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ABSTRACT 
 
This paper reports the methods and evaluation of a 
computer-based system that recommends microarray 
experimental design for biologists — causal 
discovery in Gene Expression data using Expected 
Value of Experimentation (GEEVE). The GEEVE 
system uses causal Bayesian networks and generates 
a decision tree for recommendations. 
 
To evaluate the GEEVE system, we first built an 
expression simulation model based on a gene 
regulation model assessed by an expert biologist. 
Using the simulation model, we conducted a 
controlled study that involved 10 biologists, some of 
whom used GEEVE and some of whom did not. The 
results show that biologists who used GEEVE 
reached correct causal assessments about gene 
regulation more often than did those biologists who 
did not use GEEVE.  
 

INTRODUCTION 
 
Systems biology emphasizes large scale discovery of 
the interactions of genes, proteins, and other cell 
elements. Systems biology is confronted with a huge 
number of interactions, not the least of which is the 
interaction of genes. There are challenges in 
designing high throughput experiments, such as 
cDNA microarrays, and for analyzing the high 
volume of data generated by those experiments in 
order to discover gene regulation networks. 
Intrinsically, these regulation networks are causal in 
nature.  
 
Microarray technology has opened a new era in the 
study of gene regulation. It allows a relatively quick 
and easy way to assess the mRNA expression levels 
of many different genes. Large time-series datasets 
generated by microarray experiments can be 
informative about gene regulation. Microarray data 
have been analyzed using classification or clustering 
methods1 and gene pathway (network) methods2-4. de 
Jong5 and Smolen, et al.6 give good reviews of 
genetic networks.  
 

Kitano7 views systems biology as an endless 
information exchange between dry experiments 
(simulation studies and/or data analyses) and wet 
experiments (actual wet lab experiments). Since high 
throughput data are relatively expensive to achieve, 
the role of dry experiments is important in systems 
biology. Since Fisher8 noted that the statistical 
analysis procedure and experiment design are merely 
two different aspects of the same whole, much 
research has concentrated on experiment design 
itself9. Recent notable publications of systems that 
recommend experiment design includes active 
learning of Bayesian networks10 and perturbation 
recommendation in systems biology studies using 
Boolean networks11. 
 
In this paper, we use our previously published causal 
structure search method12 and introduce a computer 
system  —  causal discovery in Gene Expression data 
using Expected Value of Experimentation (GEEVE) 
— that  recommends which gene-regulation 
experiments to perform next. Unlike the recently 
published systems that recommend experiment 
design10,11, GEEVE (1) uses a local search method12; 
(2) assumes no ordering among variables; (3) can 
model the possibility of a hidden common cause; (4) 
can model an experimenter’s prior knowledge of 
causal relationships; (5) incorporates a cost model; 
and (6) can recommend more than one experiment at 
a time.  
 
To evaluate GEEVE we used a simulation model 
generated by an expert biologist and conducted a 
controlled study that involved 10 biologists, some of 
whom used GEEVE and some of whom did not. 
 

METHODS 
 

A Bayesian network is a directed acyclic graph in 
which each node represents a variable and each arc 
represents probabilistic influence. A causal Bayesian 
network (or causal network for short) is a Bayesian 
network in which each arc is interpreted as a direct 
causal influence between a parent node (variable) and 
a child node, relative to the other nodes in the 



network13. Figure 1 illustrates the structure of a 
hypothetical causal Bayesian network structure that 
contains five nodes. The probabilities associated with 
this causal network structure are not shown. 
 
The causal network structure in Figure 1 indicates, 
for example, that the Gene1 can regulate (causally 
influence) the expression level of the Gene3, which 
in turn can regulate the expression level of Gene5.  
 
The causal Markov condition gives the conditional 
independence relationships that are specified by a 
causal Bayesian network:  
 

A node is independent of its non-descendants 
(i.e., non-effects) given its parents (i.e., its direct 
causes).  
 

 
Figure 1. A causal Bayesian network that represents a 
hypothetical gene-regulation pathway. 
 
The causal Markov condition permits the joint 
distribution of the n variables in a causal Bayesian 
network to be factored as follows13: 
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where xi denotes a state of variable Xi, πi denotes a 
joint state of the parents of Xi, and K denotes 
background knowledge.  
 
We introduce 6 equivalence classes (E1 through E6) 
among the structures (Figure 2). The causal networks 
in an equivalence class are statistically 
indistinguishable for any observational and 
experimental data on X and Y. We denote an arbitrary 
pair of nodes in a given Bayesian network B as (X, Y). 
If there is at least one directed causal path from X to 
Y or from Y to X, we say that X and Y are causally 
related in B. If X and Y share a common ancestor, we 
say that X and Y are confounded in B. We understand 
that modeling all nodes may better represent the 
relationship among all the genes, but considering 
computational tractability, in this paper we 
concentrate on pairwise relationships between two 
nodes (X and Y) and a latent variable H.  
 

 
Figure 2. Six Local Causal Hypotheses 
 
Let E={E1, E2, E3, E4, E5, E6} and let Ei

XY denote the 
node pair X and Y with causal relationship Ei. Let us 
consider the posterior probability that variable X 
causally influences variable Y given microarray gene 
expression data D. We can derive the posterior 
probability of Ei

XY as: 
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where the sum is taken over all causal network 
structures that (1) contain just the nodes in a structure 
S, and (2) contain a structure Ei

XY. With appropriate 
assumptions, we can evaluate P(S|D,K) in Equation 2 
in closed form14. 
 
The GEEVE system. The GEEVE system consists 
of two modules called the causal Bayesian network 
update (CBNU) module and the decision tree 
generation and evaluation (DTGE) module (Figure 3). 
The CBNU module uses a heuristic scoring method 
called Local Implicit latent variable scoring Method 
(LIM)12 to causally analyze the current microarray 
data in light of the user’s prior beliefs about causal 
relationships among the genes under study. The 
DTGE module evaluates a decision tree that was 
generated based on the results of the CBNU module 
and the experimenter’s preferences, which are 
expressed with GEEVE as a utility function. DTGE 
also incorporates the cost to analyze a microarray 
chip. Finally (under assumptions) the best possible 
experiments are recommended to the experimenter. 
The experimenter then chooses the next experiment 
to perform, which may or may not be the one 
suggested by GEEVE. When the results are available, 
they can be submitted to the CBNU module for a new 
round of analysis. 
 
Let the expression U({P(Ei | ξj, D′, D, K), {P(Ei | D, 
K)}), represents the utility of obtaining an update on 
the probability of each of E1, E2, …, and E6  after 
performing an experiment ξj that has new results D′ 
in the context of prior results D and background 
knowledge K.. GEEVE provides a method that allows 
biologists to assess their utility15, but due to limited 
space, we do not explain it in detail. However, we 
can calculate the expected utility (EU) of ξj as: 
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where here D′ denotes each possible result of the 
experiment ξj.  The optimal experiment is then: 
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Although DTGE limits possible experiments (see  the 
Study Design section), the large number of the 
experiments and their number of possible outcomes 
of the experiment make an exact evaluation of the 
decision tree intractable. Heuristic methods are used 
to generate D′ and calculate ξoptimal

15. 
 

 
Figure 3. The GEEVE system. The box with the thick line 
represents the GEEVE system. Boxes in GEEVE represent 
system modules. Boxes with wavy lines represent outputs from 
GEEVE. The Experiments oval is an object that is outside of 
GEEVE. The ovals on the GEEVE border represent objects 
that communicate with GEEVE from the outside. 

 
High Throughput Data Simulator. We used the 
Scheines and Ramsey16 simulator system (SR 
Simulator) to generate gene expression data. The SR 
simulator models genes within multiple cells and 
incorporates biological variance, such as that due to 
signal loss or gene mutation, as well as measurement 
error. 
 
We created a simulator model ( 
Figure 4) using the SR simulator that models a gene 
regulation pathway based on assessments from a 
molecular biologist at our university who has many 
years of research experience related to gene 
regulation pathways in yeast SNF1 protein kinease17. 

Regulation relationships (e.g, CAT8 promotes SIP4) 
and other parameters of the SR simulator were 
assessed from the biologist. We estimated the 
measurement error from published yeast microarray 
data18. GEEVE currently models gene expression 
levels using discrete variables only, although it could 
be extended to model with continuous variables as 
well. Thus, we discretized each gene’s expression 
level into three states (i.e., low, no change, and high) 
based on each gene’s expression level12. 
 

 
 

Figure 4. SNF1 simulation pathway model. Dotted lines 
represent the causal relationships that are biologically 
plausible, but need further investigation. SSG* represents a 
group of genes, i.e., SIP1, SIP2, and GAL83. SSG was modeled 
in the simulator but was hidden to the participants in the 
control study; i.e., the expression level of SSG was not provided 
to the participants 
 
Study Design. Ten biology faculty members, post-
docs, and graduate students were recruited for this 
study and offered $50 per hour of participation. The 
biologists expressed at least some knowledge of the 
SNF1 protein kinease pathway. We stratified these 
study participants into two groups: (1) a control 
group that did not use GEEVE, and (2) an 
intervention group that used GEEVE. All participants 
were able to obtain the gene expressions levels for 
the nine genes (SSG was hidden from the 
participants) in  
Figure 4 under the following experimental 
conditions1): 
- a wild-type experiment (i.e., no genes were 

knocked out); 
- a knock-out experiment for which a single gene 

(selected from among the nine genes in  
- Figure 4) was deleted.  
 
The participants were asked to finish five phases in 
this study. Each phase consists of the following steps: 

                                                 
1) There could be other experimental conditions, such as over-expressing a 
gene, knocking out more than two genes at a time, or setting different 
environmental conditions, but this initial study is restricted to the 
experimental conditions listed. 
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(1) the participant assesses his current beliefs about 
pairwise causal relationships among a predefined set 
of genes; (2) the participant requests up to 10 
additional microarray experiments; (3) the simulator 
generates experimental results for the requested 
experiments; and (4) the participant views the results 
with or without GEEVE’s analysis and further 
recommendations for experiments to perform. 
 
Evaluation Metrics. Out of the 36 possible gene 
pairs ( 
Figure 4), ten gene pairs were preselected based on 
the preferences of an external expert biologists 
preference15. All participants were asked to take the 
given preferences as if they were their own. We 
calculated the area under ROC curve (AUROC) for 
all participants in each phase to characterize their 
discovery performance. Note that to calculate 
AUROC in Figure 5, we used non-confounded 
structures (i.e., relationships between X and Y in 
Figure 2 are grouped as (1) causally independent for 
E3 or E6; and (2) causally related for E1 or E4 (also E2 
or E5). This is because SR simulator allows us to 
model microarray’s averaging effect of the mRNA 
level from millions cells and it is the averaging effect 
that makes the latent confounded structure discovery 
difficult if not impossible15,19. To calculate the 
AUROC, we measure how well each participant 
predicts the correct relationships among the ten genes 
in each phase. Thus (1) if E3 or E6 (independence of 
X and Y) is the true state (according to the generating 
model) for a given gene pair, then E1, E2, E4, and E5 
are the false states; (2) if E1 or E4 (Y → X) is the true 
state then E2, E5, E3, and E6 are the false states; or (3) 
if E2 or E5 (X → Y) is the true state then E1, E3, E4, 
and E6 are the false states. 
 

RESULTS 
 
Table 1 shows more information about the 
participants in the control and intervention groups. 
The ten participants were selected based on their 
knowledge of the SNF1 pathway and cDNA 
microarray technology. Table 1 shows that 
participants were equally distributed based on their 
positions, knowledge of the SNF1 pathway, 
knowledge of cDNA microarray technology, and 
their expertise in computers. This is because we 
stratified the participants into the intervention and 
control groups in order to balance the dimensions in 
Table 1, especially focusing on participant’s 
knowledge in SNF1 pathway. There were three 
participants (group A) who rated themselves to be 
more knowledgeable of SNF1 pathway than the other 
seven participants (group B). Not to give an 
advantage to the intervention group, we assigned two 

participants (from group A) and three participants 
(from group B) to the control group. 
Table 1. Information about the Participants in the Intervention 
and Control Groups 

 Professor Post doc Ph.D. student  Others* Total 
Control Group 1 0 3 1 5 
Intervention Group 1 1 3 0 5 

(a) Positions. *Others is a technician with a Master’s degree in a field 
other than biology  

 

 Understand 
Well 

Understand 
Somewhat 

Know only 
the genes 

Totally 
Ignorant 

Total 

Control Group 0 2 3 0 5 
Intervention 
Group 

0 1 4 0 5 

(b) Knowledge in SNF1 pathway.  
 

 Understand 
Well 

Understand 
Somewhat 

Totally 
Ignorant 

Total 

Control Group 0 5 0 5 
Intervention Group 1 4 0 5 

(c) Knowledge in cDNA microarray technology 
 

 Average Std. dev. p value 
Control Group 0.56 0.13 
Intervention Group 0.60 0.16 

 

0.34 

(d) Subjective self-evaluation of computer expertise using the following 
values: 0=Novice, 0.5=Intermediate, 1.0=Expert.  
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(b) AUROC per experiment (microarray experiment) for causal 
relationship predictions 

Figure 5. Area under ROC (AUROC) per experiment for the 
control and intervention groups. Each bar represents a 95% 
confidence interval. 
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Figure 5 plots the comparison of the two groups in 
each phase considering the number of microarray 
experiments that the participants in the two groups 
performed (via the SR Simulator). In particular, it 
displays the AUROC per microarray experiment (this 
unit represents the increased fraction of an AUROC 
that an experimenter would gain per microarray 
experiment) for each phase for the intervention and 
the control groups. The intervention group performed 
statistically significantly better than the control group 
(p < 0.05) in Phase 2, Phase 4 and Phase 5 in making 
causal predictions [Figure 5(b)]. 

 
SUMMARY 

 
We developed a system called GEEVE that 
incorporates an experimenter’s preferences regarding 
which genes to study in order to discover causal 
relationships among those genes. For genes of 
interest, GEEVE generates a model of their likely 
causal relationships, which is based on prior 
biological knowledge and experimental data. 
 
We showed that most of the time the intervention 
group (that used GEEVE) performed better — 
although not always statistically significantly so — 
than the control group in predicting whether pairs of 
genes (of interest to the biologist study participant) 
act independently or have a causal relationship.  
 
Future work includes modeling more general 
experiments, such as over-expression experiments,  
as well as multiple gene knock-outs that will allow 
GEEVE to incorporate more than pairwise 
relationships into the decision tree. It also will be 
important to perform more extensive testing of 
GEEVE using simulated and real microarray data.  
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