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ABSTRACT 

Cutset conditioning and clique-tree propagation are two popular methods for 
exact probabilistic inference in Bayesian belief networks. Cutset conditioning is 
based on decomposition of  a subset of  network nodes, whereas clique-tree propa- 
gation depends on aggregation of  nodes. We characterize network structures in 
which the performances of  these methods differ. We describe a means to combine 
cutset conditioning and clique-tree propagation in an approach called aggregation 
after decomposition (AD), which can perform inference relatively efficiently for 
certain network structures in which neither cutset conditioning nor clique-tree 
propagation performs well. We discuss criteria to determine when AD will perform 
more efficient belief-network inference than will clique-tree propagation. 

KEYWORDS:  probabilistic reasoning; belief networks; artificial intelli- 
gence; Bayesian methods; reasoning under uncertainty; expert systems 

INTRODUCTION 

Bayesian belief networks are increasingly popular as a means to encode the 
uncertainty in expert systems (Anderson et al. [1], Chavez and Cooper [2], 
Heckerman et al. [3], Horvitz et al. [4]). Belief networks are directed acyclic 
graphs in which the nodes represent variables and the arcs indicate probabilis- 
tic dependencies between these variables. 1 Typically, the variables are dis- 
crete-valued; the possible values of  each variable are mutually exclusive and 
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~We shall use the terms node and variable interchangeably. 
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exhaustive. The arcs between nodes are implemented as conditional probability 
distributions. If  there exists an arc from node Y to node X,  we call Y a parent 
of X ,  and X a child of Y. For each node X with parents YI . . . . .  Yk, the 
belief-network representation includes a conditional probability distribution 
P ( X [  Y1 . . . . .  Yk) relating each possible value of node X to each possible 
value of each of Y~ . . . . .  Y~; for each node X that does not have any parents, 
a prior probability distribution P(X)  is specified for the possible values of 
node X.  Belief networks, also known as probabilistic influence diagrams, 
causal probabilistic networks, and Bayesian nets, are described in more 
detail by Horvitz et al. [4], Cooper [5], Howard and Matheson [6], Jensen 
et al. [7], Lauritzen and Spiegelhalter [8], and Pearl [9, 10]. 

In this paper, we discuss algorithms for exact probabilistic inference (EPI) in 
belief networks. EPI consists of the following process. For each node for 
which the value is known with certainty, we fix the value. We shall refer to 
such nodes as evidence nodes, instantiated nodes, or fixed-value nodes. 
Once we have fixed the values of the evidence nodes, we propagate the 
evidence throughout the belief network and calculate posterior marginal proba- 
bility distributions for all other nodes in the network. The resulting marginal 
probability distributions are consistent with the conditional probability tables 
and prior probabilities specified for the network and with the evidence con- 
tained in the fixed-value nodes. 

Algorithms that perform EPI compute marginal probability distributions for 
the variables of interest in an exact Bayesian manner, rather than approximat- 
ing these probabilities. In addition to the EPI algorithms, there exist several 
methods for approximate Bayesian inference (see Cooper [5], Chavez and 
Cooper [11], Chin and Cooper [12], Fung and Chang [13], Henrion [14], Pearl 
[15], and Shachter and Peot [16]). These approximation algorithms yield 
marginal probabilities that are not necessarily exact. Approximate Bayesian 
inference is not the focus of this paper. 

Exact probabilistic inference for arbitrary belief networks is known to be 
NP-hard (Cooper [17]). That is, if we do not constrain the type of belief 
network, and if we allow any subset of the nodes of the network to be 
instantiated as evidence, then the worst-case time complexity of computing the 
marginal probability distributions for all nodes in the network is exponential in 
the size of the network. 2 Thus, exact probabilistic inference can be computa- 
tionally expensive. However, there are certain classes of belief networks for 
which some EPI algorithms have time complexities that are less than exponen- 
tial in the size of the network. When deciding which EPI algorithm to use in a 

2Although no formal proof exists that the computational time complexity of all NP-hard 
problems is exponential, most computer scientists believe that this is the case. For a formal 
discussion of NP-hardness, see Garey and Johnson [18]. 
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given belief network, we must consider the structure of the belief network. In 
this paper, we identify network structures for which certain methods perform 
inference more efficiently than others. We discuss a method that combines two 
EPI algorithms to improve performance in certain belief-network structures. 

PROBABILISTIC INFERENCE ALGORITHMS 

There are currently several algorithms that perform exact probabilistic 
inference (Jensen et al. [7, 19], Lauritzen and Spiegelhalter [8], Pearl [9], 
Lemmer [20], Rousseau [21], and Schachter [22]). Of these, the method of 
cutset conditioning (CC) of Pearl and the method for inference by clique-tree 
propagation (CTP) of Lauritzen and Spiegelhalter are among the most well 
known. There are certain striking similarities between these two algorithms. 
Both methods perform inference by local propagation of probabilities. To 
enable such local propagation, both CC and CTP transform the belief network 
to a structure that is singly connected; that is, the structure is a polytree. 
However, the manner in which this polytree is constructed differs between CC 
and CTP: In CC, the underlying principle is decomposition of nodes; in CTP, 
the idea is aggregation of multiple nodes into cliques. In the remainder of this 
section we review these two inference methods, as well as the computational 
complexity of each. 

Decomposition of Nodes: Cutset Conditioning 

The method of cutset conditioning is based on an algorithm by Pearl for 
inference in singly connected belief networks, or poly t rees  (Pearl [9, 10, 23]). 
A belief network is singly connected if, for any two distinct nodes X and Y, 
there is at most one undirected path between X and Y. An undirected path 
between nodes X~ and Xg is a sequency of nodes [ X  1 . . . . .  Xk] such that 
there exists an arc from X i to Xi+ ~ or from Xi+ ~ to X i for each 
i e { 1 . . . . .  k - 1 }. In graph-theoretic terms, let G be a graph that is formed 
by conversion of each arc of a belief network B to an undirected edge; then B 
is singly connected if and only if G is a forest. If  a belief network is multiply 
connected, it contains at least one loop. A loop is an undirected path 
[X~ . . . . .  Xk] in which (1) the initial node X~ coincides with the terminal 
node X k and (2), apart from the coincidental initial and terminal nodes, every 
node in [ X  I . . . . .  Xk]  is distinct. Thus, a loop is an undirected cycle3; a loop 
in a belief network B corresponds to a cycle in the corresponding undirected 
graph G. 

3Directed cycles are not allowed in Bayesian belief network. We follow Pearl [10] in using the 
term loop, rather than cycle, to refer to an undirected cycle in a directed graph. 
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Within singly connected belief networks, Pearl's polytree algorithm per- 
forms exact probabilistic inference by propagating update messages from node 
to node until the marginal probability distribution of each node is consistent 
with the evidence. This algorithm is efficient for polytrees: The computational 
time complexity of evidence propagation is linear in the number of nodes of the 
network, given certain assumptions about the network structure. We discuss 
these assumptions in the next subsection, in which we determine the number of 
operations required for a single evidence propagation using the polytree 
algorithm. The problem with this original polytree algorithm is that it is not 
applicable to multiply connected belief networks because update messages may 
cycle through the loops of such networks. Pearl's solution to this limitation 
was cutset conditioning [10, 24]. 

Cutset conditioning is based on the idea that instantiated nodes block certain 
update messages, a principle known as d-separation (Pearl [10], Geiger et al. 
[25]). For the purpose of passing update messages, an instantiated node can be 
seen as a group of nodes among which messages are blocked. The children of 
the instantiated node are isolated from one another, while the parents of the 
instantiated node remain connected, as illustrated in Figure 1. Thus, we can 
think of the instantiated nodes as nodes that are decomposed into several other 
nodes. By instantiating certain nodes in the network, we can prevent cycling of 
the polytree algorithm's update messages. We must instantiate sufficient nodes 
to break all loops through which update messages can cycle (Suermondt and 
Cooper [26]). We refer to the set of nodes that are instantiated to break loops 
as the loop cutset. Once the loop-cutset nodes have been instantiated, we can 
perform probabilistic inference using Pearl's polytree algorithm. 

Although we treat the nodes of the loop cutset as though they were 
instantiated (to prevent cycling of update messages), there is no single value to 

Q Qe 

(a) (b) 

Figure 1. Decomposition of an instantiated node. (a) A single instantiated node, 
shaded, has two parents, A and B, and two children, C and D. (b) The instantiated 
node is converted into a set of nodes (shaded) such that the parents A and B remain 
connected but each child is disconnected from the parents and from the other children of 
the instantiated node. 
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which we can instantiate these nodes. Therefore, during inference we must 
consider all possible combinations of values of the loop-cutset nodes. We call 
these combinations the instances of the loop cutset. The number of loop-cutset 
instances is equal to the product of the number of possible values of each of the 
loop-cutset nodes. As we shall see, whether CC provides an efficient vehicle 
for exact probabilistic inference depends most strongly on the number of 
loop-cutset instances, which grows exponentially as we add nodes to the loop 
cutset. 

The Computational Complexity of Cutset Conditioning 

As mentioned in the previous subsection, the polytree algorithm is linear in 
the number of nodes, given certain assumptions about the structure of the 
network. In this section, we shall determine the number of elementary opera- 
tions (such as arithmetic operations, retrievals, and assignments) required for 
the propagation of a single piece of evidence throughout the network using the 
polytree algorithm. We ignore auxiliary operations such as the incrementation 
of array indexes, and we assume that all elementary operations are of equiva- 
lent complexity. We base our derivation on our particular implementation of 
the equations in Pearl [10]. 

We introduce the following quantities: V,., the number of possible values of 
node i; Ai, the number of children of node i; H i, the number of parents of 
node i; pj(i) ,  the j th parent of node i; xI' i, the size of the parent space of node 
i (-- HjVp/i)); ~i, the sum of the number of values of the parents of node i 
(=  ~iVp/i)); I', the number of loop-cutset instances; and n, the number of 
nodes. 

In our presentation of the complexity of the polytree algorithm, we use 
specific values for several small constant factors. These values form the part of 
the derivation that is most likely to vary depending on the specific implementa- 
tion of Pearl's equations. The specific values of these constants are not central 
to this analysis; of more interest is the complexity of the total number of 
operations in terms of various indicators of network size and complexity, such 
as n and ~i. 

For each node, we must perform three steps: (1) combine the evidence 
coming into the node from its parents and children, to recalculate the marginal 
probability distribution of the node; (2) update the messages to be sent to the 
node's parents; and (3) update the messages to be sent to the node's children. 
Let us consider each in turn. 

To update the local measures of belief, we first summarize the "diagnostic" 
evidence from the node's children, which takes V,.(2 + 3Ai) operations. Next, 
we must summarize the "causal" evidence from the node's parents, which 
takes V/(7~i + ~i + 2) operations. Finally, we combine the "causal" and the 
"diagnostic" evidence to determine the new marginal distribution for node i. 
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This combination takes 8 V/+ 1 operations. Thus, the total number of opera- 
tions in this step is 

1//(2 + 3Ai) + V/(7~i + Hi + 2) + 8V/+  1 

which is equal to 

Vi(12 -~- 3Ai + 7~II i q- ~-'~i) -I- | (1) 

We calculate the messages to be sent to the each parent & ( i )  of node i by 
combining the evidence from node i's children, the evidence from all i 's 
parents other than p j ( i ) ,  and the conditional probability matrix of node i. The 
number of operations for this rather complex update is 

7 ~ i V i 31-[ ixll i V i . i .  I- 0¢- (2) 

Finally, we compute the messages to be sent to each of the children of node 
i by combining the "causal" evidence coming into the node with the evidence 
from all children except the one to which the message is being sent. Since the 
"causal" evidence has already been computed during step 1, this calculation is 
efficient: The number of operations is 

3(A,)2 V~ - AiV / (3) 

Thus, the total number of operations required to propagate evidence through 
node i is the sum of expressions (1), (2), and (3), which is equal to 

V/(12 + 3Ai + 7'¢t i + ,.gi) + 1 + H i + 7 N i V  i + 3IIi'¢tiV i + 3(Ai )2V/ -  AiV / 

which is equal to 

1//[12 + 2Ai + 3(Ai) 2 + 8~i + 7xI' i + 3IIi~li] + ,-~i + 1 (4) 

The complexity of expression (4) is dominated by the term 11/¢1 i V i. Note that 
xl'iV / is the size of the conditional probability matrix of node i, and H i is the 
number of parents of node i. 

If we assume that the network is b o u n d e d  (that is, there is a fixed maximum 
number of parents and children for each node and the number of possible 
values of each node is less than some fixed maximum), then each of the terms 
in expression (4) will be bounded by some fixed constant. In that case, the 
number of operations required to propagate evidence through any node is 
bounded, and the complexity of the polytree algorithm is linear in the number 
of nodes n. 

Let us now consider multiply connected networks. We must propagate 
evidence for each loop-cutset instance. As a result, the operation counts in 
expression (4) must be multiplied by the number of loop-cutset instances P. 
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We see that for bounded networks the complexity of inference using cutset 
conditioning is proportional to nF. As I ~ becomes large, the CC method 
becomes computationally less tractable. 

Aggregation of Nodes: Clique-Tree Propagation 

The clique-tree-propagation (CTP) method, developed by Lauritzen and 
Spiegelhalter [8], provides an alternative mechanism for evidence propagation 
by local operations. As with cutset conditioning, to use CTP we must trans- 
form the original belief network into a tree structure in which probabilities are 
propagated by local operations. Unlike cutset conditioning, which uses decom- 
position of nodes to form the tree, the CTP method uses aggregation of nodes 
into clusters called cliques to obtain a tree structure. Within the resulting 
clique tree, we propagate evidence by calculating the joint probability distribu- 
tion over the nodes in each clique and then making these joint probabilities 
consistent with those of adjacent cliques in the clique tree (Anderson et al. [1], 
Jenset et al. [7, 19]). The posterior marginal distribution of each node can be 
derived directly from the set of clique joint probabilities. 

The clique tree is formed by the following process. First, we convert the 
network into a moral graph by adding edges until, for each node i in the 
network, every parent of i shares an edge with every other parent of node i. 
Next, the graph is triangulated; that is, edges are added until there exist no 
loops of four or more nodes without a chord. To triangulate the network for 
inference using CTP, Lauritzen and Spiegelhalter, in their presentation of CTP 
[8], recommend a heuristic method called maximum-cardinality search 
(Tarjan and Yannakakis [27]). After triangulation, cliques are formed of all 
maximal fully connected sets of nodes. A set of nodes C = { X l . . . . .  Xk} is 
fully connected if and only if, for all distinct i, j in 1 . . . . .  k,  X i shares an 
edge with Xj. If a set of nodes C is fully connected and there exists no fully 
connected set of nodes D such that D D C, then the set C forms a clique. We 
construct a tree from the resulting cliques by assigning a parent clique to each 
clique except one, the top clique of the tree. The process by which the parent 
of each clique is chosen is described in detail in Ref. 8. 

The Computational Complexity of Clique-Tree Propagation 

Let us now determine the number of operations that are required for 
propagation of evidence using one particular implementation of the CTP 
method. Our implementation is based on the interpretation of CTP by the 
HUGIN/MUNIN research group at Aalborg University, Denmark (Andersen 
et al. [1], Jensen et al. [7, 19]). As in our analysis of the complexity of cutset 
conditioning, the number of operations is implementation-dependent but gives 
an upper bound on the complexity of probabilistic inference using this method. 
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In this section, we make the same simplifying assumptions regarding the 
determination of complexity as before; that is, we ignore auxiliary operations 
such as the incrementation of array indexes, and we assume that all elementary 
operations are of equivalent complexity. 

Let us introduce the following additional notation4: C, an arbitrary clique; 
Pc, the parent clique of clique C; R o the set of residual nodes of C; that is, 
{ i: i e C x, Pc} ; Sc, the set of separator nodes of C; that is, { i: i e C N Pc} ; 
I S I, the cardinality of a set of nodes S; t fls l, the state-space size of a 
set of nodes S (=  l-Ii~sV3; and, K, the total state-space of all cliques 

(= ZcI ncl). 
Evidence propagation consists of two sweeps through the clique tree. First, 

there is a sweep up the tree from each clique to its parent clique; this sweep is 
called evidence collection. Evidence collection consists of the calibration of 
the joint probability distribution of each clique's parent to the new information 
in the (child) clique. We calibrate a clique's probability distribution to the 
information in another clique by determining the joint probability of the 
intersection of the two cliques using the information in one and propelling this 
information into the other. For each clique C, calibration from C, through its 
separator nodes S c to its parent clique Pc, takes 31 tic ] + 4 1 flSc I + 31 flPc I 
operations. 

After we have completed evidence collection, we normalize the distribution 
of the top clique of the tree. Normalization of the top clique, T, takes 
6 1 f l r l  + 1 operations. 

Subsequently, we perform a sweep through the clique tree in the reverse 
direction until all evidence has reached all cliques from the top clique. This 
reverse-direction sweep is called evidence distribution. Evidence distribution 
into each clique C from its parent clique Pc (by calibration) also takes 
31 f~c I + 4 I flSc [ + 31 t~p~l operations. 

Thus, we obtain the total number of operations required to update the clique 
tree by summing the number of operations required for each clique (noting that 
for the top clique T, l fist I = I flPr I = 0). We find that this number of 
operations is 

61t2rl + 1 +2  Y~ [31~cl +41~scl  + 31~pcI] 
C * T  

which is equal to 

6K + 1 + Z [81 f~Sc] + 61~pc[]  (5) 
c 

4We follow the notation used by Lauritzen and Spiegelhalter in the original presentation of the 
method of clique-tree propagation [8]. 
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After evidence distribution, we can determine the posterior marginal proba- 
bility distribution of any node by selecting any clique containing that node and 
summing the joint distribution of that clique over all its nodes except the one 
we are interested in. To determine the number of operations required to 
compute the marginal distributions for all nodes, we use the following two 
properties of the residual sets Rc:  

• For each node i, there is exactly one clique C such that i ~ R c ;  
• U c R c  is the set of all nodes. 

It is straightforward to derive these properties from the definition and proper- 
ties of cliques, as described in Ref. 8. Now, we determine the marginal 
distribution of any node from the unique clique in which that node is a 
member of the residual set. First we compute the joint probability distribution 
of R c for each clique C. Next we determine the marginal probability 
distribution of each node from the joint distribution of the appropriate residual 
set. The number of operations required to determine the joint distribution of 
the residual set of clique C is 3 ] t ic I + I fire J" We must marginalize this set 
for each member of R c, which takes an additional number of operations that is 
equal t o  ~ieRc[Vi --I- 3 j flRc 1]" Thus, the total number of operations for node 
marginalization is equal to 

C ieR c 

which is equal to 

3K+ ~ [(31Rcl + 1) x I~Rcl] + ~ V~ (6) 
C i 

and the total number of operations necessary for a single complete evidence 
propagation through the entire network using CTP is the sum of expressions 
(5) and (6), which is equal to 

9g+l+~_,V1+~,[81f~scl +61f~p~l +(31Rcl  + 1) lflR~l] (7) 
i C 

Expression (7) is dominated by the total state-space size, K; additional 
influential terms, depending on the structure of the clique tree, may be 
Z c l  flPc[ and E c [ I  Rcl I ~R¢ I]" We see that the complexity of the algo- 
rithm is determined strongly by the state-space sizes of the individual cliques. 
For any clique C, I f lc l  is exponential in the number of nodes in the clique. 
If, for a particular belief network, some cliques are very large, then inference 
using CTP may be computationally intractable. 

SELECTION OF A N  I N F E R E N C E  A L G O R I T H M  

As mentioned in the Introduction, exact probabilistic inference on belief 
networks is NP-hard. Therefore, it is not surprising that in the worst case the 
computational time complexities of both CTP and CC are exponential in the 
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size of the network. However, we can identify particular features in the 
structure of the network that favor one of these methods over the other. Certain 
structures may lead to triangulations in which there are impractically large 
cliques, and other structures may force us to generate enormous loop cutsets. 
Of particular interest are those network structures in which one method is 
efficient but the other is impractical. For example, there are structures where 
the loops of the network can be cut with very few loop-cutset nodes but where 
an efficient triangulation is difficult to find; conversely, there are structures 
where we can identify a clique tree consisting of very small cliques but many 
where nodes are required to cut all the loops in the network. 

For the CC method, a loop cutset that has a large number of nodes is 
particularly problematic. Before we can perform inference using Pearl's poly- 
tree algorithm in a network, we need to cut all loops. We discuss the 
conditions to be met by the members of the loop cutset in Ref. 26. Because all 
loops must be cut, if the network has many loops that do not share nodes that 
can be used to cut multiple loops, often the CC method will be intractable. In 
the following subsection, we show an example of such a structure. 

The CTP method is not affected strongly by small loops; for example, a loop 
consisting of three nodes can be converted into a single three-node clique. In 
practice, cliques of three nodes allow rapid inference. On the other hand, when 
the clique tree contains large cliques, CTP becomes intractable. Large cliques 
may arise in networks in which there exist a large number of nodes that all 
share a common ancestor and a common descendant. Later we show an 
example of such a structure. 

Although it is possible to make generalizations about typical structures in 
which one method is favored over the other, in practice it is often helpful to 
construct a loop cutset for a network to determine whether CC may be 
tractable for the particular network of interest. Similarly, the creation of a 
clique tree for the network allows us to evaluate whether CTP will be efficient. 
Fortunately, polynomial-time heuristic algorithms exist both for locating a loop 
cutset for a belief network (Suermondt and Cooper [26], Stillman [28]) and for 
determining a clique tree (Lauritzen and Spiegelhalter [8], Tarjan and Yan- 
nakakis [27]). 

Small Loops in Series 

When we have many small loops that cannot be cut with common nodes, 
CTP provides more efficient inference than CC. An example of such a 
structure is a diamond ladder, as shown in Figure 2. 

When we triangulate such a diamond ladder, we find that we have to add 
only one arc for each loop. After triangulation, the nodes of the loops can be 
aggregated easily into fairly small cliques, giving us a clique tree in which 
inference will be efficient. In particular, in the belief network shown in Figure 
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Figure 2. A diamond-ladder belief-network structure. For networks of the diamond- 
ladder structure, the CTP method provides more efficient inference than does the CC 
method. Each loop, consisting of four nodes, can be converted into two cliques of three 
nodes each. 

2, there are n nodes and (n - 1)/3 loops (for n >_ 4); the clique tree for this 
network will consist of 2(n - 1)/3 cliques, each consisting of three nodes, as 
shown in Figure 3. If  we assume that all nodes are binary, the total state-space 
size K is equal to 16(n - 1)/3. Finally, for half the cliques, the intersection 
with their parent clique will consist of one node. For the remaining cliques, the 
intersection with their parent clique will consist of two nodes. 

We can determine the number of operations needed for CTP in a diamond 
ladder by applying expression (7). We separate the sum over all cliques into 
three parts: (a) those cliques that have one node in common with their parent, 
(b) those that have two nodes in common with their parent, and (c) the top 
clique. The number of operations required for inference on the diamond-ladder 
structure using CTP is 

( n - 1  t 9 x  16 3 + l + 2 n  

(n-1 t + 3 - 1  ( 8 x 2 + 6 X 8 + 7 X 4 )  (a)  

n -  1 
+ ~ ( 8  x 4 + 6  x 8 + 4  x 2) (b)  

+ (0 + o + 10 × 8) (c) 

Figure 3. Clique tree for the diamond-ladder belief network. Each clique is represented 
by a shaded triangle between the nodes that are members of that clique. 
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which is equal to 110n - 119 operations. Thus, the number of operations for 
this type of structure is linear in the number of nodes in the network. 5 

Decomposition (CC) is less suitable for networks fitting this topology. Since 
the loops are in series, we need to add one node from each of the loops to the 
loop cutset (Suermondt and Cooper [26]). Thus, the number of loop-cutset 
nodes in the network of Figure 2 is equal to (n - 1)/3, and if we assume again 
that each node in binary, the number of loop-cutset instances r is equal to 
2(n- ~)/3. We showed earlier that the number of operations required for CC is 
proportional to r .  Thus, even though the diamond-ladder network is bounded, 
the complexity of CC in such a network is exponential, whereas the complexity 
of CTP is linear, in the number of nodes. 

Large Parallel Loops 

When the loops are in parallel, rather than in series, we find that the 
triangulation for the CTP method is not as straightforward: The resulting 
clique structure may not lend itself to fast inference. For such networks, the 
CC method may prove more efficient. Consider, for example, the network in 
Figure 4. This network consists of s strands of nodes connected by a common 
ancestor, node 1. Each strand is paired with an adjacent strand by a common 
descendant to form a loop. These loops are paired with adjacent loops by 
common descendants, until we reach a single common descendant of all 
network nodes, node n. Thus, we have a structure of parallel loops. If  we use 
the CC method, the loop cutset for this network need consist on only node 1. If  
we assume that all nodes are binary, the network will be bounded after 
decomposition of node 1 because no node will have more than two parents or 
children. Thus, the time complexity of inference in this network is linear in the 
number of nodes when we use CC. 

In the network of Figure 4, CTP may perform inference less efficiently than 
CC does. When we apply maximum-cardinality search to triangulate this 
network, starting with the node labeled 1 in Figure 4 ,  6 w e  find that the clique 
tree contains a number of cliques of s + 1 nodes. If  we assume that each node 
in binary, such cliques will have a state-space size of 2 s+~, so the total 
state-space size K will be at least exponential in the number of strands s of the 
network. Therefore, the worst-case time complexity of inference in the paral- 

5This analysis is based on the assumption that n > 4. Note that in the diamond-ladder structure, 
(n - 1)/3 must be an integer because the first diamond in the ladder consists of four nodes, and 
each additional diamond adds three nodes. 

6Starting maximum-cardinality search with different nodes can lead to different (and possibly 
more efficient) triangulations. However, no general efficient algorithm is known that generates a 
triangulation that minimizes K. 
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Figure 4. Network structure in which CC generally provides more efficient inference 
than does CTP. 

lel-loop structure using CTP will be exponential in the number of strands s of 
the network. 

COMBINED CUTSET C O N D I T I O N I N G  AND C L I Q U E - T R E E  
PROPAGATION 

The examples in the previous section illustrate that certain belief-network 
structures may favor one method of inference over another. However, there 
are many structures in which neither method dominates. For example, in singly 
connected networks, both CC and CTP perform inference in time proportional 
to the number of nodes in the network. Similarly, in networks in which there 
are small loops in series as well as large loops in parallel, the time complexity 
of inference using either CC or CTP may be exponential in the number of 
nodes in the network, depending on the loop cutset or the triangulation that is 
used. For such problems, an intuitive approach is to use the ideas of cutset 
conditioning to cut the large parallel loops while using CTP for inference to 
prevent an exponential number of loop-cutset instances due to the loops in 
series. In the remainder of this paper, we discuss such a combined approach. 

A primary drawback of the CC method is that to use the polytree algorithm 
for inference we must cut all loops in the belief network. In other words, we 
drive decomposition to an extreme: In every loop in the network, a loop-cutset 
node must be decomposed (Suermondt and Cooper [26]). If  there are many 
loops, this requirement may lead to a number of loop-cutset instances r that is 
so large that inference becomes intractable. The solution to this problem is to 
use the CTP method rather than the polytree algorithm for inference in the 
partially decomposed network. After decomposing certain loop-cutset nodes, 
we aggregate the nodes of the revised network into cliques and form a clique 
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tree, which we use for inference. Since CTP does not require that the network 
be singly connected, we do not need to cut all loops in the network; rather, we 
cut only those loops that would force us to create an impractically complex 
clique tree. 

We call this approach aggregation after decomposition (AD). As we did 
in cutset conditioning, we decompose certain loop-cutset nodes (as shown in 
Figure 1) to disconnect the children of each loop-cutset node from one another 
and from the loop-cutset node's parents. One objective of this decomposition is 
to cut large parallel loops, because such loops may lead to large cliques when 
we aggregate nodes. There is no need to cut small loops that are in series, such 
as those in the diamond-ladder structure described earlier, because such loops 
do not lead to large cliques. In summary, we use the principle of decomposi- 
tion to simplify the structure of the network; after the network has been 
simplified, we use aggregation to create a tree structure in which we perform 
exact probabilistic inference. 

Inference Using Aggregation After Decomposition 

During inference using the AD method, we must consider separately all 
possible combinations of values, or instances, of the loop-cutset nodes. In this 
section, we discuss how marginal probability distributions can be derived for 
each node in the belief network, after observation of some new evidence. The 
process consists of (1) propagating the new evidence using the CTP algorithm 
for each possible loop-cutset instance; (2) updating the mixing weight of each 
instance; and (3) combining the results of the various instances. We discussed 
evidence propagation using CTP in the section on clique-tree propagation. 
Therefore, we now focus on steps 2 and 3. 

For each loop-cutset instance, we maintain a mixing weight that is equal to 
the joint probability of the values to which the loop-cutset nodes have been 
instantiated in that instance. The mixing weight is used to combine the 
inference results of the various instances. Let us consider an arbitrary instance 
of the loop-cutset nodes X 1 . . . . .  X k in which these nodes have been instanti- 
ated to values x 1 . . . . .  x k, respectively. Initially, when no evidence has been 
observed for the network, the weight of each instance is equal to the joint prior 
probability of the loop-cutset nodes' instantiated values, P(x~ . . . . .  xk). 
Elsewhere [29], we describe how these joint prior probabilities can be calcu- 
lated for the CC method; the process is analogous for the AD method. 

After new evidence is observed, we can update the weight of each instance 
to include the evidence in a manner analogous to the CC weight update, as 
described in detail by Pearl [10, 23] and Suermondt and Cooper [29]. We 
summarize this process briefly here. Let us denote the set of newly available 
evidence by E. The new weight, P ( X  1 . . . . .  Xk I E), can be obtained from the 
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prior weight, P (  x 1 . . . . .  x , ) ,  as follows: 

P ( x ,  . . . . .  x~l  e )  = ~ e ( e l  x ,  . . . . .  x k ) P ( x ,  . . . . .  x,:) 

where c¢ is a constant that we obtain by normalizing over all possible 
loop-outset instances: 

O /  = 

1 

e ( e )  E ~, ..... ~ [ - ( e l  ~, . . . . .  x~)P(x, . . . . .  x~)] 

Thus, to calculate the new weights, we need each instance's joint probability of 
the evidence in E, P ( E  I x ~ , . . . ,  Xk). Fortunately, CTP provides us with this 
joint probability in a straightforward manner. During inference for a particular 
loop-cutset instance, we collect evidence from each clique of the network into 
a single top clique (for connected networks) or into a set of independent top 
cliques (for networks that consist of disconnected portions), as described 
earlier. In the case where we have a connected network, when we normalize 
the marginal probabilities of the top clique, the resulting normalization con- 
stant is equal to the joint probability of all new evidence. In the case of a 
network that consists of disconnected portions, the normalization constant of 
the top clique of each independent portion is equal to the joint probability of all 
new evidence in that portion; we simply multiply these normalization constants 
to obtain the joint probability of all new evidence. 

After updating the mixing weights, we can determine the posterior marginal 
probability distribution of each node in the network. For an arbitrary value x 
of a node X,  we obtain P ( x  I E) by calculating the sum over all instances of 
the product of the instance weight and the probability distribution of the node 
in that instance: 

p ( x l E ) =  Z P ( x l e ,  x, . . . . .  xk)p(x ,  . . . . .  x ~ l e )  
X l ,  . . , , X k 

where P ( x l E ,  x I . . . . .  X k )  is the posterior probability of value x in a 
particular network instance and P ( x  I . . . . .  x k l E )  is the updated mixing 
weight of that instance. This combination of the results of various loop-cutset 
instances is fully analogous to that performed by Pearl's CC method, which is 
described in detail in Refs. 10, 23, and 29. 

The Computational Complexity of Aggregation After Decomposition 

Let us determine the number of operations required for the AD method. The 
number of operations needed to update a single network instance is given by 
expression (7). Since we update all network instances--each instance corre- 
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sponding to one of the 11 possible combinations of instantiated values of the 
loop-cutset nodes--we must multiply expression (7) by a factor F. In addition, 
we calculate the new mixing weights, which takes 8I '  operations. Finally, we 
compute the posterior marginal probabilities for each node by combining the 
mixing weights with each instance's inference results. This combination takes 
~ i V /  "1-r + 5 r ~ i g /  operations. Thus, we see that the total number of 
operations required for AD is equal to 

Z E + r{9K + 10 + 6}-~ V/ 
i i 

+ ~  [81flscl + 61~P~l + ( 3 1 g c l  + 1) I~R~I]} 
C 

(8) 

As with CTP, the total state-space size K plays a dominant role in the 
complexity of the inference method. In addition, we see that, as with CC, the 
number of loop-cutset instances F is a key factor in the time complexity of the 
AD method. Let 

¢=9g+lO+6~Vi+Z[81flscl + 6 1 f l p c l  + ( 3 1 R c l  + 1 )  flRcl] 
i C 

Now we see that the total number of operations required for inference is equal 
to Z i V / +  ~I ' .  In this expression, S~iV / is independent of the choice of clique 
tree or loop cutset; • is determined by the structural complexity of the clique 
tree, and I' by the number of instances of the loop-cutset nodes. 

The AD method does not place any requirements on the nodes of the loop 
cutset; any subset of the nodes in the network could form a valid loop cutset. 
For practical purposes, however, we want to add a node to the loop cutset only 
if addition of that node promises to make inference more efficient. In particu- 
lar, addition of each new node to the loop cutset leads to an increase in I '  by a 
factor that is equal to the number of possible values of that node. Thus, 
addition of a new node to the loop cutset is advisable only if the factor of 
reduction in cI, due to decomposition of that node is at least as great as the 
number of possible values of that node. 

Of particular interest as loop-cutset candidates are nodes whose decomposi- 
tion can lead to disconnection of the belief network into multiple distinct 
portions. Evidence can be propagated in each portion independently, and 
evidence does not travel from one portion to another. Thus, during inference, 
we need to update only those network portions in which there is new evidence. 
This can lead to substantial savings in inference time. In Ref. 30, we and 
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Figure 5. A network that combines the features of the networks in Figures 2 and 4. 
The subnetwork containing nodes l - m  can be problematic for CTP, and the subnet- 
work with nodes m - n  is problematic for CC. 

Heckerman describe our experience with a network that is disconnected due to 
the instantiation of  a single, centrally located node. 

Example of Aggregation After Decomposition 

The network shown in Figure 5 has features that render it amenable to an 
inference algorithm that combines the CC and CTP methods. Although in 
practice it is unlikely that we would encounter a network corresponding exactly 
to the one shown in Figure 5, this network is prototypical of  the networks that 
may favor combining the CC and CTP methods. In the network shown, nodes 
1 - m  form large parallel loops, which, depending on the triangulation method, 
would lead to a clique tree that has a value of  K that is exponential in the 
number of  strands s. Nodes m - n  form small loops in series that, if CC were 
used, would lead to an exponential number of  loop-cutset instances. 

In particular, if we were to use CC on this network, we would have to form 
a loop cutset of  node 1 and nodes m, m + 3 . . . . .  n - 3, leading to a value of  
r that would be exponential in the number of  nodes in the network (assuming 
binary nodes, r = 2 × 2 (n-m)~3 for m > 1, n > m + 3). I f  we wish to use 
CTP on the network of  Figure 5, we find that, given the triangulation discussed 
earlier, several cliques between nodes 1 and m contain s + 1 nodes. There- 
fore, the total state-space size K would be exponential in the number of  
strands between nodes 1 and m. Thus, under these conditions the worst-case 
time complexity of  inference using either CC or CTP in the example of  Figure 
5 is exponential in the size of  the network. 

By decomposing node 1, we cut all parallel loops between nodes 1 and m. 
Thus, by creating a loop cutset consisting of  only node 1, we transform the 
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network of Figure 5 into that of Figure 6, in which the only loops are those 
between nodes m and n. Now, if we triangulate the resulting network, we find 
that the clique tree has changed. The portion of the network consisting of 
nodes 1 - m  is singly connected; in this portion, we now have s - 1 cliques of 
three nodes (one for each node with two parents), and m - s cliques of two 
nodes (one for each node with a single parent). The portion between nodes m 
and n remains unchanged. In this portion, we form 2(n - m)/3 cliques of 
three nodes each, in a manner similar to that shown in Figure 3. 

Let us assume that all nodes are binary-valued. The number of loop-cutset 
instances r is equal to 2. The new value for K in the decomposed network is 
4(rn - s) + 8(s - 1) + 16(n - m)/3. Thus, K is no longer exponential in 
the number of strands. In the network portion between nodes 1 and m, each 
clique has a one-node intersection with its parent clique. In the remainder of 
the network--a diamond-ladder structure--half the cliques have a two-node 
intersection with their parent clique, and all other cliques except the one 
containing node n have a one-node intersection with their parent. The three- 
node clique containing node n functions as the top clique; therefore, this clique 
does not have a parent clique. 

Now we can derive the new total number of operations needed for inference 
in this network using AD. Recall that this number of operations is given by 
expression (8). We split the sum over all cliques and consider separately (a) the 
two-node cliques with a two-node parent clique, (b) two-node cliques with a 
three-node parent clique, (c) three-node cliques with a one-node intersection 
with their three-node parent, (d) three-node cliques with a two-node intersec- 
tion with their parent, and (e) the three-node top clique. We find that the total 
number of operations required for AD on the network shown in Figure 6 is 

)< 

Figure 6. The network of Figure 5 after decomposition of node 1. The shaded nodes 
represent the group of nodes into which node 1 has been decomposed. 
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equal to 

{[ 2n + 2  9 4 ( m - s )  + 8 ( s -  1) + 16------7 + 1 0 +  (6 x 2n)  

+ ( m -  2s)(8  x 2 + 6  x 4 - 4 - 4  x 2) 

+s (8  x 2 + 6  x 8 + 4  × 2) 

[, + s -  1 ) +  3 1 8 x 2 + 6 X 8 + 7 x 4 )  

n - - m  
+ - - - ~ ( 8 × 4 + 6 x 8 + 4 × 2 )  

(a) 

(b) 

(d) 

+ ( 0  + 0 + 10 × 8) /  (e) 

which is equal to 242n - 48m + 208s - 332 operations. Thus, after decom- 
position of a single loop-cutset node, the time complexity of inference using 
AD is linear in the number of nodes and in the number of strands of nodes of 
the network. Depending on the size and structure of the network, such a hybrid 
approach can lead to considerably more efficient inference than is realized 
when CTP or CC is used alone. 

DISCUSSION 

We have introduced a method, aggregation after decomposition, by which 
we combine the ideas of two known algorithms for exact probabilistic infer- 
ence: cutset conditioning and clique tree propagation. The combination method 
is based on the idea that by conditioning on certain nodes in the network we 
simplify the network's structure; such a simplification may allow us to find 
more efficient triangulations than we could find in the untransformed network. 
Aggregation after decomposition should be applied when the simplification in 
the clique tree brought about by instantiating certain loop-cutset nodes leads to 
a reduction in complexity of inference that offsets the increased complexity 
caused by the fact that we have to perform inference for each of the separate 
loop-cutset instances. Thus, when we add nodes to the loop cutset, we face a 
clear trade-off. 

The method by which we triangulate a belief network can have a strong 
effect on the state-space size of the clique tree. For example, in the network 
shown in Figure 4, when we use maximum-cardinality search starting with 
node 1, we do not find the most efficient triangulation. However, no polyno- 
mial-time algorithms are known that find a triangulation that optimizes the 
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clique tree for inference using CTP. Therefore, in large belief networks, 
exhaustive search for an optimal clique tree may not be practical. For such 
networks in particular, instantiation of the nodes of a loop cutset may help us 
to create efficiently a clique tree that is relatively small. 

We have applied the AD method in the Pathfinder system, a medical expert 
system that offers assistance with diagnosis in hematopathology (Suermondt et 
al. [30]). The Pathfinder belief network has over 100 nodes representing 
diseases and diagnostic features. When we tested the AD method on 20 
Pathfinder cases, selected in sequence from a library of patient-case referrals, 
we found that the run times using AD were approximately 0.53 of the run 
times using CTP. We describe these results in more detail in Ref. 30. 

The AD method resulted from research into pragmatic approaches to 
reasoning under uncertainty. AD combines the underlying ideas of two infer- 
ence methods for multiply connected belief networks: decomposition of the 
network by instantiation of loop-cutset nodes and aggregation of nodes into 
cliques for efficient propagation. Additional hybrid approaches that combine 
exact probabilistic-inference algorithms are possible. Such approaches may 
provide the key to tailoring inference algorithms to the structure of the 
belief-network knowledge base of an expert system. 
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