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Bayes' formula has been applied extensively in computer-based medical diagnostic systems. One assumption that is 
often made in the application of the formula is that the findings in a case are conditionally independent. This 
assumption is often invalid and leads to inaccurate posterior probability assignments to the diagnostic hypotheses. This 
paper discusses a method for using causal knowledge to structure findings according to their probabilistic dependen- 
cies. An inference procedure is discussed which propagates probabilities within a network of causally related findings in 
order to calculate posterior probabilities of diagnostic hypotheses. A linear programming technique is described that 
bounds the values of the propagated probabilities subject to known probabilistic constraints. 
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1. Introduction 

In the past 25 years, extensive use has been made 
in the field of computer-aided medical diagnosis 
[1-5] of the Bayes' formula: 

P (H i  IF) = 

P (F  IHi) x P ( H i )  

P ( F I H i )  X P ( H i )  + P (F  [not Hi)  x P(no t  Hi)  

P(F IH,) x P(Hi) 
N 

E P ( F I H y )  X P ( H j )  
j 1 

(1) 

where F is a s e t  of findings and H i is an hypothe- 
sis from among a set of N hypotheses. Each 
hypothesis H/ consists of a se t  of diseases. The N 
hypotheses correspond to the members of the 
power set of all diseases within a given diagnostic 
domain. Thus, the N hypotheses constitute every 

possible subset of the diseases in the domain. 
Therefore, within the domain the N hypotheses 
are exhaustive and mutually exclusive. 

One advantage of a computer diagnostic system 
that is based on Bayes' formula is that it is a 
formal probabilistic system. In general there are 
several benefits that result from using a diagnostic 
method that is based on formal probability the- 
ory: 
(1) Probability as a field of mathematics is well 

developed. This aids in designing computation 
methods for diagnosis, in understanding how 
they relate to previous research, and in com- 
municating them to other researchers. 

(2) Any assumptions made during the scoring of 
an hypothesis can be unambiguously ex- 
pressed. This may aid the user in interpreting 
the resulting score. It may also help the desig- 
ner of the diagnostic algorithm to determine 
which assumptions to make in designing the 
program. 

0169-2607/86/$03.50 © 1986 Elsevier Science Publishers B.V. (Biomedical Division) 
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(3) It is possible to utilize available statistical data 
directly. 

(4) It is possible to interface the hypothesis score 
(a probability) directly with other decision 
making procedures such as decision analysis 
programs [6,7]. 

Thus, there is a great attraction to using a 
formal probability-based system. 

In addition, implementations of Bayes' formula 
yield formal systems that provide a means of using 
probabilities representing sensitivity information 
(i.e. P(findings Idisease)) and prevalence * (i.e. 
P(disease)) rather than posterior probabilities (i.e. 
P(disease [findings) ). The utility of the formula is 
due to the availability of sensitivity and prevalence 
probabilities as opposed to posterior probabilities. 
Conditional probabilities in medicine are largely 
available as sensitivities rather than posterior 
probabilities. Thus, the literature is more likely to 
have data in the form of P(F [Hi) than the form 
P (H  i IF), where the set F would usually contain 
only one finding in this setting. Additionally, 
physicians are often more comfortable relating 
subjective estimates of P (F I H i) than of P (Hi ] F). 
In a like manner, P(Hi )  may be either available 
from known population statistics or can be esti- 
mated for a given population. However, imple- 
mentations of Bayes' formula almost invariably 
make the following two assumptions: 
(1) The conditional probabilities of findings given a 

diagnostic hypothesis are independent. This 
means that P(FIHi) ,  which is used in both 
the numerator and denominator of the last 
term in Eq. 1, is approximated by P(ft  IHi) X 
.. .  x P ( f  m IH~), where ft . . . . .  fm are the indi- 
vidual findings in the set F. 

(2) A diagnosis consists of a single disease from 
among a given set of diseases, which are exhaus- 
tive and mutually exclusive. This is the assump- 
tion that the patient's clinical condition corre- 
sponds to one and only one disease from 
among a given set of diseases. 

The problem with these assumptions is that 

they are often invalid. The first assumption is 
particularly questionable. Although in some do- 
mains the assumption of conditional indepen- 
dence may result in acceptable diagnostic accu- 
racy [5], there are those in which this is not the 
case [8]. It seems clear that the assumption of 
conditional independence cannot be relied upon 
to yield accurate diagnoses across all fields of 
medicine under all possible conditions. 

The second assumption is also often not valid, 
particularly in complex cases in which multiple 
disease diagnoses are likely. It is just these com- 
plex situations in which a physician is most likely 
to seek a consultation. 

In summary, most computer programs which 
implement Bayes' formula have the advantages of 
being based on formal probability theory and 
using more readily available statistics. However, in 
implementing Bayes' formula they make assump- 
tions that are often invalid. This paper discusses a 
method that has been implemented in a computer 
program called NESTOR * which avoids these 
assumptions, when this is possible, in the applica- 
tion of Bayes' formula [9]. 

NESTOR has been developed to aid physicians 
in determining the most likely diagnostic hypothe- 
sis to account for a set of patient findings. The 
domain of hypercalcemic disorders was used to 
test solution methods that should be applicable to 
other medical areas. This paper discusses the key 
concepts of NESTOR's diagnostic scoring al- 
gorithm in general terms with only minor refer- 
ence to a specific medical domain. These key 
concepts have been implemented as an INTER- 
LISP computer program on a DEC PDP 20/60. 
This paper describes an extension to the methods 
developed in my Ph.D. dissertation [9]. In particu- 
lar, linear programming has been incorporated 
into the diagnostic algorithm in place of special- 
case inference techniques. The remainder of this 
paper will discuss this new diagnostic method. The 
focus will be on the avoidance of assumption (1) 
above regarding the conditional independence of 
findings. 

* The term prevalence is used here to represent the probability 
of encountering a given disease or set of diseases within a 
given medical setting. 

* The term NESTOR is taken from the name of a character in 
Greek mythology who provided well respected advice. 
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2. The knowledge representation 

To perform the calculation in Eq. 1 it is apparent 
that the probabili ty P ( F [ H i )  x P ( H i )  must be 
calculated for each hypothesis H i. This probability 
will be called the score of the diagnostic hypothe- 
sis H i given the findings in set F. * In this paper  
we will assume that P(Hi) ,  the prior probability 
of diagnostic hypothesis H i, is available as data or 
can be calculated by methods analogous to those 
described below. Thus, the remaining task is to 
compute P (F fHi ) ,  which is the probability of a 
particular set of patient findings given hypothesis 
H i. The key idea in avoiding the uniform assump- 
tion of conditional independence of the findings 
in set F is to explicitly represent any probabilistic 
dependencies among those findings. This leads to 
a graph structure connecting findings to each other 
and to the etiologies (of the diseases of the di- 
agnostic hypothesis) under consideration. The 
primary assumption in using such a graph is that 
it represents all the significant probabilistic re- 
lationships among the findings and etiologies. Al- 
though NESTOR can be used as a probabilistic 
inference procedure that does not assume that 
links are causal, in this paper we will assume they 
are .  

Causal knowledge in NESTOR is in the form 
of causal links that interconnect nodes which rep- 
resent states or processes. Later we will see how a 
causal graph is created for a set of findings. This 
graph connects the etiologies (of the diseases of 
the diagnostic hypothesis being scored) to the 
findings through possibly many intermediate 
causal states. 

A fundamentally important aspect of a causal 
representation is that it can greatly limit the num- 
ber of possible probabilistic influences on any 
process or state. For example, Fig. 1 shows a 
causal graph connecting the disease hyper- 

* Chapter 5 of Cooper [9] demonstrates that, in general, the 
most probable diagnostic hypothesis can be determined by 
calculating the scores of only a small subset of all possible 
hypotheses. Chapter 6 describes a technique for bounding 
the posterior probability of the most probable hypothesis, 
again by calculating the scores of only a small subset of all 
possible hypotheses. 

PTH 

Serum C a l c i u m  

Urinary Calcium Level of Consciousness 

Fig. 1. Causal relationships among four nodes in hyper- 
parathyroidism. 

parathyroidism, namely the parathormone (PTH) 
level, to three of the variables it influences. For a 
given link, the tail of the arrow indicates the 
causal node and the head of the arrow its effect. 
Later we will attach probabilities to such links and 
they will represent P(effect [cause). 

Note that Fig. 1 makes immediately clear the 
possible influences of the four nodes on each 
other. For example, it is apparent that the urinary 
calcium level cannot affect the serum calcium level 
or the PTH level. In general an effect is probabil- 
istically dependent on its direct causes. Thus, the 
urinary calcium (UC) level is probabilistically de- 
pendent on the serum calcium (SC) level, or more 
formally, there exists a value I and a value 2 such 
that P ( U C  = value1) < > P ( U C  = value 1 ISC = 
value 2), where value I and value 2 are variable val- 
ues (e.g. increased, normal, or decreased) and < > 
designates inequality. An effect may also be prob- 
abilistically dependent on its sibling nodes de- 
pending on the assumptions of local conditional 
independence being made. For example, urinary 
calcium and level of consciousness (LOC) are 
sibling effects of serum calcium. These two 
effects  may be probabilistically dependent given 
a value of serum calcium, or more formally, 
there exists a value 1, a value2, and a value 3 such 
that P ( U C  = value a & LOC = value 2 ]SC = 
value3) < > P ( U C  = value t [SC = value3) × 
P (LOC = value2 [SC =- value3). NESTOR allows 
the user to specify whether or not such sibling 
nodes are conditionally independent. To sum- 
marize, NESTOR uses a causal network of nodes 
in which a node is probabilistically dependent 
only on its direct causes and possibly on its si- 
blings. This representation of the influences among 
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findings allows NESTOR to be sensitive to their 
probabil ist ic dependence  when calculating 
P(FIH, ) .  Thus, NESTOR allows known depend- 
encies to be represented, and it therefore performs 
best in areas of medicine where such dependencies 
are known. However, we will see shortly that even 
when causal knowledge is not available, NESTOR 
yields diagnostic results that are no less accurate 
than computer programs that uniformly assume 
conditional independence of the findings. 

Causal knowledge has been used in a number 
of previous medical diagnostic programs in order 
to structure the probabilistic dependency of find- 
ings [10-14]. Patil's program uses causal knowl- 
edge, but does not use probabilistic knowledge. 
Weiss et al. and Ludwig have developed programs 
which use both causal and probabilistic knowl- 
edge, but their inference algorithms are ad hoc 
and do not necessarily yield the formal probabili- 
ties of diagnostic hypotheses. The programs devel- 
oped by Lemmer and Rouseau also use causal and 
probabilistic knowledge, and they calculate formal 
probabilities of diagnostic hypotheses. However, 
both programs make strong local conditional inde- 
pendence assumptions in the absence of known 
probabilities among locally interacting nodes. As 
will be described in detail below, NESTOR is able 
to avoid uniformly making such local conditional 
assumptions by using a probability constraint 
satisfaction method to bound probabilities rather 
than attempt to calculate them exactly. 

There are 3 types of nodes in a causal graph in 
NESTOR: etiology nodes, finding nodes and in- 
termediate nodes. Each node is represented by a 
single variable which has a range of discrete values 
(e.g. a binary variable with values true and false). 
In the case of a continuous variable (e.g. serum 
calcium level) the values of the variable are di- 
vided into discrete intervals (e.g. one interval of 
the serum calcium level might be 10.5 to 12 
rag/100 ml). The granularity of interval values for 
a continuous variable is assumed to be small 
enough so that different values within a given 
interval are not clinically significant. By discretiz- 
ing continuous variables NESTOR is able to rea- 
son uniformly with only discrete valued variables. 
This simplifies the knowledge representation and 
the diagnostic algorithm. 

An etiology node represents some state or pro- 
cess which, when assigned a particular value, rep- 
resents the etiology of a disease. In Fig. 1 when 
the etiology node 'PTH'  has a value of increased 
it defines the disease hyperparathyroidism. A find- 
ing node is a variable which may represent ob- 
servable information about the presentation of a 
disease. A finding in a particular patient case is 
represented by assigning a finding node a particu- 
lar value. An example of a finding is the finding 
node 'serum calcium' when it is assigned the value 
increased. An intermediate node is any node 
without a known value which causally connects 
other nodes. For example, a finding node without 
a known value which connects other nodes in a 
causal graph is called an intermediate node. In 
Fig. 1, if the value of serum calcium were not 
known, then it would be an intermediate node. 
Intermediate nodes need not be finding nodes, but 
may represent states or processes which are known 
to exist, but are not typically classified as finding 
nodes because of the difficulty or cost of measur- 
ing their values. 

3. The diagnostic algorithm 

The calculation of the score of an hypothesis H a, 
namely P ( F I H a )  X(P(Ha),  will be used as a 
generic example of how P ( F I H i ) x P ( H i )  is 
calculated. The example will show how an hy- 
pothesis is scored in a three-step process. The 
sample case consists of two findings, ft and f2, 

E 
a 

1 1 

I f 
2 2 

f 
1 

Fig. 2. Step 1: Causal graph generated for the example. 



that constitute the set F. In this paper we will 
assume that P ( H , )  is known from available statis- 
tics or expert estimates. However, techniques simi- 
lar to  those described below can be used to bound 
the prior probabilities of hypotheses even when 
etiologies are known to be causally dependent and 
complete statistical data are not available [9]. Thus, 
given that P (Ha)  is known or can be calculated, 
the remaining task is to compute P ( F I H a ) .  In 
general, an hypothesis H, is a set of one or more 
diseases with each disease defined in terms of one 
or more etiology nodes. For the purposes of the 
example, assume that H a consists of one disease 
D~ which has one etiology E,,. 

3.1. Step 1." Create a patient-specific causal graph 

The goal of the first step is to create a causal 
graph that links the etiologies of the diseases of 
the hypothesis being scored to the patient find- 
ings. Recall that findings are just finding nodes 
that are assigned specific values. In the example, 
the  first step in the scoring process is to construct 
a causal graph, as shown in Fig. 2, which connects 
fl and f2 to the etiological node E a. The graph is 
generated by starting with each finding and chain- 
ing backward to the etiological nodes of the dis- 
eases of the hypothesis being scored. The resulting 
graph contains every possible causal linkage 
(known to NESTOR) from E a to fl and f2. I1 and 
I 2 a r e  intermediate causal nodes. 

Any additional direct causal links to the nodes 
in this graph (except the etiology node(s)) are 
added to the graph. This does not occur in Fig. 2, 
because each of the findings and the intermediate 
nodes in that example are assumed to have no 
causal influences other than those shown. A tem- 
porary modification of the example will demon- 
strate the point. Suppose finding f2 is directly 
influenced by a node 13, then a link from 13 to f2 
would be added to those already in Fig. 2. Sup- 
pose further that 13 does not have a causal path- 
way that originates from any of the other nodes 
already in the graph in Fig. 2. In this case 13 
would exist in the graph without any causal prede- 
cessors. It would be treated as an etiology node, 
which means that P(I3) would have to be calcu- 
lated if it were not already known. 
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E 
a 

+ 
1 

I 

I f 
2 2 - -  

f 
1 

Level  1 

Leve l  2 

Leve l  3 

Leve l  4 

Fig .  3. S t e p  2: A s s i g n i n g  n o d e s  to  leve ls  in  t he  e x a m p l e .  

If there is more than one disease in the hy- 
pothesis being scored, the etiology nodes of the 
hypothesis consist of the union of all the disease 
etiologies. In this way, a case-specific multi-dis- 
ease causal graph can be constructed. Also, an 
etiology of one disease in the hypothesis being 
scored can be causally affected by the etiology of 
another disease in the hypothesis, in the same way 
that a finding can be causally linked to another 
finding. 

3.2. Step 2: Segment the causal graph into levels 

The second step in scoring the sample hypothesis 
is to divide the causal graph into levels as shown 
in Fig. 3. The purpose of this step is to place each 
of the nodes generated in step 1 into one of 
several possible levels in the graph. The algorithm 
classifies node x as belonging to level n + 1 if and 

E a - - - )  I i :  

I 1 - - - >  12: 

I I  - - - >  f2;  

I2 - - - >  f l :  

P(I  1 Ea) = 0 .8  P ( - I  1 Ea) = 0 ,2  

P( I  1 -Ea) = 0 .3  P ( - I  1 -Ea) = 0 .7  

P( l  2 I i )  = 0 . 4  P ( - I  2 I i )  : 0 . 6  

P(I  2 -11) : 0 . i  P ( - I  2 - I i )  = 0 .9  

P(fe  I1) = 0 .6  P ( - f2  I1) = 0 .4  

P(f2 - I1 )  = 0 .2  o ( - f z  - I1 )  = 0 .8  

P ( f l  12) = 0.7 P ( - f l  12) : 0 .3 

P ( f t  - I~ )  = 0 , i  P ( - f l  -12) = 0 .9  

Fig .  4. C o n d i t i o n a l  p r o b a b i l i t i e s  u s e d  in  the  e x a m p l e .  
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only if n is the longest path-length from any 
etiological node to node x. Although not shown in 
Fig. 3, a node can be causally affected by multiple 
nodes and these nodes can exist on the same level 
or on different levels. In general, then, NESTOR 
represents a causal graph as a lattice of directed 
links. 

The important property of this ordering is that 
a node at level j can only be causally influenced 
by nodes at levels I to j - 1  (i.e. above the j t h  
level). The levels are used in step 3 to order the 
sequence of calculations. 

3.3. Step 3: Compute the score from the segmented 
causal graph 
The initial calculation of step 3 in the scoring 
process is to iterate over all the possible values of 
the intermediate nodes computing the following: 

P(node  values at level j + l lnode values 

at levels 1 to j ) .  

This is the critical calculation of step 3. In what 
follows we will see how this readily leads to the 
calculation of P(F  IHa). In this example, for sim- 

Graph Instantiation 1 

E a 

I 
1 

0 . ~ 6  

I f 
2 - -  2 - -  

0 . 7 ~  

f 
1 

P(zI  q& fz I Ea) : o.134 

Graph Instantiation 3 

E a 

- I  
1 

- - - -  12 - -  f 2  - -  
O. 7 +  

f 
1 

P ( - I I &  I2& fl & f2 I Ea) : 0 . 0 0 3  

Graph Instantiation 2 

E a 

~ 0.8 

I 1 

-I f 
2 - -  2 - -  

O. i ~  

f 
1 

P(I1  -Iz& rt& fz IEa) 

Graph Instantiation 4 

E a 

-I 1 
0 . ~ / / ~ 2  

-I2 - - f 2  - -  
0.1+ 

- - f l  

P(-II& -12& fl & f2 I E ) a 

= 0. 029 

= O .  0 0 4  

Fig. 5. Step 3: Calculating the probability of causal graphs with specific value instantiations for all intermediate nodes. 



plicity, all variables are assumed to be binary. The 
value of a level in the graph will be used to refer to 
the values of the nodes at that level. 

Fig. 4 shows the conditional probabilities asso- 
ciated with the links in the graph of the example. 
A minus sign before a node label means that the 
node has the value false, otherwise its value is 
t rue .  

Fig. 5 shows one graph for each step in the 
iteration over the values of the levels, where the 
goal here is to calculate P(fl  & f2 lEa)" Each of 
these graphs contains a unique instantiation of 
intermediate node values. Note that the etiology 
node E,  and the finding nodes fl and f2 have a 
constant value of true. The relevant conditional 
probabilities are shown next to the links in the 
graphs. To score one of these graphs requires 
calculating the probability that the nodes in the 
graph will have the values they are assigned, given 
that the etiology exists. The sum of all four graph 
scores is 0.169, which is the value of P(f l  
& f2 lea)  - The product of P(fl  & f2 lEa) with 
P(E~), where P ( E a ) =  P (H , ) ,  is the score for H a 
given fl and f2- 

The probability of a particular instantiation of 
values in a graph given the etiology is called Pi~. 
If there are N levels in a causal graph, then Pin is 
calculated as follows: 

N - 1  

Pi~ = I-I P (node  values at level j + 1 I 
j=l 

node values at levels l to j )  

Fig. 5 shows the P~, value for each possible in- 
stantiation of the graph. In order to demonstrate 
the method of calculating a Pro, the Pi, for Graph 
1 in Fig. 5 will be calculated. If the above equa- 
tion is applied to Graph 1 in Fig. 5, the following 
equation results: 

Pin = P(level 2 values ]level 1 values) 

×P(level  3 values Ilevel 1 to level 2 values) 

× P(level 4 values]level 1 to level 3 values) 
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abilities is derived as follows: 

P (level 2 values ]level 1 values) = P (I 1 ]E a ) 

=0 .8  

Explanation: This is a given probability (see Fig. 
4). 

P(level 3 values ]level 1 to level 2 values) 

= P ( I 2  & f2]I1) 

= P ( I 2  II , )  x P ( f z  ]I1) 

= 0 .4  x 0 .6  

= 0.24 

Explanation: 12 and f2 a r e  assumed to be indepen- 
dent given 11. This is a form of default reasoning 
in which the effects of a cause are assumed inde- 
pendent unless some explicit causal connection 
between them is represented in the knowledge- 
base. NESTOR gives the user the option of speci- 
fying whether it should make this default assump- 
tion or use other techniques (to be described be- 
low) to bound the value of the joint conditional 
probability. The conditional independence as- 
sumption is used at this point for simplicity of 
illustration. Note that this local conditional inde- 
pendence assumption differs from a uniform, 
global assumption of conditional independence 
among all findings. It differs in that causal knowl- 
edge has been used to control for any known 
dependencies. Thus, the assumption is that the 
causal knowledge is valid and complete, rather 
than the assumption that all the findings in a 
given case are conditionally independent. If the 
causal knowledge is not complete, and local condi- 
tional independence is incorrectly assumed, then 
the resulting calculation will be at least as accu- 
rate, and commonly more accurate, than if condi- 
tional independence had been uniformly assumed 
among all the findings. 

P(level 4 values]level 1 to level 3 values) 

= P ( f ,  [I2)  

The value of each of these three conditional prob- = 0.7 
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Explanation: This is given probability (see Fig. 4). 

Thus, the P~n for graph instantiation 1 is equal to 
0.8 × 0.24 × 0.7 = 0.134. The Pin values for the 
other three instantiated graphs are shown in Fig. 5 
and are 0.029, 0.003 and 0.004. The four instanti- 
ated graphs represent every possible way in which 
disease D a can cause the findings fl and f:. The 
sum of the four Pin values is 0.169, which is the 
value of P(fl  & f2 lea)- If P(Ea)  = 0.1, then, since 
in this case P ( H a ) = P ( D a ) =  P(Ea), it follows 
that P(F I Hu) x P(Ha)  = 0.169 × 0.1 = 0.0169, 
which is the score of Hu. 

Thus, the purpose of step 3 is to use the seg- 
mented causal graph from step 2 to compute 
P(FIHi) ,  which then leads to the calculation of 
P(F IH,) x P(H~). Recall that, given an etiology 
(or etiologies), the probability of a particular as- 
signment of values in a graph with N levels is 
calculated as follows: 

N - I  

Pin = H P (node values at level j + I I 
j = l  

node values at levels 1 to j ) .  

The values of nodes at a given level in the graph 
can be more explicitly expressed by using a func- 
tion VALUES(i, j ) ,  which specifies the ith value 
assignment to the nodes at level j. Here we are 
assuming that all possible value assignments to the 
nodes at a given graph level have been totally 
ordered (i.e. conceptually they are in a list). It 
does not matter how they are ordered in this list. 
For example, in Fig. 5 the list of value assign- 
ments to level 3 is ((12 = T f2 = T)(I2 = F f2 = T)). 
The assignment of values for the nodes at level 3 
of graph instantiation 4 in Fig. 5 is specified by 
VALUES(2, 3), corresponding to I 2 = F and f2 = 
T. 

Using the function VALUES, the calculation of 
P(FIH~) can be expressed as follows: 

P ( F [ H i )  

V1 VN N - 1 

= ~'~ -.. ~ I-I P(VALUES(i j+I ,  j +  1) [ 
i~=1 ir~= 1 j = l  

VALUES(i l ,  1) & . . . &  VALUES(/ j ,  j ) )  

where: 
N is the number of levels in the graph. 
V k is the total number of possible unique value 
assignments to the nodes at level k. These value 
assignments are assumed to be ordered from 1 to 
V k. In Fig. 5 V 3 is equal to 2 as described above. 
VALUES(/j ,  j )  is the ijth unique value assign- 
ment to the nodes at level j .  

Applying this general formula to the example 
in Fig. 5 results in the following calculation: 

P( f ,  & f, IE,)  

1 2 2 1 3 

= E E E E I-I P(VALUES(ij+1, J + 1) l 
i l =  1 i2= 1 i32  1 i 4 2 1  j = l  

VALUES(il, 1) &... & VALUES(ij, S)) 

where: 
VALUES(l,  1) = (E a = T) 
VALUES(l ,  2) = (11 = T) 
VALUES(2, 2) = (11 = F) 
VALUES(l ,  3) = (12 = T fz = T) 
VALUES(2, 3) = (12 = F f2 = T) 
VALUES(l ,  4) = (fl = T) 

The above computation of P ( F I H i )  as a sum 
of products is convenient from a notational stand, 
point, but is not computationally efficient since 
the time complexity of the calculation increases 
exponentially as a function of the number of 
intermediate nodes in a given causal graph. A 
much more efficient calculation technique, based 
on storing subcalculation results, is discussed in 
Section 4.6.1 of Cooper [9], and the interested 
reader is referred there for details. 

P ( V A L U E S ( i j + I ,  J + 1) [VALUES( /a ,  1) 
& . . . &  VALUES(/j ,  j ) )  is the joint conditional 
probability of a set of values for the nodes at level 
j + 1 given a set of values for nodes at level 1 to 
level j. If this joint conditional probability were 
always known precisely, then by using the above 
techniques the computation of P ( F I H i )  would be 
straightforward. Unfortunately, very few joint 
conditional probabilities (JCPs) are available as 
statistics and a JCP is difficult and tedious for an 
expert to estimate. Thus, NESTOR must use the 
typically sparse probability knowledge that is 
available, along with any known causal knowl- 



edge, in order to bound the conditional probabil- 
ity as tightly as possible. The next section will 
explain how this is done. 

3. 4. Computing the probabi#ty of level j + 1 given 
level 1 to level j 

Fig. 6 is an example of causal links between two 
levels of a larger causal graph. The nodes in the 
graph will again be assumed to be binary variables 
in order to simplify the example, although the 
generalization to multi-valued variables is 
straightforward. An upper case letter will be used 
to designate the value of a node as true and a 
lower case used to designate its value as false. 
Thus, Fig. 6 shows all the nodes to be assigned the 
value true. From this point onward we will only 
be considering nodes with assigned values, and 
therefore the term 'node'  will be used to designate 
both a node and its value. In Fig. 6, a node at 
level j + 1 can be causally influenced only by 
nodes at level 1 to j. Similarly, although not 
shown, the nodes at level j + 1 can causally in- 
fluence other nodes at levels greater than j + 1. 

The goal for the example in Fig. 6 is to compute 
P ( V & W & X & Y & Z I Q & R & S & T & U  ). 
Notice that there are three separate groups of 
nodes in the figure, namely {Q, R, V, W}, 
{S, T, X}, and {U, Y, Z}. These sets are called 
local node groups. A local node group is formally 
defined as follows: for a given causal graph G, 
define set S to consist of the nodes at level j + 1 
plus the nodes at level 1 to level j which are 
directly causally connected to the nodes at level 
j + 1. Set S can be partitioned into causally con- 
nected subsets of nodes. Such subsets are called 
local node groups. 

Since NESTOR assumes that all significant 
causal relationships are represented, the lack of a 
causal interaction between the three local node 
groups in the example implies the following: 

P(V  & W & X &  Y & Z I Q & R & S &  T &  U ) 

= P(V  & W IQ & R) x P ( X  IS & T) 

x P ( Y  & Z IU) 

231 

Although NESTOR considers such local node 
groups to be probabilistically independent, it does 
not uniformly assume that the nodes within a 
given group are conditionally independent of each 
other. Making this latter assumption would be 
much riskier than the former one, since the causal 
relationships among the nodes within a group may 
lead to probabilistic dependencies among them. 
Often the available probabilities relating nodes 
within a given group will be insufficient to calcu- 
late the JCP for the group as a unique-valued 
probability. Thus, in NESTOR an upper bound 
(UB) and lower bound (LB) on the JCP is calcu- 
lated, resulting in the following bounds of the 
probability of level j + 1 given level 1 to level j 
for the example: 

U B [ P ( V & W & X & Y & Z  I 

Q & R & S & T & U ) ]  

= U B [ P ( V  & W IQ & R)] x U B [ P ( X  IS & T)] 

× U B [ P ( Y  & Z IU)] 

L B [ P ( V  & W & X & Y &Z[ 

Q & R & S & T & U ) ]  

= LB[P (V  & W IQ & R)] x L B [ P ( X  IS & T)] 

× L B [ P ( Y  & ZIU ) ] ]  

Such bounds on the conditional probabilities 
among levels in the graph will result in bounds on 
P ( F I H i )  and thus on P ( F ] H i ) x  P(Hi). This in 
turn will result in bounds on P ( H ,  IF) when Bayes' 
formula is applied to calculate the the posterior 
probability of some diagnostic hypothesis H ,  using 
a bounded calculation of P(F[Hi) x P ( H ,  ) for 
every H i. When hypotheses have posterior 
probability ranges which overlap it is only possi- 
ble to partially order them according to their 
likelihood. Although it would be preferable to 
know the unique-valued probability of the 
posterior probabilities, NESTOR is designed with 
the philosophy that it is better to represent (via a 
probability range) only what is known based on 
available knowledge rather than make assump- 
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- - Q - - R - - S - - T - - U  - -  

- - V - - W  X - - Y - - Z  -- 

Fig. 6. An example of causal relationships between levels. 

Nodes a t  

L e v e l  I t o  L e v e l  J 

Nodes  a t  

L e v e l  J + i 

tions of conditional independence and risk deriv- 
ing an inaccurate unique-valued probability. 

The next step is to calculate the JCP for each 
group. From among the three groups in Fig. 6 the 
calculation of the bounds on P(Y & Z IU ) (to be 
designated P(YZ IU)) will be used as an example. 
Fig. 7 shows this group along with the only 
probabilities assumed to be known relating nodes 
within the group, namely P(Y I U ) = 0 . 6  and 
P (Z  I U) = 0.5. This information can be used to 
derive upper and lower bounds on P(YZ IU ). An 
intuitive derivation for this example will be pre- 
sented next, and then a general method will be 
described. 

The probability of any group of events can be 
no greater than the least probable event in the 
g roup .  Thus ,  U B [ P ( Y Z I U ) ]  = m i n i m u m  
[P(YIU) ,  P ( Z I U ) ] = 0 . 5 .  The lower bound on 
P ( Y Z I U )  is derived by considering the co-occur- 
rence of Y and Z given U to be minimal, subject 
to the constraints that P(Y I U) = 0.6 and P(Z  I U) 
= 0.5. Given U, Y occurs 60% of the time. This 
leaves 40% of the time in which Z can occur given 
U and not co-occur with Y. However, since Z 
given U occurs 50% of the time, this leaves 10% of 
the time in which Y and Z must co-occur given U. 
Therefore, L B [ P ( Y Z I U ) ] = 0 . 1 .  Thus, the two 
given conditional probabilities have led to bound- 
ing P(YZ IU ) between 0.1 and 0.5. 

This particular example was solved by case- 
specific techniques. However, what is needed is a 
general probabili ty constraint satisfaction al- 

gorithm. As shown in Fig. 8 such an algorithm 
would have two inputs. First, for any given local 
node group there are known probabilities, such as 
P(Y I U ) =  0.6, that serve as constraints and are 
obtained either from human estimates or from 
database statistics or both. * The second input is 
the goal probability of interest, for example 
P (YZ IU). The goal and the constraints serve as 
input to some probabili ty constraint satisfaction 
algorithm which then produces the tightest possi- 
ble bounds on the goal probability. The question 
still remains regarding how to implement such an 
algorithm. Fortunately, it can be framed as a 
linear programming problem for which there are 
standard solution procedures such as the simplex 
algorithm [15,16]. 

3.5. A linear programming approach to calculating 
probability constraints 

Linear programming is the task of maximizing or 
minimizing a linear function, called the 'objective 
function', subject to a finite set of ' l inear con- 
straints' that consist of linear equations and linear 
inequalities [17]. The objective function and linear 
constraints contain real variables, which will be 
called the ' l inear programming variables.' 

Fig. 9 shows a simple example of a linear 
programming problem. There are two real varia- 
bles x 1 and x 2, which, for simplicity, will be 
assumed to be positive. The first linear constraint 
is that x I >/x2, which is represented by the region 

U 

Y Z 

Fig. 7. A group of causally linked nodes from Fig. 6. 

* Currently, NESTOR represents only probabilities among 
nodes within a local node group. In the future it may be 
useful to extend this to allowing the specification of prob- 
abilities among nodes that are in different local node groups. 
Nevertheless, the current representation seems adequate to 
express the large majority of known probabilistic relation- 
ships among causally related medical states or events. 
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and 

Minimum 
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Goal P r o b a b i l i t y  

Fig. 8. Local  node  group  calculat ions.  

on the right. The second constraint is that x a + x 2 
~< 2, represented by the region on the left. Note 
that where the two regions overlap is where both 
constraints are satisfied. Any solution must lie in 
this region. The objective function could be any 
linear function of x I and x 2. In the example it is 
the simple function 3x 2 + 1. The goal in this ex- 
ample is to maximize the function 3x 2 + 1 subject 
to the two constraints. Alternatively, the goal could 
be to minimize this function. From the graph it is 
apparent that x 2 = 1 is the maximum value of x 2 
in the region satisfying both constraints. Since 
3x  2 + 1 is maximum when x 2 is maximum, the 
objective function is maximized as 3 x 1 + 1 = 4. 

Linear programming variables: x 1, x2 

Linear constraints:  x I > x? 

X I + x~ ~ 2 

Objective funct ion:  3× 2 + i 

Goal: Maximize[ 3x 2 + 1] 

I 2 

X1 

Fig. 9. A s imple  l inear  p r o g r a m m i n g  example.  

A linear programming algorithm is just a method 
for efficiently solving the general form of prob- 
lems such as this. 

Linear programming has been noted by previ- 
ous researchers as being applicable to the task of 
performing probabili ty constraint satisfaction 
calculations [11,18]. However, to our knowledge 
our use of linear programming as described in this 
paper  is the first application of this technique for 
probabilistic inference within a causal network. 

We will present a method for using linear pro- 
gramming as a general technique for deriving 
bounds on a joint conditional probability subject 
to a set of probability constraints. However, in 
order to use linear programming some transform 
is needed to convert probability constraints into 
linear constraints. To perform a transformation, a 
probability event space is first defined for a group 
of N variables (nodes). If  each of the N variables 
is assigned a value, this set of N (variable, value) 
pairs defines an event. In our example, {(U, true), 
(Y, true), (Z, true)) is an event, where U, Y and Z 
are variables and each variable has the value true. 
If upper case letters are used to designate assign- 
ments of the value true to a variable, and lower 
case letters denote the value false then the above 
event is represented as {U, Y, Z}. 

The probability of a given event is the joint 
probabili ty of the N (variable, value) pairs in the 
event. Thus, the probabili ty of event (U,  Y, Z)  is 
P(U,  Y, Z) or, more simply, P(UYZ).  The event 
space for a group of N variables is the set consist- 
ing of all possible events for that group. For the 
three binary variables U, Y and Z there are 2 3 = 8 
events in the event space. The probability event 
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space (PES) is defined as the set consisting of the 
probabilities of all possible events in the event 
space. In the example, the PES is: {P(UYZ), 
P(UYz), P(UyZ),  P(Uyz), P(uYZ), P(uYz), 
P(uyZ), P(uyz)}. 

In order to transform probability constraints 
into linear constraints, each element of the PES is 
viewed as a linear programming variable, for ex- 
ample P(UYZ). This approach allows any margi- 
nal probability assignment to be represented as a 
linear constraint of the elements in the PES. For 
example, the marginal probability P(UY) is de- 
fined by the linear function P ( U Y z ) +  P(UYZ). 
Thus, P ( U Y ) =  0.3 is represented by the linear 
constraint P(UYz) + P(UYZ) = 0.3. In general, if 
the variable-value pairs of some subset of N 
variables are designated g, then P (g )  equals the 
sum of the probabilities of all events in the event 
space that have g as a subset. 

Also, any conditional probability assignment 
among the N nodes can be expressed as a linear 
constraint. For example, the conditional probabil- 
ity P(Y I U) = 0.6 is transformed into a linear con- 
straint as follows: 

p ( y  IU ) P(UY) = 0.6 
P(U) 

which implies that: 

P (U Y)  = 0.6 P (U)  

and, by expansion of the marginals P(UY) and 
P(U): 

P (UYZ)  + P(UYz)  

= 0 .6 [P(UYZ)  + P(UYz)  + P(UyZ)  + P(Uyz)]  

which leads to the final linear constraint: 

P (UYZ)  + P ( U Y z ) = 0 . 6  P (UYZ)  + 0.6 P(UYz)  

+0.6 P (UyZ)  + 0.6 P(Uyz)  

Similarly, the other conditional probability in the 
example in Fig. 7, namely P(Z IU)=  0.5, is ex- 

pressed as: 

P (UYZ)  + P ( U y Z ) = 0 . 5  P (UYZ)  + 0.5 P(UYz)  

+0.5 P (UyZ)  + 0.5 P(Uyz)  

If P(/~I) and P(/~2) represent marginal probabili- 
ties defined on some PES and k is some probabil- 
ity constant, then the general method of transfor- 
ming the conditional probability P(/& I g 2 ) = k  
into a linear constraint is to first express the 
conditional probability as P ( l ~ O & )  = k .  P(~2), 
where gl~2 designates the union of /~ and /x 2. 
Then, the marginals P(/.tl/~2) and P(/&) in the 
equation are expressed as linear functions, as de- 
scribed above. 

There are several additional constraints which 
must be specified to express the general laws of 
probability theory. One constraint states that the 
sum of all the elements in a given PES equals 1. 
Other constraints specify that each element of a 
given PES not be less than 0. 

The above linear constraints are linear equa- 
tions. However, the same transformations convert 
probabilistic inequalities into linear inequalities. 
For example, the inequality P(Y IU )>  0.6 would 
result in the linear inequality: 

P (UYZ)  + P(UYz)  >0.6 P (UYZ)  + 0.6 P(UYz)  

+0.6 P (UyZ)  + 0.6 P(Uyz)  

Thus, we now have a general means of repre- 
senting marginal and conditional probability con- 
straints as linear constraints. 

Our goal is to use these constraints to calculate 
the upper and lower bound on some conditional 
probability P(/~1 [/&), where P(/&) and P(/&) are 
marginal probabilities of some PES. In the exam- 
ple, the goal is to calculate P(YZ ]U). The func- 
tion P ( t x l t x 2 ) / P ( l & )  , which is equivalent to 
P(~I ]~2), is the function to maximize and mini- 
mize subject to known constraints. However, it is 
not a linear function of the linear programming 
variables, but rather a ratio of linear functions. 
Thus, it cannot be directly used as the linear 
programming objective function. In order to con- 
vert this ratio into a linear function, a change of 
variables is made by dividing each variable or 



constant in every known linear constraint by P i ~ 2  ) 

and treating the ratio as a new variable. * Thus, in 
this new linear program P(I.t]lXz)/P(I, L2) can be 
represented as a linear function of new variables 
since P(/_q/.t2) can be represented as a linear func- 
tion of the old variables and, when each of these is 
divided by P(~2), a linear function of the new 
variables is created. ** This transformed linear 
function is then both maximized and minimized 
using a linear programming algorithm subject to 
the new linear constraints to obtain bounds on 
P(P., ]/-t2 ). 

In the example involving P ( Y Z I U )  as the 
probability to be maximized and minimized, one 
of the constraints is converted via change of varia- 
bles as follows: 

P(UYZ) + P(UYz)=0.6 P(UYZ) + 0.6 P(UYz) 

+0.6  P(UyZ) + 0.6 P(Uyz) 

becomes: 

P ( U Y Z )  -~ __P(UYz) _ 0.6 P ( U Y Z )  t- 0.6 P (UYz)  
P ( U )  P ( U )  P ( U )  P ( U )  

+0.6 P(UyZ) + 0.6 P(Uyz) 
P(U) P(U) 

where each of the ratios is considered to be a new 
variable. 

The other known constraints are similarly 
transformed. A linear programming algorithm may 
then be used to bound P(YZ I U), which in the 
transformed system is equivalent to maximizing 
and minimizing the new linear programming vari- 
able P (UYZ) /P (U) .  The results are the same as 
those intuitively derived earlier, namely a lower 
bound of 0.1 and an upper bound of 0.5. 

This linear programming method provides sub- 
stantial generality in the kind of probabilistic con- 
straints which can be specified. Fig. 10 emphasizes 

* The general form of this technique is called fractional 
programming. See Wagner for more details [19]. 

** This change of variables creates a new linear constraint in 
which the linear function of old variables corresponding to 
P(/L2) is divided by P(/z2) to create a new linear function 
which must  equal 1. 
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Fig. 10. The 98 possible probability expressions for three 
binary variables. 
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this by listing all 98 possible probability terms for 
3 binary variables that theoretically could be as- 
signed probability values (or bounds) by an expert 
or from known statistical data. In general it is 
possible to specify the probability value of any 
marginal or conditional probability term defined 
by any of the nodes of a local node group. Of 
course, typically only a small subset of all the 
possible probability terms would be assigned 
probability values and thus would serve as prob- 
ability constraints. The linear programming 
method uses all such known probability con- 
straints when calculating the bounds on a joint 
conditional probability of a local node group. 

The examples in this paper have dealt only with 
binary variables, but the extension to variables 
with multiple discrete values is straightforward. In 
particular, the linear programming method is read- 
ily generalized. For example, suppose that variable 
U in Fig. 7 is a trinary variable with values 
Increased, Normal and Decreased. Furthermore, 
suppose that variables Y and Z are binary with 
values True and False. The PES for this case is as 
follows: 

{ P ( U = D ,  Y = F ,  Z = F ) ,  

P(U =N,  Y = F ,  Z = F ) ,  

P(U = I, Y = F, Z = S), 

P(U = D, Y = F, Z--- T), 

P(U =N,  Y = F ,  Z = T ) ,  

P(U =I ,  Y = F ,  Z = T ) ,  

P ( U = D ,  Y = T ,  Z = F ) ,  

P ( U = N ,  Y = T ,  Z = F ) ,  

P(U =I ,  Y = T ,  Z = F ) ,  

P ( U = D ,  Y = T ,  Z = T ) ,  

P(U = N, Y = T ,  Z = T ) ,  

P(U =I ,  Y =T ,  Z = T ) }  

Thus, for example the marginal probability P(Y = 

T, Z = F) is represented by the linear function 
P ( U = D ,  Y = T ,  Z = F ) + P ( U = N ,  Y = T ,  Z =  
F) + P(U = 1, Y = T ,  Z = F ) .  

4. Summary 

This paper has described a method which applies 
Bayes' formula to medical diagnosis without as- 
suming that all findings are conditionally indepen- 
dent. The key idea involves using causal knowl- 
edge to represent the probabilistic dependencies 
among findings as a causal graph. When the find- 
ings in such a graph are divided into levels, then 
the computational task is reduced to calculating 
the probability of one level in the graph given the 
levels above it. This task was shown to reduce 
further to that of calculating conditional probabil- 
ities among nodes in local node groups. A linear 
programming technique was described to calculate 
upper and lower bounds on these local conditional 
probabilities. The technique computes the tightest 
bounds possible subject to a given set of prob- 
abilistic constraints among the nodes in a local 
node group. Thus, the overall technique provides a 
way of incorporating causal and probabilistic con- 
straint knowledge in the calculation of the post- 
erior probabilities of diagnostic hypotheses using 
Bayes' formula. In those areas of medicine where 
causal and probabilistic knowledge are known, the 
technique will generally yield more accurate di- 
agnostic results than if conditional independence 
among findings is uniformly assumed. Therefore, 
in such contexts computer-aided medical diagnos- 
tic systems should benefit from the incorporation 
of the basic ideas in this technique. 
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