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Abstract - Cutset conditioning and clique-tree 
propagation are two popular methods for 
performing exact probabilistic inference in 
Bayesian belief networks. Cutset conditioning is 
based on decomposition of a subset of network 
nodes, whereas clique-tree propagation depends on 
aggregation of nodes. We describe a means to 
combine cutset conditioning and clique-tree 
propagation in an approach called aggregation 
after decomposition (AD). We discuss the 
application of the AD method in the Pathfinder 
system, a medical expert system that offers 
assistance with diagnosis in hematopathology. 

1. Introduction 

The Pathfinder expert system resulted from a 
joint project by the University of Southern 
California and Stanford University to assist 
general pathologists with diagnosis in the 
specialty area of hematopathology [Heckerman, 
1985; Heckerman, 1989; Heckerman, 1990b]. 
Uncertain knowledge must be represented and 
reasoned with in this system; therefore, the 
Pathfinder researchers have explored a variety of 
techniques for reasoning under uncertainty. After 
early failures to represent complex uncertain 
knowledge effectively with production rules and 
with nonprobabilistic scoring schemes, the 
Pathfinder team concentrated on decision­
theoretic methods for diagnosis [ Heckerman, 
1990b]. Thus, the current representation of the 
Pathfinder knowledge base includes a multiply 
connected Bayesian belief network. In this belief 
network, 63 malignant and benign diseases of 
lymph nodes are represented by a single node, the 
disease node,1 and over 100 morphologic and 
nonmorphologic features (findings) visible in 
lymph-node tissue are each represented by a 
separate node (see Figure 1). The feature nodes 
each have between two and ten mutually exclusive 
and exhaustive values. The disease node has 63 

1 In this paper, we shall use the term diagnosis to 
indicate a single value of the disease node. 

values, each representing a possible diagnosis. 
Thus, the underlying assumption in this 
representation is that diseases (but not features) in 
hematopathology are mutually exclusive, and 
that the set of possible diagnoses represented by 
the disease node is exhaustive. The assumption in 
Pathfinder that diseases in hematopathology are 
mutually exclusive is appropriate, because co­
occurring diseases almost always appear in 
different lymph nodes or in different regions of the 
same lymph node, and a user can analyze each 
area of pathology separately. 

The inference problem in the Pathfinder 
system is to calculate the marginal probability 
distribution for the disease node, given that 
various feature nodes have been instantiated to 
observed values. Exact probabilistic inference in 
Bayesian belief networks is NP-hard [Cooper, 
1990]. Thus, it is quite unlikely that an algorithm 
for probabilistic inference on belief networks can 
ever be developed that is efficient even in the 
worst cases. 

Recently, we chose to approach the 
Pathfinder inference problem with an algorithm 
developed by Lauritzen and Spiegelhalter 
[Lauritzen, 1988], later refined by the MUNIN 
team [Andersen, 1989]. We shall refer to this 
algorithm as clique-tree propagation (CTP). T h e  
underlying principle of CTP is aggregation of nodes 
into clusters called cliques. Once the nodes have 
been grouped into diques, the resulting structure is 
a tree, in which probabilities are propagated by 
local operations. Within the clique tree, we 
propagate evidence by first calculating the joint 
probability of the nodes in each clique, and then 
adjusting these joint probabilities to be consistent 
with those of adjacent cliques in the clique tree 
[ Andersen, 1989]. The computational time 
complexity of CTP increases exponentially with 
the number of nodes in each clique [Lauritzen, 1988, 
pp. 186-188]: The complexity is proportional to the 
state-space size of each clique, which is the 
product of the numbers of possible values of the 
nodes in that clique. Thus, if inference is to be 
tractable, we must keep the cliques small. 
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AJthough the performance of the CTP 
method for inference in Pathfinder was 
satisfactory, we realized that we could improve 
inference times by taking into account the special 
structure of the Pathfinder belief network. The 
disease node in the Pathfinder network is a 
parent to all but two feature nodes in the network. 
As a result, the disease node is in almost every 
clique in the clique tree. Due to the large number 
(63) of possible values of the disease node, the 
average state-space size of the cliques is fairly 
large. By treating the disease node as though it 
is instantiated, we can remove it from the cliques, 
simplifying propagation of evidence 
considerably. 

Simplifying n etwork structure by 
instantiating a node for which no evidence has 
been observed was first described by Pearl [Pearl, 
1986a]. He developed this method, called cutset 
conditioning (CC), to enable the use of Kim and 
Pearl's polytree algorithm [Kim, 1983; Pearl, 
1986b] for inference in multiply connected belief 
networks. One of the principal drawbacks of 
Pearl's use of cutset conditioning is that we must 
cut every loop in the network with an 
instantiated node (a member of the loop cutset) to 
use the polytree algorithm for inference 
[Suermondt, (in press)]. During inference, we must 
consider each possible combination of 
instantiated values of the loop-cutset nodes; the 
number of these loop-cutset instances is equal to 
the product of the numbers of possible values of 
the loop-cutset nodes, and this product is clearly 
exponential in the number of loop-cutset nodes. 

2. Aggregation After Decomposition 

To use the polytree algorithm for inference in 
a multiply connected belief network, we must cut 
every loop in the network. If there are many 
loops, this requirement leads quickly to a number 
of loop-cutset instances that is so large that 
inference becomes intractable. The solution to this 
problem is to use the CTP method, rather than 
the polytree algorithm, for inference in the 
partially decomposed n etwork: After 
decomposing the loop-cutset nodes, we aggregate 
the nodes of the revised network into cliques and 
form a clique tree, which we use for inference. 
Since CTP does not require that the network be 
singly connected, we do not need to cut all the 
loops in the network; rather, we make a loop 
cutset of one or a few nodes to simplify the 
structure of the clique tree. The desired result is 
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that the cliques in the revised network are 
smaller than are those in the original network. 

We call this approach aggregation after 
decomposition (AD); we describe it in more detail 
in [Suermondt, 1990; Beckerman, 1990a, Ch. 4]. In 
the case of the Pathfinder network, we 
decompose the disease node by acting as though 
that node has been instantiated. The loop cutset 
consists of only the disease node; each instance of 
the loop cutset corresponds to a single diagnosis, 
and the weight of each loop-cutset instance 
[Pearl, 1986a; Pearl, 1988, p. 206; Suermondt, 
1989] is equal to the marginal probability of the 
corresponding diagnosis. After making the 
disease node the loop cutset, we remove this node 
from the network and aggregate the remaining 
nodes to form a clique tree. 

Due to the structure of the Pathfinder 
network, removal of the disease node disconnects 
sections of the belief network from one another. 
After we condition on the disease node, the 
resulting clique tree is not connected. Rather, it 
consists of several independent portions that can 
be updated independently. This disconnected 
clique tree speeds up inference in the case of the 
Pathfinder network: During inference, we must 
propagate evidence through only those portions 
of the clique tree in which there is new evidence. 
In the original-connected-clique tree, every 
evidence observation was propagated to the 
entire clique tree. As we shall discuss in Section 3, 
disconnecting the clique tree is the primary 
benefit of applying the AD method to the 
Pathfinder belief network. 

During inference using the AD method in 
Pathfinder, we must consider separately each 
possible diagnosis. Analogously to cutset 
conditioning, we maintain a separate copy of the 
network for each possible diagnosis di. We 
maintain a weight Wi that reflects the current 
marginal probability of diagnosis di. Initially, 
Wi is equal to the prior marginal probability of 
di, which can be obtained directly from the 
knowledge base: Wi = P(di). 

When we observe evidence, we must update 
the weights to obtain the posterior probability of 
each diagnosis. Let us denote the new evidence by 
E; E is a set of nodes, each with a single observed 
value. The new weight for each diagnosis, Wi ·, is 
calculated as follows [Pearl, 1987; Pearl, 1988; 
Suermondt, 1989]: 



wi' = P(di I E) 
= a. P(E I di) P(di) 
= a. P(E I di) w;, 

where a. is the normalization constant over all 
diagnoses d;; that is, a.= 1/P(E). 

Clearly, we must know P(E I di) to be able to 
calculate w(. Fortunately, CTP provides us with 
this probability in a straighforward manner. 
During inference, we propagate the new evidence 
through the clique tree for each possible 
diagnosis. We must propagate evidence through 
only those portions of the clique tree that contain 
nodes for which new evidence has been observed. 
We collect evidence into a single top clique for 
each relevant disconnected portion of the 
network. Normalizing the marginal probabilities 
for the top clique of a network portion yields a 
normal�z

.
ation constant that is equal to the joint 

probabthty of all the evidence that is newly 
observed for that network portion [Lauritzen, 
1988, p.185]. By multiplying these normalization 
constants for all the independent network 
portions that contain new evidence, we obtain 
P(E I di). Thus, we can obtain the posterior 
marginal probability of each diagnosis given the 
observed evidence. 

3. Results of Application of AD to Pathfinder 

Removing the disease node from the network 
results in a clique tree in which the cliques are 
considerably smaller than are those in the 
original network. Since the disease node has 63 
possible values, and the disease node is a member 
o� virtually all cliques, the average state-space 
s1ze decreases by a factor of approximately 63 
when we remove the disease node. However, this 
reduction is largely compensated for by the fact 
that we have to consider separately each of the 
possible 63 diagnoses. Thus, even though a single 
evidence-propagation sweep through the 
network is much less complex, when we observe 
new evidence, we have to perform 63 of these 
sweeps (using the AD method), rather than a 
single one (using CTP). Thus, the net result-the 
t otal inference time-may be virtually 
unchanged: The reduction of the size of the 
cliques alone does not lead to faster evidence 
propagation. 

Nonetheless, on average AD leads to faster 
evidence propagation in the Pathfinder network. 
Due to the special structure of the Pathfinder 
belief network, instantiation of the disease node 

216 

yields a disconnected clique tree.2 In this 
di�connected clique tree, we need to propagate 
eVtdence through only those portions of the clique 
tree that contain nodes for which new evidence 
has been observed. When there is evidence in 
every disconnected portion, the inference time for 
AD is about the same as for CTP. Usually, 
however, evidence is present only in some 
portions of the tree. In these cases, AD is faster 
than CTP. In the best case, all evidence nodes 
belong to a single small portion of the clique tree, 
and all other portions can be left unchanged; in 
the worst case, each portion of the clique tree 
contains at least one evidence node, and the entire 
clique tree must be updated. Notice that, even in 
the worst case, the AD method is no slower than 
isCTP. 

Clearly, the degree to which inference in 
Pathfinder is faster when we apply A D  rather 
than CTP depends strongly on the location of the 
evidence nodes in typical Pathfinder cases. We 
per�ormed a preliminary evaluation of AD, in 
whtch we selected 20 cases in sequence from a 
large library of referrals. For each case, a 
community pathologist reported salient 
morphologic features to Pathfinder. The 
pathologist entered features until she believed 
that no additional observations were relevant to 
the case. 

The number of observed features in our test 
cases averaged 5.7 (range 3-10; cr = 2). We found 
that the average run time using AD in the test 
cases was 0.530 of the run time using CTP in 
Pathfinder (range 0.098-0.921; cr = 0.389). Thus, 
assumit_lg that the cases in our preliminary 
evaluat10n represent typical Pathfinder cases, 
we can expect that inference times using AD will 
be approximately twice as fast, on average, as 
those using CTP. However, the large standard 
deviation cr indicates that the improvement in 
inference time using AD rather than CTP varies 
widely among the cases. 

Strikingly, we found that the run times were 
clearly clustered (see Figure 2). One cluster 
contained 9 cases with 3 to 5 features each and 
run times that averaged 0.112 of the full crP run 
time (range 0.098-0.169; cr = 0.024); the other 
cluster had 11 cases with 4 to 10 features each and 

2 Strictly speaking, the disconnected clique 
structure is no longer a tree, but rather a forest. In 
this paper, �owever, we shall refer to the clique 
structure-<hsconnected or not-as the clique tree. 
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Figure 2. Scatterplot of Pathfinder case results. For each test case, we show the number of features 
along the Y axis and the ratio of inference times using AD and CTP along the X axis. The cases are 
clearly clustered. 

run times that averaged 0.872 of full CTP run 
time (range 0.822 - 0.921; CJ = 0.032). Thus, 
depending on the case, AD performed inference 
either an order of magnitude faster than did CTP, 
or only marginally faster. 

We can explain the clustering of case results 
by considering the size of the portions into which 
the clique tree is divided. Many of the 
independent portions consist of a single node or a 
pair of nodes; evidence in such portions can be 
absorbed extremely rapidly. On the other hand, 
the largest independent portion of the clique tree 
contains 23 cliques and 29 feature nodes. All 
cliques containing more than three nodes­
including one clique that contains six nodes-are 
in this network portion. As mentioned in Section 
1, the time complexity of evidence propagation 
between cliques increases exponentially with the 
number of nodes in each clique. Thus, the inference 
time required to update the single network 
portion containing all the largest cliques is 
greater than that for all the remaining network 
portions combined. If evidence is observed for any 
features in that large network portion, inference 
time using AD will not be much faster than that 
for CTP. In Section 4, we discuss briefly the 
possibility of breaking up such large network 
portions. 

4. Extensions and Discussion 

Selection of an appropriate loop cutset is not 
a problem in the Pathfinder network: The disease 
node forms an obvious choice. Clearly, it is 
possible to consider instantiation of additional 
nodes as loop-cutset members [Suermondt, 1990; 
Heckerman, 1990a]. Such an addition might yield 
a clique tree that is disconnected even further, 
allowing us to obtain more efficient evidence 
propagation on average. Although there are 
several nodes in the Pathfinder network that are 
suitable loop-cutset candidates, there is an 
important drawback associated with addition to 
the loop cutset of nodes other than the disease 
node. Our primary goal in Pathfinder is to obtain 
the marginal probability of each diagnosis; if 
the disease node is the only loop-cutset node, 
these marginals are equal to the weights of the 
diagnoses. If we add other nodes to the loop 
cutset,  we must perform add itional 
marginalization operations to obtain the 
marginal probabilities of the diagnoses after 
absorption of evidence. Thus, when we add other 
nodes to the loop cutset, inference using AD may 
be slower-in the worst case-than inference 
using CTI'. 

The method of conditioning, regardless of the 
manner in which evidence is absorbed, opens the 



way for several modifications of the inference 
scheme. One advantage of the conditioning 
approach is that we can consider each of the 
diagnoses separately. Thus, evidence 
propagation for the diagnoses can be performed in 
parallel, after which we aggregate the results by 
normalizing the weights. Such a parallel 
implementation may lead to substantial savings 
in inference time. 

Another option made possible by the use of 
conditioning in AD is bounded conditioning 
[Horvitz, 1989]. In brief, bounded conditioning 
allows us to speed up inference by removing from 
consideration diagnoses with a very low 
marginal probability. After eliminating these 
diagnoses, we obtain exact bounds on the posterior 
probabilities of the remaining diagnoses. The 
reduction in inference time is related linearly to 
the number of eliminated diagnoses, provided 
that we can obtain the joint probability of the 
new evidence at low computational cost. This 
limits the applicability of the method to cases 
where all new evidence is contained in a single 
clique. A possible danger of applying bounded 
conditioning is that we remove from consideration 
the most probable diagnosis. Such a situation 
could occur if this diagnosis, before instantiation 
of the evidence nodes, has a very low prior 
probability. Nonetheless, the wide bounds on the 
posterior probabilities of the remaining 
diagnoses will inform us of the situation. 

We conclude from our experiments with the 
Pathfinder network that aggregation after 
decomposition provides a means by which we can 
reduce inference times in the Pathfinder network 
substantially. AD is a hybrid approach between 
Pearl's conditioning method and Lauritzen and 
Spiegel halter's clique-tree p ropagation. 
Additional hybrid approaches that combine 
exact probabilistic-inference algorithms are 
possible. Such approaches may provide the key 
to tailoring inference algorithms to the structure 
of the belief-network knowledge base of an expert 
system. 
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