequent dates in
2009. The table also shows the predicted peak date of the outbreak
according to ODS and the peak date according to thermometer
sales.

For each target date, ODS estimated the past, present, and
future daily incidence of newly infectious individuals in the popu-
lation. The solid plot line in Fig. 3 shows those results for predic-
tions made on September 8. The gray area in the figure indicates
dates beyond September 8, and thus these are predictions of future
cases. The dotted line shows the number of thermometer sales in
AC on each day, as an independent indicator of the number of
new influenza cases on that day. The peak number of thermometer
sales occurred on October 19 (see small circle on the dotted line in
Fig. 3), which we will use as the presumptive true peak date.
Figs. 4–6 show the results for the other three target dates.

The computational run time for the analyses shown in Table 2
ranged from 11 min for the September 8 analysis to 29 min for
November 29 analysis. Later dates required more computer time,
due to there being more days over which to consider that an
outbreak could have begun.
6.2. Results using simulated data

Table 3 shows the results for the simulated outbreaks. As an
example, consider row 3 in which the mean fraction of outbreak
cases is 0.064, corresponding to about 52 days into the outbreak
on average. The ODS posterior probability of the outbreak is about
97% on average. The mean error in estimating the total number of
outbreak cases at that point is approximately 11%. The error in esti-
mating the peak day at that point is about 4 days. Only in about 1
in 200 days (= 0.005) will there be a false-positive prediction of an
outbreak, relative to a posterior probability of 97%.
7. Discussion

The plots in Figs. 3–6 show how well ODS was able to predict
the peak day of a real outbreak that occurred in 2009. On Septem-
ber 8 (Fig. 3), ODS predicted that a peak incidence of infectious
influenza cases would occur on October 19, which is the presump-
tive true peak date, based on counts of thermometer sales. On
October 12 (Fig. 4), the ODS prediction of the peak date is 22 days
beyond the true peak date. Thus, the peak prediction worsened
from September 8 to October 12. We conjecture that this result
may be influenced by the actual outbreak being asymmetric, as
indicated by the thermometer counts, where there is a more grad-
ual slope before the peak day than after it. The asymmetry could
result from vaccinations, a change in the frequency and extent to
which people are in physical contact with each other, and other
factors, which potentially could be modeled in ODS. In contrast,
SEIR models are largely symmetric, which biases ODS toward fit-
ting epidemiological curves that are also symmetric. Alternatively,
it is possible that the peak count of thermometer sales in the region
does not correspond the peak day of incidence of influenza cases in
the region; however, the results in the next paragraph suggest it is
a good estimate. Other reasons for the peak prediction results are



Table 2
Results of the application of ODS to real data from EDs in Allegheny County Pennsylvania at four dates in the fall of 2009.

ODS analysis
date

Probability outbreak is
occurring

Peak date of thermometer
sales

ODS predicted peak
date

Thermometer peak minus ODS
peak

September 8 0.973 October 19 October 19 0
October 12 >0.999 October 19 November 10 �22
October 26 >0.999 October 19 October 26 �7
November 29 >0.999 October 19 October 17 2

Fig. 3. Incidence of newly infectious influenza cases calculated by ODS on September 8, 2009 (solid line). Daily thermometer sales are shown as an independent indicator of
the peak date of the influenza outbreak (dotted line).

Fig. 4. Incidence of newly infectious influenza cases calculated by ODS on October 12, 2009.
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Fig. 5. Incidence of newly infectious influenza cases calculated by ODS on October 26, 2009.

Fig. 6. Incidence of newly infectious influenza cases calculated by ODS on November 29, 2009.
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possible as well, and it is an open problem to investigate such
possibilities.

On October 26 (Fig. 5) ODS predicts that the peak has occurred
at that point. On November 29 (Fig. 6), which is late into the out-
break, ODS predicts that the peak occurred on October 17, which
is two days earlier than the peak predicted by thermometer sales.
Since these two peak dates were derived by entirely different data
sources and methods, it provides support that the peak date was
close to October 19.

The simulation results in row 3 of Table 3 indicate that an out-
break is typically detected as highly likely at 52 days after it
started, at which point about 6% of the outbreak cases have
occurred. At 56 days into the outbreak, which corresponds to the
first 10% of outbreak cases, the total number of cases (past, present,
and future) are estimated with an error rate of about 9%, and the
peak is estimated within an error of about 3 days. Since the peak
day occurred on average at 74 days into the outbreak, these results
provide support that influenza outbreaks can be detected and char-
acterized well before the peak day is reached. Such information
could help inform public-health decision making.

ODS makes use of epidemiological knowledge about influenza
disease transmission in the form of prior distributions over its
model parameters, which include parameters for influenza in a
SEIR model and other parameters. When coupled with probabilistic



Table 3
The results of an evaluation involving 100 simulated influenza outbreaks. Each cell contains a mean value followed in parenthesis by the 95% confidence interval around that
mean.

Mean fraction of
outbreak cases

Mean number of
days into the
outbreak

Mean posterior probability P
that an outbreak is occurring

Mean relative error in estimating the
total number of outbreak cases

Mean absolute error of
estimating the peak day

Mean false positive
rate relative to P

0.001 17.6 (17.0, 18.3) 0.125 (0.118, 0.132) 0.874 (0.867, 0.881) 13.4 (11.8, 15.0) 0.695 (0.665, 0.726)
0.01 35.8 (34.5, 37.2) 0.363 (0.316, 0.410) 0.649 (0.606, 0.692) 9.3 (8.2, 10.4) 0.283 (0.235, 0.331)
0.064 51.9 (50.0, 53.9) 0.972 (0.947, 0.996) 0.106 (0.084, 0.128) 4.1 (3.4, 4.9) 0.005 (0.00, 0.01)
0.1 56.0 (53.9, 58.1) 0.981 (0.962, >0.999) 0.086 (0.068, 0.104) 3.2 (2.6, 3.9) 0.003 (0.000, 0.009)
0.2 62.8 (60.4, 65.2) 0.996 (0.995, 0.997) 0.069 (0.051, 0.087) 3.6 (2.9, 4.3) 0.00 (0.00, 0.00)
0.5 74.2 (71.3, 77.1) 0.997 (0.996, 0.999) 0.063 (0.051, 0.074) 2.5 (1.9, 3.0) 0.00 (0.00, 0.00)
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case detection based on ED reports, this knowledge appears suffi-
cient to achieve outbreak detection and characterization that are
early enough to be relevant to disease-control decision making.
7.1. Extensions

We have applied the ODS framework in ways that go beyond
those described above. We have used it to predict a posterior dis-
tribution over outbreak model parameters, such as R0 and the
length of the infectious period, as well as outbreak characteristics,
such as the estimated length of an outbreak. We have also applied
ODS to predict the prior probability that the next patient in the ED
will have influenza, which can be used in a patient diagnostic sys-
tem. Patient data allow ODS to infer outbreaks in the population,
which in turn allows ODS to infer the prior probability of patient
disease. Thus, ODS provides a principled way of linking popula-
tion-health assessment and patient diagnosis [3,4]. The predictions
of ODS can also be used in support of decision analytic systems
that help public health decision makers decide how to respond
to disease outbreaks [3], a functionality we have demonstrated in
a decision-support tool called BioEcon, which can compute a Monte
Carlo sensitivity analysis of disease control strategies over a set of
ODS-scored models.3
7.2. Limitations

A limitation of the current implementation of ODS is its use of
SEIR models. While these models provide useful approximations
to many real outbreaks, which can be computed quickly, they
may not adequately capture the complexities of some outbreaks.
The results reported above for a real outbreak in 2009 suggest that
the apparent asymmetry of the outbreak may have contributed to
the error in predicting the peak date by ODS. It is an interesting
open problem to investigate models with more complex behavior
than the standard SEIR modeling framework. Such extensions
could include, for example, SEIR models in which the parameters
(e.g., R0) are modeled as changing over time in specific ways, in
order to capture changes in the dynamics of person to person con-
tact. As another example, the SEIR model could be augmented by a
model of how ongoing vaccinations in the population for the out-
break disease are affecting the number of people who are suscep-
tible to infection by that disease. As a third example, we could
replace or augment the use of SEIR models with agent-based mod-
els, which can capture many details of a disease outbreak.

Within the SEIR-model framework reported here, we assumed
that a single influenza outbreak would occur with a probability
of 0.9 per year; its start date was evenly distributed over all
365 days of the year. As mentioned in Section 4.2, a more refined
prior probability distribution over the start date would be non-uni-
3 BioEcon and its user manual can be downloaded from http://research.rods.pit-
t.edu/bioecon; the use of BioEcon with ODS is described in Chapter 8 of that manual.
form, which might well improve the performance of ODS on real
influenza outbreak data. We note that the distribution over the
start date of an outbreak is not the same as the distribution over
the date the outbreak will be detected by public health. On the
start date, there may be only a few cases of the disease in the pop-
ulation, and the start date can precede the detection date by many
months. Quantifying the prior probability distribution over the
start date for an influenza (or other type) outbreak is an interesting
and challenging problem for future research.

There are also limitations in the experiments reported here. The
experiments that used simulated data were useful in evaluating a
range of outbreak scenarios. The overall performance of ODS
appears good, which provides some support for its utility. How-
ever, evaluations based on simulated data are subject to bias. In
particular, we used the same class of models (SEIR) for both out-
break simulation and outbreak detection. Moreover, we generated
outbreaks using a range of model parameters that defined the uni-
form priors for those parameters in ODS. Thus, it seems reasonable
to view the simulation results reported here as an upper bound on
the performance we would expect from ODS in detecting and char-
acterizing a real influenza outbreak. In future work, it will be useful
to evaluate the performance of ODS using many more simulations,
including those in which the assumptions of the simulator are at
odds with the assumptions of ODS. It would also be interesting
to measure the performance of ODS, as the amount of clinical data
per patient is attenuated from (for example) all the findings in a
full ED report, to a smaller set of selected findings, to just the chief
complaint finding(s).

The evaluation using real data focused on an influenza outbreak
in 2009 that was particularly interesting because Influenza
A(H1N1)pdm was a new viral clade that caused a large and con-
cerning pandemic that year. The ability to detect such pandemics
is one of the primary reasons for developing systems such as
ODS. Thus, the results of that evaluation are of special interest.
Nonetheless, it will be important in future work to evaluate the
performance of ODS on a larger set of real outbreaks.

It will also be important to compare the performance of ODS to
other methods of outbreak detection and characterization, includ-
ing some of the methods reviewed in Section 2. As mentioned in
that section, to our knowledge there are currently no other meth-
ods that can use a rich set of patient findings as evidence in per-
forming outbreak detection and characterization. Thus,
comparisons to ODS will need to provide each method with the
type of evidence it can use, while maintaining case consistency
across the different types of evidence being used by each method.
7.3. Future research

The ODS framework supports multiple directions for future
research which appear promising. The framework is very flexible
in terms of the type of data that are used as clinical evidence for
given individuals, such as ED patients. The data could be derived

http://research.rods.pitt.edu/bioecon
http://research.rods.pitt.edu/bioecon
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from free text using NLP, as reported here, as well as coded data,
such as laboratory results. Moreover, the type of evidence available
for one individual can be different from that available for another.
For example, for some patients we may only know their chief com-
plaint and basic demographic information. For others, we may
have a rich set of clinical information for the EMR. The use of
heterogeneous data in outbreak detection and characterization is
an open problem for future investigation.

The ODS framework is also flexible in supporting different types
of epidemiological models. For concreteness, in this paper we focus
on using SEIR models; however, other epidemiological models can
be readily substituted. This paper also focuses on influenza as an
example of an outbreak disease. Nevertheless, influenza is not
‘‘hard coded’’ into ODS. Rather, ODS allows other disease models
to be used. It is possible for different types of outbreak diseases
to be modeled using different types of epidemiological models.
For example, we could use a SEIR model for modeling influenza
and a SIS (Susceptible-Infectious-Susceptible) model for modeling
gonorrhea.

ODS currently assumes at most one disease outbreak is influ-
encing the data (during the interval from StartDay to EndDay).
However, the general framework can accommodate the detection
of multiple outbreaks that are concurrent or sequential. An exam-
ple is the detection of an RSV outbreak that begins and ends in the
middle of an influenza outbreak. Developing efficient computa-
tional methods for detecting and characterizing multiple, overlap-
ping outbreaks is an interesting area for future research.

An important problem is to detect and characterize an outbreak
disease that is an atypical variant of a known disease or is an
unmodeled disease, perhaps due to it being novel. There are two
main patterns of evidence that can suggest the presence of such
events. One occurs at the patient diagnosis level when modeled
diseases match patient findings relatively poorly for some patients.
Another occurs at the epidemiological modeling level when the
estimates of the epidemiological parameters for an ongoing out-
break do not match well the parameter distributions of any of
the currently modeled disease outbreaks. It is an interesting open
problem to develop a Bayesian method for combining these two
sources of evidence to derive both (1) a posterior probability of
an outbreak being an atypical variant of some known disease and
(2) a posterior probability that an outbreak is unmodeled, and thus,
possibly novel.

Currently, ODS detects and characterizes outbreaks in a specific
region of interest, such as a county. It will be useful to extend it to
detect and characterize outbreaks within subregions of a given
region. Each subregion may have a different epidemiological
behavior (e.g., a different epidemiological curve in the case of an
outbreak of influenza) than the other subregions. Being able to
characterize the individual and joint behavior of these subregions
could help support public health decision making.

As the capabilities of ODS are extended, it will be important to
further improve its computational efficiency. One direction is to
use more sophisticated methods to sample the model parameters,
rather than use simple uniform sampling over a range of values.
We could, for example, apply dynamic importance sampling [46],
which tends to sample the parameters in the regions of the model
space that appear to contain the most probable models. We might
also assess more informative prior probability distributions over
the parameters.
8. Conclusions

This paper describes a novel Bayesian method called ODS for
linking epidemiological modeling and patient diagnosis to perform
disease outbreak detection and characterization. The method was
applied to develop a system for detecting and characterizing influ-
enza in a population from ED free-text reports. A SEIR model was
used to model influenza. A Bayesian belief network was used to
develop an influenza diagnostic system, which takes as evidence
findings that are extracted from ED reports using NLP methods.
An evaluation was reported using simulated influenza data and a
real outbreak of influenza in the Pittsburgh region in 2009. The
results support the approach as promising in being able to detect
outbreaks well before the peak outbreak date, characterize when
the peak will occur, and estimate the total size of the outbreak in
the case of simulated outbreaks. The general ODS framework is
flexible and supports many directions for future extensions.
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Appendix A.

This appendix describes the derivation of 1/100 as an estimate
of the probability that an individual who is infectious with influ-
enza on a given day of the outbreak will visit the ED on that day
due to the influenza. This posterior probability appears in Section
4.2 of the paper. We factor it into the following four component
probabilities:

Pðever infectious with influenza j infectious with influenza on day iÞ¼1:0 ðA1Þ
Pðever symptomatic with influenza jever infectious with influenzaÞ¼0:67 ðA2Þ
Pðever visit the ED with influenza j ever symptomatic with influenzaÞ¼0:09 ðA3Þ
Pðvisit ED on day i with influenza j ever visit the ED with influenzaÞ¼1=6 ðA4Þ

In the events appearing in the probabilities above, the word ‘‘ever’’
refers to any time during a given individual’s infection with a given
case of influenza. Eq. (A1) is definitional. Eq. (A2) is based on assum-
ing that only about 67% of individuals who become infected with
influenza exhibit symptoms of influenza [47]. Eq. (A3) is based on
a telephone survey performed in New York City in 2003, which
found that about 9% of people who had symptoms of influenza said
they visited an ED because of that episode of illness [48], (Table 2).
Eq. (A4) assumes that if an individual will visit the ED due to symp-
toms of influenza, then (1) the symptoms persist for an estimated
six days [47], and (2) the individual is equally likely to visit the
ED on any one of those six days.The probability of interest is taken
to be the product of the above four probabilities:

Pðvisit ED on day i with influenza j infectious with influenza on day iÞ
¼1�0:67�0:09�1=6�1=100:
Appendix B.

This appendix describes the method we applied to derive the
prior probability of non-influenza influenza-like-illness (NI-ILI)
on a given day. This quantity appears as P(dx = NI-ILI) in Eq. (15).
A new value of this prior probability is derived for each day that
is being monitored for an outbreak.

Let d denote the variable day that appears in Eq. (15). It might,
for example, denote the current day in a system that is monitoring
for outbreaks of disease. We would like to estimate the fraction Q
of patient cases on day d that present for care due to having NI-ILI.
We will then use fraction Q as our estimate of P(dx = NI-ILI) on day
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d. Let Qd be an estimate of Q on day d. Our goal is to estimate Qd

well.
We first estimated values for Q during a period when we pre-

sume there is no outbreak of influenza. Since influenza outbreaks
are unlikely in the summer, we used the summer months for this
purpose. For each day during the summer period, we found the
value for the prior P(dx = NI-ILI) that maximized Eq. (3), assuming
that each patient case had either a NI-ILI or an Other disease. Let
MLPd denote this maximum likelihood prior for day d. We then
derived the mean l and standard deviation r of these MLPd values
over a period of summer days. Assuming a normal distribution, we
used l and r to derive a threshold T such that only about 2.5% of
MLPd values are expected to be higher.

When monitoring for an outbreak on day d, we derived Qd as
follows. If MLPd�1 < T, then Qd := MLPd�1. The rationale is that an
MLP value yesterday (d-1) that is below T is consistent with ILI
today (d) being due to non-influenza. However, if MLPd�1 P T then
an influenza outbreak is suspected, because it is unlikely that NI-ILI
in the population could account for such a high extent of ILI. In that
case, we estimate Qd as the mean value of recent, previous values
of Q. In particular, we estimate Qd as being equal to the mean value
of Q over the previous 21 days prior to d; if fewer than 21 days are
available, we use the number that is available; when d = 1, no pre-
vious values are available, so we use Q1 = l. The rationale for using
this method is that the current rate of NI-ILI is likely to be similar
to its rate in the recent past.
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