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Abstract 

Genetic epidemiologists strive to determine the 

genetic profile of diseases. Epistasis is the interaction 

between two or more genes to affect phenotype. Due 

to the often non-linearity of the interaction, it is 

difficult to detect statistical patterns of epistasis. 

Combinatorial methods for detecting epistasis 

investigate a subset of combinations of genes without 

employing a search strategy. Therefore, they do not 

scale to handling the high-dimensional data found in 

genome-wide association studies (GWAS). We 

represent genome-phenome interactions using a 

Bayesian network rule, which is a specialized 

Bayesian network. We develop an efficient search 

algorithm to learn from data a high scoring rule that 

may contain two or more interacting genes. Our 

experimental results using synthetic data indicate 

that this algorithm detects interacting genes as well 

as a Bayesian network combinatorial method, and it 

is much faster. Our results also indicate that the 

algorithm can successfully learn genome-phenome 

relationships using a real GWAS dataset. 

Introduction 

Genetic epidemiologists endeavor to determine the 

genetic profile of diseases. As an example, the 4ε  

allele of the APOE gene has been established as a risk 

factor for late-onset Alzheimer's disease (LOAD) [1]. 

Genes do not always affect phenotype according to 

simple Mendelian inheritance. Rather several genes 

may have a joint effect on phenotype even though 

individually one or more have little effect [2]. For 

example, results in [3] indicate that the GAB2 gene is 

statistically relevant to LOAD when the APOE 4ε  

allele is present, but GAB2 alone has no association 

with LOAD. Epistasis is the interaction between two 

or more genes to affect phenotype. Biologically, 

epistasis refers to interactions between biomolecules 

occurring in an organism. Statistically, epistasis refers 

to interactions between multiple loci such that the net 

affect on phenotype cannot be predicted by simply 

combining the effects of the individual loci. The 

individual loci may exhibit no marginal effects. The 

phenotype discussed here is the presence of a disease. 

An epistatic relationship in which each of the 

interacting loci exhibits no marginal effect on the 

disease cannot be learned using single-locus methods. 

So, methods for analyzing combinations of genes 

have been developed. Parametric methods include 

logistic regression [4] and nonparametric ones 

include combinatorial methods, genetic programming, 

neural networks, and random forests [5]. 

Combinatorial methods investigate a subset of  

combinations of loci without employing a search 

strategy. An example of a combinatorial method is 

Multifactor dimensionality reduction (MDR) [2,6]. 

MDR combines two or more variables into a single 

variable, thereby leading to dimensionality reduction. 

MDR has been applied to detecting epistatic 

interactions in several domains including breast 

cancer [3] and cardiovascular disease [7] using 

datasets with relatively few genetic loci. For example, 

the breast cancer study investigated 10 loci. 

A common type of genetic variation is the single 

nucleotide polymorphism (SNP). To study the 

underlying genetic variants of common diseases, 

genome-wide association studies (GWAS) that 

simultaneously assay hundreds of thousands of SNPs 

are being increasingly used. Using existing methods, 

it is difficult to analyze epistasis using a GWAS 

dataset. For example, consider a combinatorial 

method. If we only investigated all 1, 2, 3 and 4-SNP 

combinations when there are 500,000 SNPs, we 

would need to investigate 2.604 × 10
21

 combinations. 

Given this difficulty, so far the data obtained from a 

GWAS have usually been analyzed using single-locus 

methods [3, 8].  

Much of the genetic risk of many common diseases is 

unknown. This is called the dark matter of genetic 

risk, and a great deal of it is believed to be due to 

hard-to-detect genetic interactions [9]. The advent of 

GWAS data sets affords us unprecedented 

opportunity to discover these interactions. So the 

analysis of multi-locus interactions using GWAS data 

sets is a vital problem. Recently, penalized linear 

regression (PLR) has been applied to this problem 

[10]. Park and Hastie [11] compared PLR to MDR. 
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Bayesian networks are a leading architecture for 

representing uncertainty in artificial intelligence [12]. 

We represent the relationships between SNPs and 

disease status using a Bayesian network, and we 

develop an efficient search algorithm for learning the 

Bayesian network containing the SNPs associated 

with the disease from data. We present experimental 

results of using both synthetic data and a GWAS 

dataset. In the experiments with synthetic data, our 

algorithm detects interacting SNPs as well as does a 

combinatorial Bayesian network method, but requires 

much less time. When analyzing a real Alzheimer’s 

disease dataset [3], the algorithm finds SNPs that are 

consistent with those identified by the original 

investigators [3]. Those investigators identified SNPs 

using the same dataset, prior domain knowledge, and 

a single-locus search method. It took our algorithm 

4.1 hours to do this study. We estimate that it would 

take the combinatorial method about 3.71 years. 

Method 

Bayesian Networks. Suppose we have a joint 

probability distribution P of the random variables in 

some set V and a directed acyclic graph (DAG) 

),( EVG = , where E denotes the set of arcs among 

the variables in V. We say that (G, P) satisfies the 

Markov condition if for each variable ∈X  V, X is 

conditionally independent of the set of all its 

nondescendents given the set of all its parents. If 

(G,P) satisfies the Markov condition, we call (G,P) a 

Bayesian network (BN) [12]. In a BN the joint 

probability distribution of the variables equals the 

product of the conditional probability distributions of 

each variable given its parents in G, whenever these 

conditional distributions exist. That is, if our 

variables are 
nXXX ,,, 21 K
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Methods for learning both the structure (DAG) and 

parameters in BNs from data have been developed 

[12]. One method for learning the DAG is to score all 

DAGs using a scoring criterion. One such score is the 

Bayesian score [13], which is the probability of the 

data given the DAG. Other scores include those based 

on the minimum description length principle [14], 

namely the minimum description length (MDL) score 

[15] and the minimum message length (MML) score 

[16].  A consistent scoring criterion for BNs assigns 

the highest score to a concise DAG containing the 

generative distribution when the dataset is sufficiently 

large. The scores just mentioned are all consistent.   

To learn a DAG from data we can score all DAGs 

using one of these scores and then choose the highest 

scoring DAG. However, if the number of variables is 

not small, the number of candidate DAGs is 

forbiddingly large. So heuristic algorithms have been 

developed to search over the space of DAGs [12].  

A BN learning algorithm called Greedy Equivalent 

Search (GES) [17] can learn the most concise DAG 

representing a probability distribution under the 

assumptions that the scoring criterion is consistent 

and that the probability distribution admits a faithful 

DAG representation and satisfies the composition 

property [12]. Briefly, the algorithm starts with the 

empty DAG and greedily adds the edge to the DAG 

that increases the score the most until no edge 

increases the score. Then it greedily deletes the edge 

from the DAG such that the deletion increases the 

score the most until no deletion decreases the score. 
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Figure 1. A DDAG. 

The MBS Algorithm. A BN model for the 

relationship between n SNPs and a disease variable D 

is shown in Figure 1. This specialized BN structure 

can be viewed as a BN rule that predicts the disease 

status given SNPs as predictors. This model assumes 

there are n SNPs and one or more SNPs may have 

edges to D. We call such models Direct DAGs 

(DDAGs). This model was used in [18] to learn 

epistatic relationships using a combinatorial method. 

In general, the GES algorithm could not detect 

epistatic interactions by searching over DDAGs. 

Suppose that two SNPs predict disease variable D 

strongly, but neither SNP alone predicts D. Such an 

epistatic relationship does not satisfy the composition 

property which the GES algorithm requires in this 

type of situation to find the two predictive SNPs.  

Our approach to this problem is to do greedy search 

starting with every SNP rather than just the single 

SNP that increases the score of the empty DAG most. 

In this way every SNP pair will be investigated. We 

conjecture that many (but not all) forms of epistasis 

will be detected by extending greedy search from a 

single SNP to every SNP. Such search is tractable 
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even when the number of SNPs is in the thousands. 

The algorithm follows (score(Ai)  is the score of the 

model that has edges from the SNPs in set  Ai to D): 

 

for each SNP SNPi  

   };{ ii SNPA =   

    scorei = score(Ai); 

    do 

         if adding any SNP to Ai increases scorei 

              then add SNP to Ai  that increases scorei  most; 

              scorei = score(Ai); 

    while adding some SNP increases  scorei;   

    do 

        if deleting any SNP from Ai increases scorei 

             then delete SNP from Ai that increases scorei  most; 

             scorei = score(Ai); 

    while deleting some SNP increases scorei;   

endfor; 

report the k highest scoring models; 

 

We call this algorithm Multiple Beam Search (MBS). 

Its worst-case time complexity is O(n
3
), where n is 

the total number of SNPs. In practice we would add 

at most m SNPs in the first step, where m is a 

parameter, resulting in a time complexity of O(mn
2
). 

The MBS algorithm is effective for handling epistatic 

interactions in which we have a group A of k SNPs 

interacting, each of them by itself is probabilistically 

independent of the disease, there is a probabilistic 

dependence between the disease and at least one pair 

of the interacting SNPs, and each of the other k - 2 

SNPs in A predicts the disease given the pair. 

Experiments 

First, we compared the performances of a BN 

combinatorial method and MBS using synthetic 

datasets. Then we used MBS to analyze a real dataset. 

Synthetic Datasets. A dataset developed in [6] was 

used in our experiment concerning synthetic data. 

This dataset was created as follows. The developers 

created 70 different probabilistic relationships in 

which 2 SNPs combined are correlated with the 

disease, but neither SNP is individually correlated. 

The relationships represented various degrees of 

penetrance, heritability, and minor allele frequency. 

Supplementary Table 1 to [6] shows the details of the 

70 models. Datasets were then developed having a 

case-control ratio of 1:1. To create one dataset they 

fixed the model. Based on the model, they then 

developed data concerning the two SNPs that were 

related to the disease in the model, 18 other unrelated 

SNPs, and the disease. For each of the 70 models, 

100 datasets were developed, making a total of 7000 

datasets. They followed this procedure for dataset 

sizes of 200, 400, 800, and 1600.  

Real Dataset. Studies indicate that the apoplipo-

protein E (APOE) gene is associated with many cases 

of late-onset Alzheimer's disease (LOAD) [1]. The 

APOE gene has three common variants 2ε , 3ε , and 

4ε . The least risk is associated with the 2ε  allele, 

while each copy of the 4ε  allele increases risk. 

Reiman et al. [3] investigated the association of 

312,316 SNPs separately in APOE 4ε  carriers and 

in APOE 4ε  noncarriers. A discovery cohort and 

two replication cohorts were used in the study. Within 

the discovery subgroup consisting of APOE 4ε  

carriers, 10 of the 25 SNPs exhibiting the greatest 

association with LOAD (contingency test p-value 
8109 −

×  to 7
101

−
× ) were located in the GRB-

associated binding protein 2 (GAB2) gene on 

chromosome 11q14.1. Associations with LOAD for 6 

of these SNPs were confirmed in the two replication 

cohorts. Combined data from all three cohorts 

exhibited significant association between LOAD and 

all 10 GAB2 SNPs in APOE 4ε  carriers. These 10 

SNPs were not significantly associated with LOAD in 

the APOE 4ε  non-carriers. The researchers also 

provided immunohistochemical validation for the 

relevance of GAB2 to the neuropathology of LOAD. 

In our second experiment, we used the combined 

dataset consisting of all three cohorts investigated in 

[3]. This dataset contains data on 1411 subjects. 

All experiments were run on a PC running Windows 

XP with a 2.19 GHz processor and 1 GB of RAM. 

Results. We analyzed the synthetic data using the 

following methods: 1) a Bayesian network 

combinatorial method, which we call BayCom, and 

which scored all 1-SNP, 2-SNP, 3-SNP, and 4-SNP 

DDAGs; 2) MBS with a maximum of m = 4 SNPs 

added in the first step. Candidate models were scored 

with the MML score. This score has previously been 

used successfully in causal discovery [13].  

Table 1 shows the number of times the correct model 

scored highest over all 7000 datasets. Important 

detection measures include recall, precision, and the 

overlap coefficient. In the current context they are as 

follows. Let S be the set of SNPs in the correct model 

and T be the set of SNPs in the highest scoring model. 

Then recall = #(S∩T)/#(S), precision = #(S∩T)/#(T), 

and overlap coef. = #(S∩T)/#(S UT), where # returns 
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the number of items in a set. Table 2 shows the 

average values of these measures. MBS performed as 

well as BayCom in terms of accuracy and the other 

measures. Table 3 shows the running times. MBS was 

up to 28 times faster than BayCom. 

Size MBS BayCom 

200 4049 4049 

400 5111 5111 

800 5881 5881 

1600 6463 6463 

Table 1. Number of times the correct model scored highest 

out of 7000 datasets for MBS and Baycom. 

 Spatial Recall Precision Overlap Coef. 

Size MBS BCom MBS BCom MBS BCom 

200 0.593  0.593 0.607 0.607 0.593 0.593 

400 0.737  0.737  0.744 0.744 0.737 0.737 

800 0.843 0.843  0.846 0.846 0.843 0.843 

1600 0.925  0.925  0.926 0.926 0.925 0.925 

Table 2. Comparisons of average values of detection 

measures over 7000 datasets for MBS and Baycom. 

Size MBS BayCom 

200 0.108 2.0 

400 0.191 5.15 

800 0.361 9.61 

1600 0.629 18.0 

Table 3. Average running times in sec. over 7000 datasets. 

The real data set was analyzed as follows. Using all 

1411 cases, we pre-processed the data by scoring all 

DDAG models in which APOE and one of the 312,316 

SNPs are each parents of LOAD. We then selected the 

SNPs from the highest-scoring 1000 models. So SNPs 

showing even weak association with LOAD were 

selected. Next MBS was run using the dataset 

consisting of APOE and these 1000 SNPs. We did not 

constrain APOE to be in the discovered models. At 

most m = 4 nodes were added in the first step of MBS. 

There were 4.175×10
10 

models under consideration. 

MBS  actually scored far fewer models.  

# models in 

top 10 

containing 

a GAB2 SNP 

# models in 

top 100 

containing 

a GAB2 SNP 

# rs6094514 

occurrences 

with GAB2 

in top 10 

# rs6094514 

occurrences 

with GAB2 

in top 100 

6 36 6 33 

 Table 4. Occurrences of GAB2 and rs6094514 in high-

scoring models when using MBS to analyze 1000 SNPs 

along with APOE. 

We recorded the 1000 highest scoring models 

encountered in the MBS search. APOE appeared in 

every one of these models, and a GAB2 SNP appeared 

in the top two models. Columns one and two in Table 

4 show the number of times a GAB2 SNP appeared 

respectively in the top 10 models and top 100 models. 

Of the 312,316 SNPs in the study, 16 are GAB2 SNPs. 

Seven of these 16 SNPs appeared in at least one of the 

36 high-scoring models containing a GAB2 SNP.  

All of these seven SNPs were among the 10 GAB2 

SNPs identified in [3]. The probability of 36 or more 

of the top 100 models containing at least one of the 16 

GAB2 SNPs by chance is 2.0806×10
-106

. GAB2 SNPs 

never occurred together in a model. This pattern is 

plausible since each GAB2 SNP may represent the 

dependence between LOAD and GAB2, and therefore 

it could render LOAD independent of the other GAB2 

SNPs. Our results substantiate those in [3], that GAB2 

(or something in linkage disequilibrium with it) has an 

affect on LOAD. Our results do not indicate whether 

GAB2 influences LOAD by interacting with APOE 

since APOE appears in every high-scoring model.  

The run time was 4.1 hours. When we analyzed 1, 2, 

and 3 SNP combinations involving only 200 SNPs in 

the LOAD dataset, the run time for BayCom was 1.04 

hours. We extrapolated that it would take about 3.71 

years to analyze all 1, 2, 3, and 4 combinations 

involving 1001 loci (1000 SNPs plus APOE).  

We obtained an unexpected result. We noticed that 

SNP rs6094514, which is an intron on the EYA2 gene 

on chromosome 20, often appeared along with GAB2 

and LOAD. So we investigated how often this 

occurred. The third and fourth columns in Table 4 

show the numbers of such occurrences respectively in 

the top 10 and top 100 models. Among the top 100 

models, SNP rs6094514 only occurred once without 

GAB2. As it turns out, prior research has associated 

this SNP with LOAD. In a cross-platform comparison 

of outputs from four GWAS, Shi et al. [16] found SNP 

rs6094515 to be associated with LOAD with a 

combined p-value of 8.54×10
-6

. However, we know of 

no prior literature showing that GAB2 and EYA2 may 

interact to affect LOAD, as our results seem to 

suggest. MBS discovered this possibility because it is 

able to tractably investigate multi-loci interactions. 

Another result was that SNP rs473367 on chromosome 

9 appeared in the 3
rd

 and 4
th

 models and in 22 of the 

top 99 models. It never appeared with GAB2. A 

previous study [20] suggested that this SNP interacts 

with APOE to affect LOAD. Our results support this 

association, but indicate no interaction with GAB2.  

Discussion 

We represented the relationships between SNPs and a 

disease using a BN rule, and we created the MBS 

algorithm for learning the BN rule containing the 
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SNPs associated with the disease from data. Results 

of experiments using synthetic data and real data 

showed the effectiveness of the algorithm in terms of 

learning and the efficiency of the algorithm in terms 

of run time. We substantiated previous results that 

GAB2 may affect LOAD. We obtained new results 

that EYA2 may interact with GAB2 to affect LOAD. 

This conjecture bears further investigation. 

The MBS algorithm provides a way of learning 

epistatic relationships from GWAS datasets. It is 

effective in handling situations in which there are 

several interacting SNPS, most exhibit no marginal 

effect on the disease, and at least one pair of the 

SNPs exhibits a marginal effect. A limitation of the 

method is that it requires that at least one pair of 

interacting SNPs has a marginal effect. If this is not 

the case, then we would have to search every triplet 

or more of SNPs, which is far less computationally 

feasible. An open question is how many epistatic 

relationships have the property that at least one pair 

exhibits a marginal effect on the disease. Another 

limitation is that we must put a fairly small maximum 

(around 7) on the number of nodes investigated in the 

forward search because the time complexity of the 

BN score is exponential in terms of the number of 

parents. So high-order interactions will be missed. 

Finally, MBS and methods like it are about discovery. 

The next question is what to do with the discovery. 

First, the significance (with Bonferroni correction) of 

the highest scoring models can be reported. If that 

significance is sufficiently high for a model, the 

model can be further investigated using additional 

data analysis and a study of its biological plausibility.  
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