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ence or differential equations that model the dynamics of 
disease transmission [10].  

Compartment models are a family of models that differ 
based on the disease states they can model, the transmission 
parameters, and the initialization of the compartments.  For 
example, SEIR models, are a class of compartment models 
that share the characteristic of having compartments for the 
disease states Susceptible, Exposed, Infectious, and Recovered. 
Within the SEIR class are an infinite number of models.  

An instance of a SEIR model can be fully specified by a 
small set of numbers.  In particular, a SEIR model can be 
specified by (1) three of the four states, (2) the total popula-
tion (the fourth state is the difference between the sum of the 
three states and the population), and (3) the set of parameters 
that define the transition probabilities.  In our work, we spec-
ify the total population; the number of individuals in the S, I, 
and R compartments at time zero; and the parameters Ro, 
infectious period, and latent period.  If a SEIR model is to be 
synchronized with a real epidemic, which is necessary for our 
purposes, the start date of the real epidemic is also necessary. 

Compartment models can be extended to model the effects 
of some disease control strategies.  A vaccination control 
measure, for example, can be modelled in the state transition 
functions by a transition that moves people directly from 
susceptible to the recovered state (immune) at a rate equal to 
the rate of effective vaccination of the population. 

Compartment models can be extended to model sociode-
mographic differences in a population by stratifying the com-
partments (e.g., replacing compartments such as susceptible 
with compartments for susceptible children and susceptible 
adults).  The most stratified epidemic simulations are agent-
based, in which compartments are replaced by agents.  Each 
agent can be in one of a set of mutually exclusive and exhaus-
tive states such as Susceptible, Exposed, Infectious, or Recov-
ered; the transitions between the states result from interactions 
with other agents, the environment, and the passage of time.  

C. The General Problem of Control Strategy Optimization 
The decision problem illustrated by the example of 2009 

H1N1 influenza is not limited to influenza.  There are hun-
dreds of biological agents that can cause epidemics [11]. As a 
second example, a suspected aerosol release of the organism B. 
anthracis would raise questions and decisions that are hard to 
address optimally at present.  For example:  What is the prob-
ability that a release occurred?  What are the spatial distribu-
tion and exposure levels in the affected areas?  What regions 
should be cordoned off to prevent further exposures?  Are 
there sufficient antibiotics, hospital beds and respirators avail-
able or should a request be made to the President to mobilize 
the national strategic stockpile?   

The ability for officials to control many epidemic diseases 
could potentially be improved by a more formal decision-
theoretic approach to disease surveillance and control.  Such 
an approach would be capable of representing the knowledge 
and uncertainties about the epidemics, control strategies, and 
the cost functions that decision makers are trying to optimize.  

 

 II. A GENERAL DECISION-THEORETIC FORMULATION 
Fig. 2 is a general decision-theoretic formulation of disease 

surveillance and control.  It states that the optimal control 
strategy is the control strategy that maximizes the expected 
utility computed by model averaging over the outcomes pre-
dicted by all possible models of the epidemic under that con-
trol strategy. 

This general model can be applied to epidemic models that 
are compartmental or agent-based.  The only requirement is 
that there is a utility function over the outputs of interest, such 
as number of individuals who became sick, of the model; and 
a method for computing the probability of the epidemic model, 
given the available surveillance data. 

We note that analysts who were working during the 2009 
H1N1 outbreak were also solving an optimization problem; 
however, they did not model average over the probability of 
the epidemic models under consideration, which we denote as 
P(MPop), where the subscript Pop indicates that the model is of 
a population of interest.  Their analytic method was to com-
pute the expected number of sick under an expert-determined 
base-case (“most likely”) scenario for the epidemic and con-
trol measures, and conduct sensitivity analyses around the 
base-case.  Thus, the optimization was local and the search 
method heuristic. 

 

 
Fig. 2 Decision-theoretic formulation of the problem of disease surveillance 
and control 

 III. PROTOTYPE IMPLEMENTATION 
We developed a prototype implementation of the general 

decision-theoretic formulation discussed in the previous sec-
tion for the influenza monitoring and control.  We have de-
ployed this system in AC.   In the prototype, we use a SEIR 
influenza model that is capable of modelling a vaccine inter-
vention, although our approach is not limited to SEIR models 
or vaccine interventions. 

The system comprises three major components, as depicted 
in Fig. 3.  The Outbreak Detection and Characterization Sys-
tem (ODS) identifies likely SEIR models, given surveillance 
data obtained from electronic medical records.  It computes 
and outputs the distribution P(MPop| E) in Fig. 2, where E is 
the disease surveillance data available about individuals in the 
population. 

The BioEcon decision-analytic component constructs and 
solves decision models (trees) representing alternative control 
strategies.  It solves the expression in Fig. 2. 

Both BioEcon and ODS use the third component, the epi-
demic model, but in different ways.  BioEcon uses the epi-

4150



demic model to project the effects of a con
the future to compute the outcomes requir
function (labelled ‘Economic models’ in Fig
ODS uses the epidemic model as the startin
structing a probabilistic model of the rela
population incidence of disease and observ
veillance data. 

Fig. 3 High-level schematic of the implemented influen
The processing begins with ODS obtaining prior pr
parameters (e.g., R0) from BioEcon, which may obta
from an epidemiologist end-user.  ODS samples fro
many times to obtain possible SEIR models to evaluate 
model simulator with the sampled parameters to obtain a
the epidemic in AC, which is its starting point for co
When the ODS algorithm completes these computation
set of probable epidemic models with their probabilities 
then constructs a decision model for one or more user-s
gies, as in Fig. 5.  To evaluate the decision model, BioE
model simulator for each model provided to it by O
strategy.  BioEcon computes the expected utility of eac
model averaging over the utilities it computes for the set
models provided by ODS when run under each control s

A. ODS 
The function of ODS is to compute 

P(MPop|E), where MPop is a variable that take
large number of SEIR models.  Each SEIR
sented as a vector of seven SEIR model par
parameters that uniquely identify a SEIR mod

ODS takes three inputs: (1) the likelihood
every patient that is seen in monitored EDs.  
are provided by a Bayesian case detection sy
[1]; (2) The prior probability of influenza; an
ability distributions over the seven input p
SEIR epidemic model, which we set to unif
defined by the literature or expert knowledge

ODS then samples from distributions repr
parameters to the SEIR epidemic model.  In
samples from distributions for infectious peri
Ro, initial number infected, and start date.  O
posterior probability of each sampled mod
distribution P(MPop|E).  ODS computes thes
Bayesian inversion from a model that pred
surveillance data in EDs from the population
as predicted by the sampled MPop.  A special 
is M0, a no-outbreak SEIR model, which 
compute the probability that an influenza out
P(M0|E). 

ntrol measure into 
red by its utility 

g. 2).  In contrast, 
ng point for con-

ationship between 
vable disease sur-

 
nza monitoring system. 
robabilities of model 

ain these distributions 
om these distributions 
and calls the epidemic 
an incidence curve for 

omputing P(E | MPop).  
ns, it passes the (large) 

to BioEcon.  BioEcon 
selected control strate-
con calls the epidemic 

ODS for each control 
ch control strategy by 
t of probable epidemic 
strategy.   

the distribution 
es as it is values a 
R model is repre-
rameters—a set of 
del.  

ds of influenza for 
These likelihoods 

ystem described in 
nd (3) prior prob-
arameters for the 

form over a range 
e. 
esenting the input 
n particular, ODS 
iod, latent period, 

ODS computes the 
del to obtain the 
e probabilities by 

dicts the observed 
n incidence in AC 
case SEIR model 
ODS can use to 

tbreak exists as 1-

More formally, let M
Pop

 denote a
entire population in a region that i
outbreak of disease. In our current a
model. We would like to infer a dist
given evidence about patients who
departments in the region. Let M

ED
 d

all the ED patients during the monit
nate the clinical evidence that is av
tients during the monitoring period.  

At a high level, ODS is based o
which is an instance of Bayes’ theor
 
�������	�
� �� ��

 ��
������� � ����

�  ��
������� � ���������

 
The sum is taken over all possib

ED patients being monitored. The nu
is therefore very large; however, we 
of some basic mathematical techniq
tion of the binomial distribution, t
ciently. ODS approximates the int
sampling MPop, which leads to the 
The terms P(MED | MPop) and P(E | M
ling components of ODS. The term 
probability distribution over the par
of the population. The independenc
tion is that P(E | MED, MPop) = P(E
that in predicting ED patient data, 
status of the population at large is 
knowledge of the disease status of th

Fig. 4 (left) shows the two most p
by ODS using the ED surveillance 
September 7, 2009. 
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Fig. 4 (right) shows posterior distributions for several quan-

tities of interest to decision makers, including the total number 
of individuals expected to be infected during the course of the 
epidemic, the peak date, the incidence of influenza (new cases) 

on the peak date, the reproductive rate of the epidemic (Ro), 
the mean latent period of the disease, and its mean infectious 
period. These six distributions are computed from the 269 
most likely epidemic models found by ODS— given the dis-
ease surveillance data—whose cumulative posterior probabil-
ity summed to an arbitrary threshold probability > 0.99995.   

We described the ODS computation for influenza for ex-
pository purposes. However, the above approach could be 
applied to other diseases and it can be generalized to use other 
types of epidemic models, including segmented compartment 
models and agent-based models.  Additionally, ODS used 
uniform prior probability distributions for SEIR model pa-
rameters in this analysis.  For example, the prior distribution 
for Ro was uniform over the range 1.1 to 1.9.  In practical 
application, we would expect that experts would use a more 
informative prior distribution over these parameters.  
 

B. BioEcon 
BioEcon constructs and solves decision models (trees) rep-

resenting alternative epidemic control strategies (Fig 5).  It 
solves the expression shown in Fig. 2, obtaining the distribu-
tion P(MPop|E) from ODS, and the result MPop, CS from an 
epidemic model simulator configured with the SEIR parame-
ters of each epidemic model sampled by ODS and the control 
measure parameters. 

BioEcon constructs the structure of a decision model semi-
automatically.  A user specifies the epidemic model (SEIR or 
agent-based), the set of control measures to study, the points 
in time that a decision can be revisited (if desired), and a util-
ity function.  BioEcon then constructs a decision model for 
every combination of control measures, which we refer to as 
control strategies, subject to logical constraints such as two 
school closure policies cannot coexist.  The logical constraints 
are represented declaratively as properties of control measures. 

BioEcon contains representations of vaccine control meas-
ures—both vaccine supply and administration capacity—and 
school closure policies. BioEcon represents this knowledge 
using an object-oriented representation.  For example, the 
class representing a vaccination control measure has the fol-
lowing attributes:  jurisdiction (e.g., Allegheny County), sup-
ply schedule, vaccine administration capacity, efficacy, and 
lists of other control measures that it can run concurrent with, 
follow, or precede.  BioEcon can acquire and store this infor-
mation for multiple jurisdictions, each of which can have 
different capacities.  Note that we believe that information 
about control measures should be acquired and stored in a 
response management system.  Our project focuses, therefore, 
on defining representations, not on developing a large knowl-
edge base of control measure information. 

 
 

 
Fig. 5 BioEcon.  An automatically generated decision model for H1N1 
influenza in AC, Sept 8, 2009 (retrospective analysis). The upper panel, left, 
shows the generated decision tree.  Beneath the tree, is a tabular display of the 
expected utilities of the decision alternatives. The panels on the right show all 
parameters (top) and allow the creation of sequential decision models and 
manipulation of decision date and epidemic t when the epidemic timing is not 
being set by ODS (bottom). 

BioEcon contains a simple utility function for influenza and 
it is not our intention to develop utility functions for all possi-
ble epidemic diseases affecting human, plants, and animals. 
Rather, our focus in BioEcon is on representing the attributes 
(arguments) of multi-attribute utility functions, not on repre-
senting the functions. In particular, we have not developed 
extensive representations of cost information within BioEcon; 
instead, we use Excel spreadsheets and other tools to develop 
detailed economic models.  We store rolled up costs in Bio-
Econ as components of its utility functions.  

At present, BioEcon passes two attributes to the influenza 
utility function—number of people vaccinated and total num-
ber infected.  The utility function is:  

 
U(v,s) = v(-$11) + s(-$7811.41), 

 
where v is number of people vaccinated, -$11 is the cost of 
vaccination, s is number sick, and -$7811.41 is the average 
cost per sick person, which equals the cost of illness and the 
loss of productivity. 

BioEcon handles sensitivity analysis over the uncertainty 
about the epidemic inherently, by model averaging over all 
epidemic models received from ODS.  It allows an end-user to 
perform sensitivity analyses over the uncertainty about control 
measures, including costs, date of availability, schedules, 
capacities for vaccine administration.  It supports probabilistic, 
one-way and two-way sensitivity analyses.   

Note that the expected utilities shown in Fig. 5 were com-
puted using the most probable epidemic model from ODS (the 
first model in Figure 4); they are not the results of model 
averaging over the set of SEIR models produced by ODS.  
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C. Epidemic Models 
BioEcon currently has accesses to two influenza epidemic 

simulators: a simulator that can run the SEIR models de-
scribed above with vaccination control strategies, and an 
agent-based simulator that can run influenza models with 
vaccination, school closure, and other social-distancing con-
trol strategies.    
 

 
Fig. 6. Apollo Web Service.  End-user applications like BioEcon submit 
configuration objects to the epidemic model and receive output objects con-
taining the results of the model run (e.g., an epidemic curve). 

BioEcon obtains accesss to epidemic model simulators via 
Web services. We built an intermediary called the Apollo 
Web Server to reduce the effort of epidemic modellers to offer 
such services to end-user applications such as BioEcon (Fig. 
6).  We are currently working to standardize the vocabulary 
and message syntax for epidemic model configuration and 
result reporting.  

A simple end-user application that demonstrates the basic 
functionality of the Apollo Web Service is located at 
http://research.rods.pitt.edu/apollo/ 

 CONCLUSIONS 
The decision-theoretic model of disease surveillance ex-

tends the decision framework that was used in the 2009 H1N1 
epidemic to include an explicit representation of the uncer-
tainty about an epidemic.  Our particular implementation uses 
the epidemiological knowledge about influenza epidemics, 
and of other types of epidemic diseases that is represented in 
epidemic models when inferring the probability that an out-
break of that disease exists, and when inferring its key charac-
teristics. 

Prior work using Bayesian algorithms for disease surveil-
lance has had an emphasis on detection of epidemics rather 
than their characterization. Examples of temporal methods 
include [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Bayes-
ian spatial approaches include that by Neill, Moore, and Coo-
per [32], who extended Kulldorff’s spatial scan statistic to 
produce posterior probabilities of influenza in geographical 
sub-regions. A multivariate generalization was developed in 
[24]. Spatio-temporal approaches include the WSARE 3.0 
algorithm [25], the PANDA algorithm for detecting anthrax 
outbreaks [26], the PCTS algorithm for detecting outbreaks of 

all CDC Category A diseases that are of special concern for 
biosurveillance [27], and a Bayesian hierarchical model to 
detect anomalously high levels of influenza [28]� In previous 
research, we developed Bayesian algorithms [26, 27] that 
employed a data likelihood approach, similar to the method 
we describe here. However, they were based only on chief 
complaints as evidence. 

Our approach to outbreak (a synonym for epidemic) detec-
tion and characterization (OD&C) has important features not 
present in previous work. First, instead of analyzing counts of 
data to estimate an epidemic curve [29, 30], we use a flexible 
and more general approach that models probabilistically the 
available evidence, such as the rich set of patient findings in 
ED reports. The approach reflects the intrinsic synergy be-
tween individual patient diagnosis and population OD&C. In 
particular, OD&C is derived based on past probabilistic pa-
tient diagnoses. In turn, the diagnosis of a newly arriving 
patient is based on prior probabilities that are derived from 
probabilistic inference over current OD&C models. To our 
knowledge, no prior research (either Bayesian or non-
Bayesian) has taken such an integrated approach to patient 
diagnosis and population OD&C.  

Second, our approach represents a general Bayesian 
framework for modeling OD&C. It can be applied with many 
different types of disease outbreak models including SEIR 
(Susceptible, Exposed, Infectious, and Recovered) model [10], 
agent-based, and outdoor-substance-release (OSR) models 
[31].  

We expect that the decision-theoretic model will influence 
the fields of epidemic modelling and disease surveillance.  
The requirements of the decision-theoretic model will serve to 
increase the clarity about the parameters to which real deci-
sions are sensitive and thereby inform research agendas in 
both fields.  The new requirement for epidemic models, dis-
ease surveillance systems and decision models to ‘talk’ to 
each other will drive standardization of the interfaces between 
these components, especially the standardization of terminol-
ogy and syntax required for interoperability.     
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