A latent variable model for multivariate discretization
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Abstract

We describe a new method for multivariate
discretization based on the use of a latent
variable model. The method is proposed as
a tool to extend the scope of applicability of
machine learning algorithms that handle dis-
crete variables only.

1 Introduction

The discretization of continuous variables arises as an
issue in machine learning because of the availability of
machine learning algorithms that can handle discrete
variables only. Furthermore, even when the learning
algorithm at hand can directly model continuous vari-
ables, it may be possible to improve its predictive per-
formance, as well as its induction time, by using dis-
cretized variables [6, 10].

While many of the available discretization algorithms
search for the best discretization of each continuous
variable individually, an approach that we refer to as
univariate discretization, ideally the discretization of
a continuous variable should be carried out so as to
minimize the loss of information that the given vari-
able may contain about other variables in the do-
main. True to this principle, current state-of-the-art
discretization methods for classification search for the
best discretization of a given feature variable by mea-
suring its interaction with the class variable, in an at-
tempt to maximize the discriminatory power of the for-
mer with respect to the latter (class-based discretiza-
tion [7, 10, 11]). In general, when no class variable is
provided!, the discretization process should take into
consideration the possible interaction of the variable
being discretized with all the other variables in the
domain of interest, an approach that we refer to as
multivariate discretization.

!This is the case, for example, in exploratory data anal-
ysis, and Bayesian network learning.
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Very few multivariate discretization methods have
been proposed. The methods described in [8, 9] were
both developed with the task of learning Bayesian
network (BN) structures in mind. As such, they se-
lect a discretization conditional on the BN structure
currently being evaluated, thereby calling for a re-
evaluation of the selected discretization when the BN
structure changes.

The discretization method described in this paper on
the other hand, does not rely on a BN structure, and
can be carried out as a preprocessing step to the appli-
cation of any machine learning algorithm. The method
is based on clustering: it looks for sub-populations
of data points which are closest according to their
probability conditioned on a cluster variable prop-
erly defined. The data points included in each clus-
ter then determine the partition of the value range of
the continuous variables. More specifically, following a
Bayesian approach, the joint probability distribution
over the observed variables is modeled by means of
a finite mixture (FM) model as described, for exam-
ple, in [2]. The induced FM model defines a latent
cluster variable, as well as its conditional distribution
given the observed variables. The cluster variable, and
its conditional distribution, are then used to drive the
discretization of the observed continuous variables.?

In the remainder of this paper, we illustrate in more
detail our discretization approach. We do so by first
briefly describing the fundamentals of class-based dis-
cretization (for classification), and by then showing
that our multivariate discretization method can be in-
terpreted as a generalization of the former to the case
when the class variable is latent.

2The use of clustering techniques for multivariate dis-
cretization is also explored in [3]. In that work however,
clusters are induced based only on the continuous vari-
ables, thus discounting the possible contribution to cluster
formation of the discrete variables present in the domain.
Furthermore, the ad-hoc distance metric there proposed to
drive cluster formation is significantly different from the
probabilistic approach we adopt.



2 Background

In general, we denote random variables with upper
case letters, such as X, Y, and their instantiation or
realization with the corresponding lower case letters,
z, y, or z0, y where we use the latter notation
when we need to distinguish between different instan-
tiations. Similarly, we denote random vectors with
bold upper case letters, such as V, W, and their in-
stantiation or realization with the corresponding bold
lower case letters, v, w.

Given a domain of interest, we denote with X =
{X1,...,X,} the complete set of variables in that do-
main, and with & or () the full instantiations of the
variables in X. In the context of classification, we con-
sider the augmented set of domain variables {C} U X,
with C' the class variable of interest, and X" the set of
feature variables.

2.1 Discretization

Informally, the discretization of a continuous variable
specifies the set of cutpoints in the continuous range
of the continuous variable that delimit the intervals to
be mapped into the values of the discretized variable.

More formally, the discretization for a variable X,
defined over the real interval [a,b], with a <b,
is uniquely defined by the ordered set of cut-
points T = {to,t1,...,tr;,tr;,,} that partition the
value range of X; into the set the of subintervals
[to,tl], (t17t2]7---7(tr,—7tr1—+1], with a = tg < t1 <

. < tp,11 = b.2 This partition defines a discrete vari-
able taking values in the domain {0,1,...,r;}, with
the j-th value corresponding to the interval (t;,t;41].

Given a database D of Np cases defined over X, as
candidate cutpoints we only consider the (at most)
Np — 1 mid-points between contiguous data points in
D. Therefore, the number of values the discretized
variable can take is upper-bounded by Np. Notice that
even in the simpler univariate discretization problem,
the search for the best discretization has combinato-
rial complexity in the number of datapoints, since the
complete set of possible discretizations to be consid-
ered has cardinality 2V? 1,

2.2 Class-based discretization

The idea behind class-based discretization [7, 11] is to
search for the partition of the value range of a continu-
ous feature variable so as to minimize the uncertainty

3In this definition, we have assumed the variable X;
to have a bounded domain. We can easily generalize the
definition to an unbounded variable by setting to = —oo
and t,;,41 = +00.

of the class variable conditioned on the discretized fea-
ture variable.

A commonly used measure of the uncertainty in a ran-
dom variable is its entropy, which can be defined for-
mally as follows. Let D be a database of Np cases
over {C} U X. The class entropy Ent(D), measuring
the uncertainty in the class variable with respect to
the dataset D, can then be defined as:

Ent(D ; N;.?()k) ) (1)

where Np(k) denotes the number of cases in D with
C = k. That is, if we denote with 1.y the indicator
function (1{onqy = 1, if cond holds, 0 otherwise), then
Np(k) can be expressed conveniently as follows:

Np
E) = Liw— (2)
=1

a notation that will become useful in the next section.

Given a discretization T of the continuous variable X;,
the set of cutpoints in T determines the partition of
the dataset D into the subsets Dy, D;,...,D,,, with
the subset D; containing all the datapoints in D for
which variable X; takes values within the j-th interval
(tj,tj+1]- We can thus apply the above definition of
class entropy to each of the sub-sets defined by the dis-
cretization, and measure their overall (weighted) con-
tribution to the reduction of the uncertainty in C.

Following the notation in [7], we define the class
information entropy of the partition induced by T,
Ent(X;,T; D) as

Dj|
IDIE nt(D (3)

Ent(X;, T; D) Z |
and it can be interpreted as a measure of the uncer-
tainty in the class variable C' that is not accounted for
by the discretized feature variable X;.

Therefore, the discretization T' for a feature variable
X; should be selected so as to minimize the scoring
metric Ent(X;, T; D). Notice that the number of possi-
ble discretization is exponential in the number of dat-
apoints in the dataset. Therefore, exhaustive search
is in general computationally infeasible, and heuris-
tics search techniques need to be used instead. A
commonly used technique is a form of greedy search:
a binary discretization for X; is determined by se-
lecting the cutpoint ¢ for which the scoring metric
Ent(X;, {t}; D) is minimal amongst all the candidate
cut points. Once a cut point is selected, the procedure
can be recursively applied to each of the subsets deter-
mined by the cut point. Fayyad and Irani [7] use the



Minimum Description Length criterion to decide when
to stop the recursive partition of X;’s value range.

3 Cluster-based discretization

The discretization method we propose in this paper
is best described by analogy with the class-based dis-
cretization methods for classification described in the
previous section.

For the purpose of multivariate discretization, where
potentially every variable is the focus of prediction,
and the discretization is aimed at capturing the in-
teraction among all the variables, we can use a latent
cluster variable as a proxy class variable, and use this
variable to drive the partition of the value range of
each continuous variable.

More specifically, let us assume that we have a
database D defined over the set of variables X =
{X1,..., X} (notice that no class variable is in-
cluded). We can use an FM model as described in
[2] to model the probabilistic dependencies among the
variables in X. Figure 1 shows this model for the
set of variables X. The joint probability distribution
over X is specified through the conditional distribu-
tions p(X; | H), and the prior p(H). Notice that the
FM model can model both continuous and discrete
variables directly. A typical parametric form for the
probability density of the continuous variables is the
Normal distribution, but other parametric forms can
easily be adopted.

It is important to emphasize that the latent vari-
able has been specifically introduced in an attempt
to model the interaction among the observable vari-
ables. As such, it can be thought of as a class variable
whose values identify distinct sub-populations in the
given database. Therefore, discretization with respect
to this latent variable will take into consideration the
variables’ interaction.

Let us assume that we have applied some learning al-
gorithm to learn a FM model for the set of variables
X and the database D defined over X.* Let us also
assume that in the learned FM model the latent vari-
able H has K categories. If we now treat the latent
variable H as the unobserved class variable, we can
apply the discretization method briefly outlined in the
previous section, to carry out the discretization.

Since we do not observe H, we need to modify the scor-
ing metric of Equation (3). In particular, we have to
replace the sufficient statistics Np(k) of Equation (2),
defined over the variable C, with the expected suffi-

4See, for example, [2], for techniques to learn a FM
model from data.
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Figure 1: The finite mixture (FM) model, with the latent
variable H modeling the interaction among the observed
variables {X;}, which can be both continuous and discrete.

cient statistics E[Np(k)], now defined over the latent
variable H:

E[Np(k)] = Y p(hx|2V), (4)

=1

where each of the terms p(hy |2¥) is computed as
follows:

_ pY | hy)p(hs)
phel=?) = o @O ety

and all the probabilities are as specified by the in-
duced FM model. As a consequence, the class entropy
Ent(D) defined in Equation (1) must be replaced by
the expected class entropy Ent(D)

Bnt(D) = — 5 E[A;\Z)(’“)] log E[A]@’;k)] . ®)

Finally, Equation (3) must be modified by replacing
the class entropy terms Ent(D;) with the correspond-

ing expected class entropy terms Ent(Dj).

To summarize, to adapt the class-based discretization
method described in the previous section to the prob-
lem of multivariate discretization, all that is needed is
the replacement of the hard partition determined by
the indicator function of Equation (2), with the soft
partition determined by the posterior probability of
class membership of Equation (4). In fact, since we
do not observe the class variable H, we have to assign
each case in D probabilistically, rather than determin-
istically.

Notice that despite the fact that we do not observe
the variable H, the selection of a cut-point for a given
variable X; does not affect the selection of the cut-
points for the other variables. That is, we can still
perform a local search. In fact, the “goodness” of a



given cut-point for a specific variable X; does not de-
pend on how we discretize other variables, but only
on how the selected cut-point influences the expected
sufficient statistics E[Np(k)]. These in turn are influ-
enced by the posterior distribution p(H | X). The dis-
tribution p(H | X), as it is based on the non-discretized
data, is independent of the discretization chosen.

Each of the terms p(x® | hy,) and p(hy) of Equation (5)
is easily computed based on the FM model of Fig-
ure 1. The computation required is not significantly
more than the computation required had the variable
H been observed. In fact, each of the p(hy, | V) needs
to be computed only once and then stored. This can
be done as a preprocessing step to the search for the
best discretization. We thus need to compute a total
of NK terms, i.e., K terms for each of the N cases.
Clearly, to the time required by the discretization, we
need to add the time required to learn the FM model.

4 Evaluation

The empirical evaluation of multivariate discretization
methods faces some of the same problems encountered
in the evaluation of Bayesian network learning algo-
rithms, in that it is difficult to set up real-data ex-
periments. Moreover, when considering multivariate
discretization methods, there is the additional issue
of choosing the task for which the discretization will
be needed, knowing that different tasks will privilege
different features of a discretization.

In this paper, we use simulated data to test our dis-
cretization method. Since one of our main reasons
for the development of multivariate discretization tech-
niques is Bayesian network (BN) learning from mixed
data (i.e., data containing both continuous and dis-
crete variables), we use simulated data generated from
a Bayesian network. Furthermore, since our main fo-
cus is on structure learning (i.e., learning of the BN
structure), we use the structural differences of the
learned BN relative to the generating gold standard
BN to assess the discretization method performance.

In the remainder of this section, we first detail our
experimental design. We then present and discuss the
experimental results.

4.1 Experimental design
The experimental design is as follows.

e A dataset D is generated from the gold standard
(GS) Bayesian network of choice.

e The discretization method of choice is applied to the
dataset D, yielding the discretized dataset D’'.

e A BN learning algorithm for discrete domains is ap-
plied to the dataset D', and the structural differ-
ences of the learned BN from the GS, are measured.

We used the ALARM network [1] as our gold standard,
since it models a real domain and considerable effort
has been put into its development. The ALARM net-
work contains 37 nodes, and 46 arcs, with each node
taking between 2 and 4 discrete values. Since all the
variables in ALARM are discrete, some of these vari-
ables needed to be made continuous. To this purpose
we adopted a very simple approach. We identified
those variables corresponding to naturally continuous
measures that were originally discretized in the con-
struction of the ALARM network. For each of these
variables, we considered each of its discrete values as
the mean of a continuous distribution with known vari-
ance. That is, given an n-valued variable, we trans-
formed it into a continuous variable by mapping its n
values into the integers 0,...,n — 1, and by consider-
ing these integers as the means of Normal distributions
with common standard deviation o to be set. Gener-
ating a value from a continuous variable thus obtained
can be done in two steps: i) a discrete value in the
range 0,...,n — 1 is generated according to the distri-
bution specified by the ALARM network; and ii) the
generated discrete value is perturbed by white noise
with standard deviation o. Of the 37 discrete vari-
ables of ALARM, 22 variables were transformed into
continuous variables.

To learn a BN structure from data, we used the K2
algorithm described in [4], which requires a node or-
dering as input. Since our objective is the assessment
of discretization methods, we believe that reducing the
possible sources of uncertainty in the learning process
helps us to better focus on the discretization task, and
to make the interpretation of the experimental results
easier. For this reason, we did not adopt more general
learning algorithms that do not need a node ordering
as input.

For the discretization of the continuous dataset,
we compared our cluster-based discretization method
with a simple constant-density discretization.

In constant-density discretization, the continuous
range of a variable is partitioned into sub-intervals
each approximately containing an equal number of
datapoints. Since the number of values needs to be
specified, we considered constant-density discretiza-
tions with a number of values ranging from 2 to 5.

For the cluster-based discretization, we used the scor-
ing metric described in Section 3, with an MDL
penalty term as described in [7].
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Figure 2: Fraction of arcs added (left graph) and omitted (right graph) based on the different discretization methods,
for different sample sizes, averaged over the different values of the perturbation o.

For the induction of the FM model used in the cluster-
based discretization, we used the EM algorithm [5] for
the estimation of the model’s parameters, and we used
the BIC approximation for model selection (i.e., for
the determination of the number of values of the la-
tent variable). The conditional distributions of the
continuous variables were modeled as Gaussians.

Given the above design, we ran several experiments,
where we varied the number of samples generated by
the GS, and the scale of the perturbation o of the con-
tinuous variables. In particular, we considered sample
sizes of 250, 500, 750, 1000, 2000, and 3000 cases; and
standard deviations ¢ of .25, .35, and .50.

4.2 Results

A summary of the experimental results is presented
in Table 1 where, for each discretization algorithm
(namely, cluster-based discretization, and constant

arcs omitted
erroneously

arcs added
erroneously

Discretization
method

const dens 2 36.2) 0.79 + 0.30
const dens 3 29.8) 0.65 + 0.31

( (13.1) 0.28 £ 0.06
(
const dens 4 (25.9) 0.56 + 0.28
(
(

(10.9) 0.24 + 0.08
(9.9) 0.22 + 0.09
(10.8) 0.24 + 0.09
(13.1) 0.28 + 0.13

const dens 5 27.8) 0.60 + 0.34
cluster-based 16.2) 0.35 + 0.12

Table 1: Arcs erroneously added and omitted based on
the different discretization methods. Each entry reports
the mean and standard deviation of the fraction of arcs
added/omitted with respect to the GS (the actual number
of arcs added/omitted is reported between parentheses).

density discretization with 2, 3, 4, and 5 values), we
report mean and standard deviation of the fraction of
arcs erroneously added and omitted by the learned BN
with respect to the total number of arcs in the gold

standard (i.e., # arcs adfgd/ ommed, where 46 is the

number of arcs in ALARM). Mean and standard devi-
ation were computed over 15 independent runs. From
Table 1 it is clear that the constant-density discretiza-
tion algorithms lead to the induction of BN structures
that add a considerably larger number of incorrect arcs
than the BN structure induced based on the cluster-
based discretization method. On the other hand,
the cluster-based discretization leads to the omission
of more correct arcs than the constant-density algo-
rithms, although the difference is not as significant as
in the number of arcs incorrectly added. However,
since the constant-density discretization tends to add
more arcs, this also increases the possibility that some
correct arcs are added by chance.

The plots of Figure 2 decompose the results of Table 1,
and they report mean and standard deviation of the
fraction of arcs added and omitted by the different
discretization algorithms for different sample sizes. As
in Table 1, the benefits of using the cluster-method
discretization are mainly evident in the significantly
lower number of arcs erroneously added, in particular
for samples of smaller size.

The plots of Figure 3 decompose the results of Table 1
as a function of the perturbation o. As in the previ-
ous graphs, the advantage of use of the cluster-based
discretization is mainly evident in the reduced number
of arcs erroneously added.
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Figure 3: Fraction of arcs erroneously added (left graph) and omitted (right graph) based on the different discretization
methods, for different values of the pertubation o, averaged over different sample sizes.

5 Conclusions and future work

In this paper, we have introduced a new method for
multivariate discretization based on the use of a latent
variable model. The method uses a latent variable
as a proxy class variable. This allows for the adop-
tion of any of the available class-based discretization
algorithms, with the natural modifications needed to
account for the fact that the class variable is in this
case latent.

The preliminary evaluation presented in this paper
provides evidence that the new method has definite
merits, but more experiments are needed to better as-
sess its strengths and limitations.

For simplicity and clarity of exposition, in this pa-
per we have focused on the entropy-based approach to
class/cluster-based discretization. However, this is by
no means the only possibility, and other scoring met-
rics for cutpoint selection can be used. In particular, it
would be worth exploring the use of the Bayesian scor-
ing metric for discretization proposed in [9], as well as
the MDL-based scoring metric described in [8].
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