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ABSTRACT
Objective The objective of this investigation is to
evaluate binary prediction methods for predicting disease
status using high-dimensional genomic data. The central
hypothesis is that the Bayesian network (BN)-based
method called efficient Bayesian multivariate classifier
(EBMC) will do well at this task because EBMC builds
on BN-based methods that have performed well at
learning epistatic interactions.
Method We evaluate how well eight methods perform
binary prediction using high-dimensional discrete
genomic datasets containing epistatic interactions.
The methods are as follows: naive Bayes (NB), model
averaging NB (MANB), feature selection NB (FSNB),
EBMC, logistic regression (LR), support vector machines
(SVM), Lasso, and extreme learning machines (ELM).
We use a hundred 1000-single nucleotide polymorphism
(SNP) simulated datasets, ten 10 000-SNP datasets,
six semi-synthetic sets, and two real genome-wide
association studies (GWAS) datasets in our evaluation.
Results In fivefold cross-validation studies, the SVM
performed best on the 1000-SNP dataset, while the
BN-based methods performed best on the other
datasets, with EBMC exhibiting the best overall
performance. In-sample testing indicates that LR, SVM,
Lasso, ELM, and NB tend to overfit the data.
Discussion EBMC performed better than NB when
there are several strong predictors, whereas NB
performed better when there are many weak predictors.
Furthermore, for all BN-based methods, prediction
capability did not degrade as the dimension increased.
Conclusions Our results support the hypothesis that
EBMC performs well at binary outcome prediction using
high-dimensional discrete datasets containing epistatic-
like interactions. Future research using more GWAS
datasets is needed to further investigate the potential of
EBMC.

BACKGROUND
The advances in high-throughput technologies have
provided us with abundant data resources. For
example, we have accumulated a huge number of
single nucleotide polymorphism (SNP) datasets as a
result of genome-wide association studies (GWAS).
An SNP results when a nucleotide that is typically
present at a specific location on the genomic
sequence is replaced by another nucleotide.1 These
high-dimensional GWAS datasets can list over a
million SNPs, and whole genome sequencing can
produce datasets with hundreds of millions of
SNPs.2

By looking at single-locus associations using
these datasets, researchers have identified over 150
risk loci associated with 60 common diseases and
traits.3–6 However, it is likely that the discovery of
loci with significant main effects reveals only a
small fraction of the undiscovered genetic risk of
many common diseases.7–11 That is, much of the
genetic risk might be due to undiscovered epistatic
interactions, which are interactions by which
several genes combined affect disease, and the net
effect on phenotype cannot be predicted by simply
combining the effects of the individual loci.
In light of its importance, researchers have

sought to detect epistasis using genomic data. As
standard techniques such as linear regression may
not work well because the interactions are non-
linear, other techniques were explored. One well-
known technique is multifactor dimensionality
reduction (MDR).12 MDR combines two or more
variables into a single variable and has been suc-
cessfully applied to detect epistatic interactions in
hypertension,13 sporadic breast cancer,14 and type
II diabetes.15 Jiang et al16 evaluated the perform-
ance of 22 Bayesian network (BN) scoring criteria
and MDR when scoring candidate interactions.
They found that several of the BN scoring criteria
performed substantially better than other scores
and MDR.
A second difficulty when learning epistasis from

high-dimensional datasets concerns the curse of
dimensionality. That is, there are too many SNPs to
look at all possible interactions. Therefore, research-
ers worked on developing heuristic search methods.
Traditional techniques such as logistic regression
(LR),17 LR with an interaction term,18 penalized
LR,19 and Lasso20 21 were applied to the task. Other
techniques included full interaction modeling,22

using information gain,23 24 SNP Harvester,25

permutation testing,26 27 the use of ReliefF,28 29

random forests,30 predictive rule inference,31 a
variational Bayes algorithm,32 Bayesian epistasis
association mapping,33 34 maximum entropy condi-
tional probability modeling,35 a Markov blanket
method,36 an ensemble-based method that uses
boosting,37 and greedy search using BN scoring
criteria.38

Our goal is not only to discover interactions from
high-dimensional datasets, but also to use the
knowledge learned to perform classification and
prediction in a clinical setting. Many binary predic-
tion methods are available, but currently researchers
have little reason for choosing one over the other.
Just as standard techniques may not work well for
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learning epistatic interactions from high-dimensional genomic
datasets, standard prediction methods may not do well at predic-
tion using these datasets. Several BN-based prediction algorithms
have been developed. The most basic is the naive Bayes (NB) clas-
sifier.39 Variations of it that were designed to handle high-
dimensional data include model averaging NB (MANB),40 41

feature selection NB (FSNB),40 and the efficient Bayesian multi-
variate classifier (EBMC).42

In an effort at consolidating these efforts and determining
which methods work well for this problem, we compare the
prediction performance of the BN-based methods to LR,
support vector machines (SVM),43 Lasso,20 and extreme learn-
ing machines (ELM).44

OBJECTIVE
The objective of this investigation is to evaluate the performance
of binary prediction methods when predicting disease status
using high-dimensional discrete genomic data. Our central
hypothesis is that the BN-based method EBMC will do well at
this task because EBMC builds on BN-based methods that have
performed well at learning epistatic interactions.

METHOD
We first review the methods we applied.

Bayesian networks
BNs39 45–48 are used for uncertain reasoning and machine learn-
ing in many domains, including biomedical informatics.49–54 A
BN consists of a directed acyclic graph (DAG) G ¼ ðV;EÞ,
whose nodeset V contains random variables and whose edges E
represent relationships among the random variables. A BN also
includes a conditional probability distribution of each node
X [ V given each combination of values of its parents. Each
node V in a BN is conditionally independent of all its non-
descendents given its parents in the BN. Figure 1 shows a causal
BN modeling the situation that SNP rs7115850 and the APOE
gene both have a causal inference on late onset Alzheimer’s

disease (LOAD) and LOAD has a causal influence on mental
dexterity.

Using a BN, we can determine conditional probabilities of
interest with a BN inference algorithm.45 The problem of doing
inference in BNs is NP-hard.55

The task of learning a BN from data concerns learning both
the parameters in a BN and the structure (called a DAG model).
In a score-based structure learning approach, we assign a score
to a DAG based on how well the DAG fits the data. Cooper and
Herskovits56 introduced the Bayesian score, which is the prob-
ability of the Data given the model G. A popular variation of
the Bayesian score is the Bayesian Dirichlet equivalent uniform
(BDeu) score,57 which allows the user to specify priors for the
conditional probability distributions using a single hyperpara-
meter a, called the prior equivalent sample size. That score is as
follows:

scoreaðG : DataÞ ¼ PðDatajGÞ

¼
Yn

i¼1

Yqi

j¼1

Gða=qiÞ
Gða=qi þ

Pri
k¼1 sijkÞ

Yri

k¼1

Gða=riqi þ sijkÞ
Gða=riqiÞ

ð1Þ

where ri is the number of states of node Xi, qi is the number of
different instantiations of the parents of Xi, and sijk is the
number of times in the data that Xi took its kth value when the
parents of Xi had their jth instantiation.

Finding the DAG model that maximizes a Bayesian score is
NP-hard.58

Bayesian networks classifiers
We present four different but related BN classifiers.

Naive Bayesian networks
Ideally, we would like to identify all the SNPs that predict a clin-
ical disease outcome of interest, and have those SNPs be parents
of the disease outcome in a BN. However, unless there are only
a few predictors, we usually do not have sufficient data to learn
such a network. For example, if all variables are binary and we
have only 10 predictors, there are 1024 combinations of values
of the predictors. An approach often taken to circumvent this
dilemma is to make the predictors children of the outcome.
Such a network is called an NB network, and when used for
classification it is called an NB classifier.39 Figure 2 shows the
DAG model for an NB classifier when six SNPs are being used
to predict disease D.

Suppose we have Data concerning the status of disease D and
values of the six SNP predictors of D. To develop an NB classi-
fier from these Data we learn the conditional probability distri-
bution of each SNP Si given D from the Data, and ascertain the
prior probability of D in the population in which the classifier
will be used. These probability distributions, along with the

Figure 1 A Bayesian network modeling the situation that single
nucleotide polymorphism (SNP) rs7115850 and the APOE gene cause
late onset Alzheimer’s disease (LOAD), and mental dexterity. SNPs have
two alleles A and B; so the value of an SNP in a human being can be
AA, AB, or BB, which we label 0, 1, and 2. The APOE gene has four
alleles: E1, E2, E3, and E4. We have modeled three levels of mental
dexterity.

Figure 2 A directed acyclic graph (DAG) model for a naive Bayes (NB)
classifier. The variable D represents disease status, and each variable Si
represents the state of a single nucleotide polymorphism (SNP).
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DAG in figure 2, fully specify a BN. To use this network to
predict disease status for a given patient with known values of
the SNPs, we compute the following:

PðDjDataÞ ¼KPðDatajDÞPðDÞ
¼KPðS1; S2; S3; S4; S5; S6jDÞPðDÞ

¼K½
Y6

i¼1

PðSijDÞ�PðDÞ;

where K is a normalizing constant. The last equality above is
because the SNPs are being modeled as independent of each
other upon conditioning on their parent D. A naive BN classi-
fier is a probabilistic classifier in that it provides the probability
of disease status given Data.

Feature selection naive Bayes
When we have many possible SNP predictors, we do not know
which of them are predictors of disease status. One alternative is
to try to learn the predictors from the Data, and then use those
predictors in an NB classifier. FSNB40 uses this strategy. That is,
it learns the predictors for a unique NB classifier, and then uses
that unique classifier to perform inference. It learns the DAG
model by starting with the model containing no SNPs. It then
uses a greedy forward search that adds the SNP to the model that
most increases the Bayesian score (equation 1) of the model.
When no additional features increase the score, the search stops.

Model averaging naive Bayes
Another alternative is to consider all possible subsets of the set
of all SNPs as possible predictors of the disease, compute the
probability of the disease using an NB classifier containing each
of the subsets, and then average over all the classifiers. Formally,
we use the law of total probability as follows:

PðDjDataÞ ¼
X

M

PðDjData;MÞPðMjDataÞ; ð2Þ

where the sum is over all naive BN classifier models M contain-
ing subsets of the SNPs. This strategy is called MANB.40 41

Since there are 2n subsets of n SNPs, it is not possible to
compute the sum in equation 2 by brute force. By exploiting the
conditional independencies, it is possible to compute equation 2
in time that is linear in n.

Efficient Bayesian multivariate classifier
A problem with an NB network is that it makes strong condi-
tional independence assumptions. That is, it assumes that the
predictors are conditionally independent given the outcome,
whereas often they are conditionally dependent given the
outcome. The EBMC42 ameliorates this difficulty. EBMC
searches for predictors similar to FSNB, but does so in a more
refined manner.

We describe the search algorithm in EBMC using an example
that is adapted from Cooper et al.42 As illustrated in figure 3,
the algorithm starts by scoring all DAG models in which a
single SNP is the parent of disease node D, using the BDeu
score (equation 1). The model containing the highest scoring
SNP is our initial model as shown in figure 3A, where we have
labeled the SNP as S1. We then determine which SNP when
added as a parent of D to this 1-SNP model yields the highest
scoring 2-SNP model. If that 2-SNP model has a higher score
than our 1-SNP model, our new model becomes that 2-SNP

model as depicted in figure 3B. We greedily keep adding SNPs
to the model as long as we can increase the score. When no
SNP increases the score further, we search for an SNP such that
deleting the SNP increases the score, and we delete the SNP
whose deletion increases the score the most. We keep deleting
SNPs until no deletion increases the score.

Suppose our final model is the one in figure 3B. We then
make the SNPs in the model children of D and create edges
between them. The result is the model in figure 3C. This is the
result we would obtain given the causal relationships in figure 1
if the loci we learned were SNP rs7115850 and the APOE gene.
Next the search continues in the same manner, identifying add-
itional SNPs that are parents of D. That is, we first identify the
single SNP that when added as a parent of D to the model in
figure 3C increases the score of that model the most. We again
proceed with a greedy forward and backward search. Suppose
the search yields two additional SNPs. We then have the model
in figure 3D. In the same way as before, we make the new SNPs
children of D and create edges between them. The result
appears in figure 3E. The search repeatedly continues in this
manner until we cannot increase the score further. The network
produced by EBMC is called an augmented NB network.59

An algorithm for EBMC appears in the online supplementary
material.

Other methods tested
We compared the BN-based methods to LR, which is a standard
probabilistic binary classifier, the SVM,43 which is a non-
probabilistic machine learning binary classifier, Lasso,20 which is
regression-based and does shrinkage that allows a variable to be
partly included in the model, and the neural network-based
non-probabilistic binary classifier ELM.43

Evaluation methodology
We evaluated NB, MANB, FSNB, EBMC, LR, SVM, Lasso, and
ELM using 110 simulated datasets, six semi-synthetic sets, and
two real GWAS datasets. We used our own implementations of
NB, MANB, FSNB, and EBMC, and the publicly available
implementions of SVM at LIBLINEAR60 and LIBSVM,61 Lasso
at lasso4j,62 and ELM at ELM.63 Our implementations are not
yet publicly available. The SVM packages we used provides a
linear kernel in LIBLINEAR and the radial basis function (RBF)
kernel in LIBSVM. Overfitting occurs when a model describes
the data well, but as a result describes the underlying relation-
ships poorly. A model tries to avoid overfitting by employing
regularization. The linear kernel uses a penalty parameter C to
handle regularization. We used the following values of C in our
studies: 2−5, 2−1, 23, 27, 211, and 215. The RBF kernel uses
both the parameter C and a kernel parameter γ. We used the
same values of C as those used for the linear kernel, and the fol-
lowing values of γ: −15, −11, −7, −3, 1, 5. We combined every
value of C with every value of γ. In ELM we can specify the
number of hidden nodes. We ran ELM with 10, 500, and 1000
hidden nodes. In the BN-based methods, we used the BDeu
score with α=9. All experiments were run using a Dell
PowerEdge R515 server which has an AMD Opteron 4276HE,
2.6 GHz, 8C, Turbo CORE, 8M L2/8M L3, 1600 MHz Max
Mem single processor and an additional AMD Opteron
4276HE, 2.6 GHz, 8C, Turbo CORE, 8M L2/8M L3,
1600 MHz Max Mem processor.

Simulated datasets
Chen et al64 generated datasets based on two 2-SNP epistatic
interactions, two 3-SNP epistatic interactions, and one 5-SNP
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epistatic interaction, making a total of 15 predictive SNPs. Each
dataset contains 1000 cases and 1000 controls. Three para-
meters were varied to create the interactions: (1) u, which deter-
mined the penetrance; (2) b, which determined the minor allele
frequency; and (3) l, which determined the linkage disequilib-
rium of the true causative SNPs with the observed SNPs. The
effects of the interactions were combined using a Noisy-OR
model.45

In our evaluation, we used the hundred 1000-SNP datasets
and the ten 10 000-SNP datasets developed by Chen et al, with
b ¼ 1, b ¼ 1, and l ¼ null.

Real and semi-synthetic datasets
Reiman et al65 developed a LOAD GWAS dataset that contained
data on 312 260 SNPs and had records on 861 cases and 644
controls. We used this real GWAS dataset in our evaluation.
Hunter et al66 conducted a GWAS on 546 646 SNPs and breast
cancer. The dataset consists of 1145 cases and 1142 controls. In
addition to using this real GWAS dataset directly in our evalu-
ation, we also used it to create semi-synthetic datasets. To create
one of these datasets, we generated data on 15 predictive SNPs
in the same way as described above for the simulated datasets.
We then injected these data into the real breast cancer GWAS
dataset, resulting in a semi-synthetic dataset. We developed six
such semi-synthetic datasets.

RESULTS
Simulated datasets
In k-fold cross-validation, we divide the data into k partitions of
the same size. For each partition j, we train using the data in the
remaining k− 1 partitions to yield a model, and we compute
the error for each data item in partition j when applying this
model. We evaluated the methods using fivefold cross-
validation. In order to judge to what extent a method overfit
the data, we also carried out in-sample testing in which we used
the entire dataset to learn the model, and then used the learned
model to do prediction for the entire dataset. Table 1 compares
the average areas under the receiver operating characteristic
curve (AUROC) for the fivefold cross-validation when the
methods were used to analyze the simulated datasets. The best
and worst results obtained for LIBLINEAR and LIBSVM over
all values of the parameters are shown in table 1. Online supple-
mentary table S1 compares the average AUROCs for the
in-sample testing. Online supplementary table S2 shows
the running times. Figure 4 plots the average AUROCs for the
methods. In the fivefold cross-validation, LIBSVM performed

the best on the 1000-SNP datasets, but its performance
degraded on the 10 000-SNP datasets. EBMC performed best
on the 10 000-SNP datasets, exhibiting the same performance
as on the 1000-SNP datasets. Other than NB, the BN-based
methods did not do much better in the in-sample testing than in
the fivefold cross-validation, indicating that they do not tend to
overfit the data. On the other hand, NB and the non-Bayesian
methods performed better in the in-sample testing, indicate that
these methods tend to overfit the data. As can be seen in online
supplementary table S2, LIBSVM is substantially slower than
the other methods. On average it took EBMC, LIBLINEAR
best, and LIBSVM best 2.2 m, 4.77 s, and 0.44 h, respectively,
to handle one 10 000-SNP dataset.

LIBSVM is a non-probabilistic classifier. For such classifiers it
is worthwhile to investigate the actual true positive and false
positive rates. LIBSVM achieved its average AUROC of 0.760
on the 1000-SNP datasets with an average true positive rate of
0.548 and an average false positive rate of 0.027. In applications
where it is more important to avoid false positives, this perform-
ance would be good. On the other hand, if true positives are
more important and some false positives can be tolerated, this
would not be good performance.

Figure 3 An example illustrating the efficient Bayesian multivariate classifier (EBMC) search. The variable D represents disease status, and each
variable Si represents the state of a single nucleotide polymorphism (SNP).

Table 1 Average area under the receiver operating characteristic
curves (AUROCs) when fivefold cross-validation is used to analyze
the 100 simulated datasets containing 1000 single nucleotide
polymorphisms (SNPs) and the 10 datasets containing 10 000 SNPs

Method 1000 SNPs 10 000 SNPs

EBMC 0.709 0.707
MANB 0.682 0.678
FSNB 0.682 0.679
NB 0.583 0.666
LR 0.553 0.516
LIBLINEAR best 0.593 (C=2−5) 0.517 (C=2−5)
LIBLINEAR worst 0.539 (C=211) 0.507 (C=211)
LIBSVM best 0.760 (C=23, γ=−7) 0.675 (C=23, γ=−11)
LIBSVM worst 0.250 (C=2−3, γ=−3) 0.250 (C=2−5, γ=−7)
Lasso 0.528 0.512
ELM 10 0.501 0.500
ELM 500 0.508 0.503
ELM 1000 0.509 0.503

EBMC, efficient Bayesian multivariate classifier; ELM, extreme learning machines;
FSNB, feature selection naive Bayes; LR, logistic regression; MANB, model averaging
naive Bayes; NB, naive Bayes.
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Real and semi-synthetic datasets
We again evaluated the systems using fivefold cross-validation
and in-sample testing. Lasso was not included in the evaluation
because it could not handle so many SNPs. LIBSVM was also
not included owing to memory problems; we could not get
LIBSVM to run even when 60 GBs were allocated. Table 2
shows the AUROCs for the fivefold cross-validation when the
methods analyze the real LOAD and breast cancer datasets, and
the average AUROC when they analyze the semi-synthetic data-
sets. Online supplementary table S3 shows the in-sample testing
results, while online supplementary table S4 shows the running
times. Figure 5 plots the AUROCs for the methods when ana-
lyzing the LOAD dataset.

The fivefold cross-validation results for the LOAD dataset
were similar to those for the simulated datasets. We investigated
EBMC further when analyzing the LOAD dataset. Figure 6
shows the BN model learned by EBMC from the entire LOAD
dataset. APOE is the strongest genetic risk factor for LOAD.65

SNP rs7115850 is on the GAB2 gene, and previous research has

indicated the APOE and GAB2 genes interact to affect LOAD.65

The edge from SNP rs7115850 to APOE captures this inter-
action. SNP rs6784615 is on the NISCH gene; recent research
has associated this gene by itself with LOAD.67 Note that
EBMC did not place an edge between this SNP and either of
the other predictors. So these associations in the EBMC model
are consistent with studies in the literature. The models
obtained in the fivefold cross-validation studies were not as con-
sistent with known biological information as the model in figure
6. They all contained the APOE gene, but none found the
GAB2 gene. Model 1 contained the NISCH gene and APOE,
model 3 contained only APOE, model 4 contained SNP
rs7335085 and APOE, and model 5 contained SNP rs58766952
and APOE. We know of no previous research linking these
latter two SNPs to LOAD. The fact that we learn from less data
in the cross-validation studies may account for the inferior dis-
covery. On the other hand, the fact that APOE is such a strong
signal likely accounts for the fact that the performance is still
good in these studies.

The fivefold cross-validation breast cancer results are interest-
ing and surprising. Most of the methods found no signal at all.
However, LIBLINEAR found a very weak signal, and NB found
a stronger but still weak signal. We obtained 95% CIs for the
AUROCs of LIBLINEAR best and NB equal to (0.500 to 0.548)
and (0.505 to 0.553), respectively, so we can be reasonably con-
fident that this is a faint signal and not noise. When analyzing
this dataset using the Bayesian network posterior probability
(BNPP) method, Jiang et al68 found that no SNP had a posterior
probability great than 0.01, but there were many SNPs with pos-
terior probabilities close to 0.003. This indicates that there is no
strong predictor in this dataset, but many possible weak ones.
(Note that BRCA1 and BRCA2 are not included in this dataset
because they are too rare to qualify. Furthermore, the study is in
postmenopausal women, and these genes are known to be risk
factors in premenopausal women.) So, many SNPs could be
interacting to provide this weak signal. Such a result is consist-
ent with the fact that studies have shown that thousands of
genes may be associated with breast cancer.69 Furthermore,
when we inject the five interactions into the breast cancer
dataset, NB does better than the other methods and also better
than any of the results for the simulated datasets. NB does

Figure 4 Average area under the receiver operating characteristic curves (AUROCs) for the methods when the 1000-single nucleotide
polymorphism (SNP) and 10 000-SNP datasets are analyzed. EBMC, efficient Bayesian multivariate classifier; ELM, extreme learning machines; FSNB,
feature selection naive Bayes; LR, logistic regression; MANB, model averaging naive Bayes; NB, naive Bayes; SNP, single nucleotide polymorphism.

Table 2 Area under the receiver operating characteristic curves
(AUROCs) when fivefold cross-validation is used to analyze the real
genome-wide association (GWAS) datasets and the six
semi-synthetic breast cancer datasets

Method LOAD Breast cancer Avg. synthetic

EBMC 0.710 0.499 0.699
MANB 0.722 0.489 0.688
FSNB 0.692 0.499 0.690
NB 0.558 0.529 0.804
LR 0.542 0.504 0.516
LIBLINEAR best 0.607 (C=2−5) 0.524 (C=27) 0.569 (C=2−5)
LIBLINEAR worst 0.533 (C=215) 0.502 (C=2−5) 0.501 (C=27)
ELM 10 0.490 0.503 0.497
ELM 500 0.533 0.481 0.491
ELM 1000 0.514 0.497 0.507

EBMC, efficient Bayesian multivariate classifier; ELM, extreme learning machines;
FSNB, feature selection naive Bayes; LOAD, late onset Alzheimer’s disease; LR, logistic
regression; MANB, model averaging naive Bayes.
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prediction using all possible predictors. It seems that this strat-
egy may work well in this situation because it combines the pre-
dictive value of the injected SNPs with the weak signal of the
multitude of real predictors to achieve its predictive capability.
Further analysis with additional real and real/combined datasets
is needed to investigate this conjecture.

DISCUSSION
LIBSVM performed best on the 1000-SNP datasets. EBMC per-
formed best on the 10 000-SNP datasets and slightly behind
MANB on the LOAD dataset. In the studies on the breast
cancer dataset, NB performed best. EBMC searches for good
predictors and then uses them to carry out prediction, whereas
NB simply uses all possible predictors. Our results indicate that
the former approach might work better when there are several
strong predictors, whereas the latter approach might work
better when there are many weak predictors.

Using the same simulated datasets as those used in our ana-
lysis, Chen et al64 compared the performance of eight methods
for discovering epistatic interactions. All methods performed
substantially worse on the 10 000-SNP datasets than on the
1000-SNP datasets. Since the 10 000-SNP datasets contain more
non-predictors, it is more difficult to find the 15 actual predic-
tors when analyzing these datasets. However, our prediction
results using EBMC obtained AUROCs of around 0.70 for the
1000-SNP datasets, the 10 000-SNP datasets, and the semi-
synthetic breast cancer datasets containing 546 646 SNPs. This
result indicates that EBMC’s predictive ability hardly degrades
as we increase the number of SNPs, even if the discovery per-
formance does degrade.

In future research, we can generate more simulated datasets
with different numbers of interacting SNPs and different values
of u, b, and l. We can then further investigate the performance
of LIBSVM, EBMC, and NB using various values of their
tuning parameters. We can identify which method performs best
in each situation.

We evaluated our methods using a real LOAD GWAS dataset
which has a strong SNP signal, and a real breast cancer GWAS
dataset which has a weak SNP signal. Future research can
further investigate their performance using a real GWAS dataset
in a domain believed to have a moderate SNP signal such as
rheumatoid arthritis.70

CONCLUSIONS
Our investigations support the hypothesis that EBMC performs
binary prediction using high-dimensional genomic datasets well.
It exhibited the best overall performance of eight methods
tested, although LIBSVM, MANB, and NB performed better in
certain cases.
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Figure 5 Area under the receiver operating characteristic curves (AUROCs) for various methods when the late onset Alzheimer’s disease (LOAD)
dataset is analyzed. EBMC, efficient Bayesian multivariate classifier; ELM, extreme learning machines; FSNB, feature selection naive Bayes; LR,
logistic regression; MANB, model averaging naive Bayes; NB, naive Bayes.

Figure 6 The Bayesian network model learned by the efficient
Bayesian multivariate classifier (EBMC) from the entire late onset
Alzheimer’s disease dataset.
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