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Abstract
We propose a new Bayesian method for spatial cluster detection, the
“Bayesian spatial scan statistic,” and compare this method to the standard
(frequentist) scan statistic approach. We demonstrate that the Bayesian
statistic has several advantages over the frequentist approach, including
increased power to detect clusters and (since randomization testing is
unnecessary) much faster runtime. We evaluate the Bayesian and fre-
quentist methods on the task of prospective disease surveillance: detect-
ing spatial clusters of disease cases resulting from emerging disease out-
breaks. We demonstrate that our Bayesian methods are successful in
rapidly detecting outbreaks while keeping number of false positives low.

1 Introduction
Here we focus on the task ofspatial cluster detection: finding spatial regions where some
quantity is significantly higher than expected. For example, our goal may be to detect
clusters of disease cases, which may be indicative of a naturally occurring epidemic (e.g.
influenza), a bioterrorist attack (e.g. anthrax release), or an environmental hazard (e.g. ra-
diation leak). [1] discusses many other applications of cluster detection, including mining
astronomical data, medical imaging, and military surveillance. In all of these applications,
we have two main goals: to identify the locations, shapes, and sizes of potential clusters,
and to determine whether each potential cluster is more likely to be a “true” cluster or sim-
ply a chance occurrence. Thus we compare the null hypothesisH0 of no clusters against
some set of alternative hypothesesH1(S), each representing a cluster in some region or
regionsS. In the standard frequentist setting, we do this by significance testing, computing
the p-values of potential clusters by randomization; here we propose a Bayesian frame-
work, in which we compute posterior probabilities of each potential cluster.

Our primary motivating application isprospective disease surveillance: detecting spatial
clusters of disease cases resulting from a disease outbreak. In this application, we perform
surveillance on a daily basis, with the goal of finding emerging epidemics as quickly as
possible. For this task, we are given the number of cases of some given syndrome type
(e.g. respiratory) in each spatial location (e.g. zip code) on each day. More precisely, we
typically cannot measure the actual number of cases, and instead rely on related observable
quantities such as the number of Emergency Department visits or over-the-counter drug
sales. We must then detect those increases which are indicative of emerging outbreaks,
as close to the start of the outbreak as possible, while keeping the number of false posi-
tives low. In biosurveillance of disease, every hour of earlier detection can translate into
thousands of lives saved by more timely administration of antibiotics, and this has led to
widespread interest in systems for the rapid and automatic detection of outbreaks.



In this spatial surveillance setting, each day we have data collected for a set of discrete
spatial locationssi. For each locationsi, we have acount ci (e.g. number of disease cases),
and an underlyingbaseline bi. The baseline may correspond to the underlyingpopulation
at risk, or may be an estimate of the expected value of the count (e.g. derived from the
time series of previous count data). Our goal, then, is to find if there is any spatial region
S (set of locationssi) for which the counts are significantly higher than expected, given the
baselines. For simplicity, we assume here (as in [2]) that the locationssi are aggregated to a
uniform, two-dimensional,N ×N grid G, and we search over the set of rectangular regions
S ⊆ G. This allows us to search both compact and elongated regions, allowing detection of
elongated disease clusters resulting from dispersal of pathogens by wind or water.

1.1 The frequentist scan statistic
One of the most important statistical tools for cluster detection is Kulldorff’sspatial scan
statistic [3-4]. This method searches over a given set of spatial regions, finding those re-
gions which maximize a likelihood ratio statistic and thus are most likely to be generated
under the alternative hypothesis of clustering rather than the null hypothesis of no clus-
tering. Randomization testing is used to compute thep-value of each detected region,
correctly adjusting for multiple hypothesis testing, and thus we can both identify potential
clusters and determine whether they are significant. Kulldorff’s framework assumes that
countsci are Poisson distributed withci ∼ Po(qbi), wherebi represents the (known) cen-
sus population of cellsi andq is the (unknown) underlying disease rate. Then the goal of
the scan statistic is to find regions where the disease rate is higher inside the region than
outside. The statistic used for this is the likelihood ratioF(S) = P(Data |H1(S))

P(Data |H0)
, where the

null hypothesisH0 assumes a uniform disease rateq = qall . UnderH1(S), we assume that
q = qin for all si ∈ S, andq = qout for all si ∈ G− S, for some constantsqin > qout . From
this, we can derive an expression forF(S) using maximum likelihood estimates ofqin,
qout , andqall : F(S) = (Cin

Bin
)Cin(Cout

Bout
)Cout (Call

Ball
)−Call , if Cin

Bin
> Cout

Bout
, andF(S) = 1 otherwise.

In this expression, we haveCin = ∑S ci, Cout = ∑G−S ci, Call = ∑G ci, and similarly for the
baselinesBin = ∑S bi, Bout = ∑G−S bi, andBall = ∑G bi.

Once we have found the highest scoring regionS∗ = argmaxS F(S) of grid G, and its score
F∗ = F(S∗), we must still determine the statistical significance of this region by random-
ization testing. To do so, we randomly create a large numberR of replica grids by sampling
under the null hypothesisci ∼ Po(qallbi), and find the highest scoring region and its score
for each replica grid. Then thep-value ofS∗ is Rbeat+1

R+1 , whereRbeat is the number of repli-
casG′ with F∗ higher than the original grid. If thisp-value is less than some threshold (e.g.
0.05), we can conclude that the discovered region is unlikely to have occurred by chance,
and is thus a significant spatial cluster; otherwise, no significant clusters exist.

The frequentist scan statistic is a useful tool for cluster detection, and is commonly used in
the public health community for detection of disease outbreaks. However, there are three
main disadvantages to this approach. First, it is difficult to make use of any prior informa-
tion that we may have, for example, our prior beliefs about the size of a potential outbreak
and its impact on disease rate. Second, the accuracy of this technique is highly dependent
on the correctness of our maximum likelihood parameter estimates. As a result, the model
is prone to parameter overfitting, and may lose detection power in practice because of
model misspecification. Finally, the frequentist scan statistic is very time consuming, and
may be computationally infeasible for large datasets. A naive approach requires searching
over all rectangular regions, both for the original grid and for each replica grid. Since there
areO(N4) rectangles to search for anN ×N grid, the total computation time isO(RN4),
whereR = 1000 is a typical number of replications. In past work [5, 2, 6], we have shown
how to reduce this computation time by a factor of 20-2000x through use of the “fast spatial
scan” algorithm; nevertheless, we must still perform this faster search both for the original
grid and for each replica.



We propose to remedy these problems through the use of a Bayesian spatial scan statistic.
First, our Bayesian model makes use of prior information about the likelihood, size, and
impact of an outbreak. If these priors are chosen well, we should achieve better detec-
tion power than the frequentist approach. Second, the Bayesian method uses amarginal
likelihood approach, averaging over possible values of the model parametersqin, qout , and
qall , rather than relying on maximum likelihood estimates of these parameters. This makes
the model more flexible and less prone to overfitting, and reduces the potential impact of
model misspecification. Finally, under the Bayesian model there is no need for randomiza-
tion testing, and (since we need only to search the original grid) even a naive search can be
performed relatively quickly. We now present the Bayesian spatial scan statistic, and then
compare it to the frequentist approach on the task of detecting simulated disease epidemics.

2 The Bayesian scan statistic
Here we consider the natural Bayesian extension of Kulldorff’s scan statistic, moving from
a Poisson to a conjugate Gamma-Poisson model. Bayesian Gamma-Poisson models are
a common representation for count data in epidemiology, and have been used in disease
mapping by Clayton and Kaldor [7], Mollié [8], and others. In disease mapping, the effect
of the Gamma prior is to produce a spatially smoothed map of disease rates; here we instead
focus on computing the posterior probabilities, allowing us to determine the likelihood that
an outbreak has occurred, and to estimate the location and size of potential outbreaks.

For the Bayesian spatial scan, as in the frequentist approach, we wish to compare the null
hypothesisH0 of no clusters to the set of alternative hypothesesH1(S), each representing
a cluster in some regionS. As before, we assume Poisson likelihoods,ci ∼ Po(qbi). The
difference is that we assume a hierarchical Bayesian model where the disease ratesqin, qout ,
andqall are themselves drawn from Gamma distributions. Thus, under the null hypothesis
H0, we haveq = qall for all si ∈G, whereqall ∼Ga(αall ,βall). Under the alternative hypoth-
esisH1(S), we haveq = qin for all si ∈ S andq = qout for all si ∈ G−S, where we indepen-
dently drawqin ∼Ga(αin,βin) andqout ∼Ga(αout ,βout). We discuss how theα andβ priors
are chosen below. From this model, we can compute the posterior probabilitiesP(H1(S) |D)
of an outbreak in each regionS, and the probabilityP(H0 |D) that no outbreak has oc-

curred, given datasetD: P(H0 |D) = P(D |H0)P(H0)
P(D) and P(H1(S) |D) = P(D |H1(S))P(H1(S))

P(D) ,

whereP(D) = P(D |H0)P(H0)+∑S P(D |H1(S))P(H1(S)). We discuss the choice of prior
probabilitiesP(H0) andP(H1(S)) below. To compute the marginal likelihood of the data
given each hypothesis, we must integrate over all possible values of the parameters (qin,
qout , qall) weighted by their respective probabilities. Since we have chosen a conjugate
prior, we can easily obtain a closed-form solution for these likelihoods:

P(D |H0) =
Z

P(qall ∼ Ga(αall ,βall)) ∏
si∈G

P(ci ∼ Po(qallbi))dqall

P(D |H1(S)) =
Z

P(qin ∼ Ga(αin,βin)) ∏
si∈S

P(ci ∼ Po(qinbi))dqin

×
Z

P(qout ∼ Ga(αout ,βout)) ∏
si∈G−S

P(ci ∼ Po(qoutbi))dqout

Now, computing the integral, and lettingC = ∑ci andB = ∑bi, we obtain:
Z

P(q ∼ Ga(α,β))∏
si

P(ci ∼ Po(qbi))dq =
Z βα

Γ(α)
qα−1e−βq ∏

si

(qbi)
ci e−qbi

(ci)!
dq ∝

βα

Γ(α)

Z

qα−1e−βqq∑ci e−q∑bi dq =
βα

Γ(α)

Z

qα+C−1e−(β+B)q dq =
βα Γ(α+C)

(β+B)α+C Γ(α)

Thus we have the following expressions for the marginal likelihoods:P(D | H0) ∝
(βall)

αall Γ(αall+Call)

(βall+Ball)
αall+Call Γ(αall)

, andP(D |H1(S)) ∝ (βin)αin Γ(αin+Cin)

(βin+Bin)αin+Cin Γ(αin)
× (βout )

αout Γ(αout+Cout )
(βout+Bout )αout +Cout Γ(αout )

.



The Bayesian spatial scan statistic can be computed simply byfirst calculating the score
P(D |H1(S))P(H1(S)) for each spatial regionS, maintaining a list of regions ordered by
score. We then calculateP(D |H0)P(H0), and add this to the sum of all region scores, ob-
taining the probability of the dataP(D). Finally, we can compute the posterior probability

P(H1(S) |D) = P(D |H1(S))P(H1(S))
P(D) for each region, as well asP(H0 |D) = P(D |H0)P(H0)

P(D) . Then
we can return all regions with non-negligible posterior probabilities, the posterior probabil-
ity of each, and the overall probability of an outbreak. Note that no randomization testing
is necessary, and thus overall complexity is proportional to number of regions searched,
e.g.O(N4) for searching over axis-aligned rectangles in anN ×N grid.

2.1 Choosing priors

One of the most challenging tasks in any Bayesian analysis is the choice of priors. For
any regionS that we examine, we must have values of the parameter priorsαin(S), βin(S),
αout(S), andβout(S), as well as the region prior probabilityP(H1(S)). We must also choose
the global parameter priorsαall andβall , as well as the “no outbreak” priorP(H0).

Here we consider the simple case of a uniform region prior, with a known prior probability
of an outbreakP1. In other words, if there is an outbreak, it is assumed to be equally
likely to occur in any spatial region. Thus we haveP(H0) = 1−P1, andP(H1(S)) = P1

Nreg
,

whereNreg is the total number of regions searched. The parameterP1 can be obtained from
historical data, estimated by human experts, or can simply be used to tune the sensitivity
and specificity of the algorithm. The model can also be easily adapted to a non-uniform
region prior, taking into account our prior beliefs about the size and shape of outbreaks.

For the parameter priors, we assume that we have access to a large number of days of past
data, during which no outbreaks are known to have occurred. We can then obtain estimated
values of the parameter priors under the null hypothesis by matching the moments of each
Gamma distribution to their historical values. In other words, we set the expectation and
variance of the Gamma distribution Ga(αall ,βall) to the sample expectation and variance

of Call
Ball

observed in past data:αall
βall

= Esample

[

Call
Ball

]

, and αall
β2

all
= Varsample

[

Call
Ball

]

. Solving for

αall andβall , we obtainαall =

(

Esample

[

Call
Ball

])2

Varsample

[

Call
Ball

] andβall =
Esample

[

Call
Ball

]

Varsample

[

Call
Ball

] .

The calculation of priorsαin(S), βin(S), αout(S), andβout(S) is identical except for two dif-
ferences: first, we must condition on the regionS, and second, we must assume the alterna-
tive hypothesisH1(S) rather than the null hypothesisH0. Repeating the above derivation for

the “out” parameters, we obtainαout(S) =

(

Esample

[

Cout (S)
Bout (S)

])2

Varsample

[

Cout (S)
Bout (S)

] andβout(S) =
Esample

[

Cout (S)
Bout (S)

]

Varsample

[

Cout (S)
Bout (S)

] ,

whereCout(S) andBout(S) are respectively the total count∑G−S ci and total baseline∑G−S bi
outside the region. Note that an outbreak in some regionS does not affect the disease rate
outside regionS. Thus we can use the same values ofαout(S) andβout(S) whether we are
assuming the null hypothesisH0 or the alternative hypothesisH1(S).

On the other hand, the effect of an outbreak inside regionS must be taken into account when
computingαin(S) andβin(S); since we assume that no outbreak has occurred in the past
data, we cannot just use the sample mean and variance, but must consider what we expect
these quantities to be in the event of an outbreak. We assume that the outbreak will increase
qin by a multiplicative factorm, thus multiplying the mean and variance ofCin

Bin
by m. To

account for this in the Gamma distribution Ga(αin,βin), we multiplyαin by m while leaving

βin unchanged. Thus we haveαin(S) = m

(

Esample

[

Cin(S)
Bin(S)

])2

Varsample

[

Cin(S)
Bin(S)

] andβin(S) =
Esample

[

Cin(S)
Bin(S)

]

Varsample

[

Cin(S)
Bin(S)

] ,



whereCin(S) = ∑S ci andBin(S) = ∑S bi. Since we typically do not know the exact value of
m, here we use a discretized uniform distribution form, ranging fromm = 1. . .3 at intervals
of 0.2. Then scores can be calculated by averaging likelihoods over the distribution ofm.

Finally, we consider how to deal with the case where the past values of the counts and
baselines are not given. In this “blind Bayesian” (BBayes) case, we assume that counts
are randomly generated under the null hypothesisci ∼ Po(q0bi), whereq0 is the expected
ratio of count to baseline under the null (for example,q0 = 1 if baselines are obtained
by estimating the expected value of the count). Under this simple assumption, we can
easily compute the expectation and variance of the ratio of count to baseline under the null

hypothesis: E
[

C
B

]

=
E[Po(q0B)]

B = q0B
B = q0, and Var

[

C
B

]

=
Var[Po(q0B)]

B2 = q0B
B2 = q0

B . Thus
we haveα = q0B andβ = B under the null hypothesis. This gives usαall = q0Ball , βall =
Ball , αout(S) = q0Bout(S), βout(S) = Bout(S), αin(S) = mq0Bin(S), andβin(S) = Bin(S). We
can use a uniform distribution form as before. In our empirical evaluation below, we
consider both the Bayes and BBayes methods of generating parameter priors.

3 Results: detection power
We evaluated the Bayesian and frequentist methods on two types of simulated respiratory
outbreaks, injected into real Emergency Department and over-the-counter drug sales data
for Allegheny County, Pennsylvania. All data were aggregated to the zip code level to
ensure anonymity, giving the daily counts of respiratory ED cases and sales of OTC cough
and cold medication in each of 88 zip codes for one year. The baseline (expected count)
for each zip code was estimated using the mean count of the previous 28 days. Zip code
centroids were mapped to a 16×16 grid, and all rectangles up to 8×8 were examined. We
first considered simulated aerosol releases of inhalational anthrax (e.g. from a bioterrorist
attack), generated by the Bayesian Aerosol Release Detector, or BARD [9]. The BARD
simulator uses a Bayesian network model to determine the number of spores inhaled by
individuals in affected areas, the resulting number and severity of anthrax cases, and the
resulting number of respiratory ED cases on each day of the outbreak in each affected zip
code. Our second type of outbreak was a simulated “Fictional Linear Onset Outbreak”
(or “FLOO”), as in [10]. A FLOO(∆,T ) outbreak is a simple simulated outbreak with
durationT , which generatest∆ cases in each affected zip code on dayt of the outbreak
(0 < t ≤ T/2), then generatesT ∆/2 cases per day for the remainder of the outbreak. Thus
we have an outbreak where the number of cases ramps up linearly and then levels off.
While this is clearly a less realistic outbreak than the BARD-simulated anthrax attack, it
does have several advantages: most importantly, it allows us to precisely control the slope
of the outbreak curve and examine how this affects our methods’ detection ability.

To test detection power, a semi-synthetic testing framework similar to [10] was used: we
first run our spatial scan statistic for each day of the last nine months of the year (the first
three months are used only to estimate baselines and priors), and obtain the scoreF∗ for
each day. Then for each outbreak we wish to test, we inject that outbreak into the data, and
obtain the scoreF∗(t) for each dayt of the outbreak. By finding the proportion of baseline
days with scores higher thanF∗(t), we can determine the proportion of false positives we
would have to accept to detect the outbreak on dayt. This allows us to compute, for any
given level of false positives, what proportion of outbreaks can be detected, and the mean
number of days to detection. We compare three methods of computing the scoreF∗: the fre-
quentist method (F∗ is the maximum likelihood ratioF(S) over all regionsS), the Bayesian
maximum method (F∗ is the maximum posterior probabilityP(H1(S) |D) over all regions
S), and the Bayesian total method (F∗ is the sum of posterior probabilitiesP(H1(S) |D) over
all regionsS, i.e. total posterior probability of an outbreak). For the two Bayesian methods,
we consider both Bayes and BBayes methods for calculating priors, thus giving us a total
of five methods to compare (frequentist, Bayesmax, BBayesmax, Bayestot, BBayestot).
In Table 1, we compare these methods with respect to proportion of outbreaks detected and



Table 1: Days to detect and proportion of outbreaks detected,1 false positive/month
FLOO ED FLOO ED FLOO ED BARD ED BARD ED FLOO OTC FLOO OTC

method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)
frequentist 1.859 3.324 6.122 1.733 3.925 3.582 5.393

(100%) (100%) (96%) (100%) (88%) (100%) (100%)
Bayesmax 1.740 2.875 5.043 1.600 3.755 5.455 7.588

(100%) (100%) (100%) (100%) (88%) (63%) (79%)
BBayesmax 1.683 2.848 4.984 1.600 3.698 5.164 7.035

(100%) (100%) (100%) (100%) (88%) (65%) (77%)
Bayestot 1.882 3.195 5.777 1.633 3.811 3.475 5.195

(100%) (100%) (100%) (100%) (88%) (100%) (100%)
BBayestot 1.840 3.180 5.672 1.617 3.792 4.380 6.929

(100%) (100%) (100%) (100%) (88%) (100%) (99%)

mean number of days to detect, at a false positive rate of 1/month. Methods were evaluated
on seven types of simulated outbreaks: three FLOO outbreaks on ED data, two FLOO out-
breaks on OTC data, and two BARD outbreaks (with different amounts of anthrax release)
on ED data. For each outbreak type, each method’s performance was averaged over 100 or
250 simulated outbreaks for BARD or FLOO respectively.

In Table 1, we observe very different results for the ED and OTC datasets. For the five runs
on ED data, all four Bayesian methods consistently detected outbreaks faster than the fre-
quentist method. This difference was most evident for the more slowly growing (harder to
detect) outbreaks, especially FLOO(1,20). Across all ED outbreaks, the Bayesian meth-
ods showed an average improvement of between 0.13 days (Bayestot) and 0.43 days
(BBayesmax) as compared to the frequentist approach; “max” methods performed sub-
stantially better than “tot” methods, and “BBayes” methods performed slightly better than
“Bayes” methods. For the two runs on OTC data, on the other hand, most of the Bayesian
methods performed much worse (over 1 day slower) than the frequentist method. The ex-
ception was the Bayestot method, which again outperformed the frequentist methodby an
average of 0.15 days. We believe that the main reason for these differing results is that the
OTC data is much noisier than the ED data, and exhibits much stronger seasonal trends.
As a result, our baseline estimates (using mean of the previous 28 days) are reasonably ac-
curate for ED, but for OTC the baseline estimates will lag behind the seasonal trends (and
thus, underestimate the expected counts for increasing trends and overestimate for decreas-
ing trends). The BBayes methods, which assume E[C/B] = 1 and thus rely heavily on the
accuracy of baseline estimates, are not reasonable for OTC. On the other hand, the Bayes
methods (which instead learn the priors from previous counts and baselines) can adjust for
consistent misestimation of baselines and thus more accurately account for these seasonal
trends. The “max” methods perform badly on the OTC data because a large number of
baseline days have posterior probabilities close to 1; in this case, the maximum region pos-
terior varies wildly from day to day, depending on how much of the total probability is
assigned to a single region, and is not a reliable measure of whether an outbreak has oc-
curred. The total posterior probability of an outbreak, on the other hand, will still be higher
for outbreak than non-outbreak days, so the “tot” methods can perform well on OTC as
well as ED data. Thus, our main result is that the Bayestot method, which infers baselines
from past counts and uses total posterior probability of an outbreak to decide when to sound
the alarm, consistently outperforms the frequentist method for both ED and OTC datasets.

4 Results: computation time
As noted above, the Bayesian spatial scan must search over all rectangular regions for the
original grid only, while the frequentist scan (in order to calculate statistical significance by
randomization) must also search over all rectangular regions for a large number (typically
R = 1000) of replica grids. Thus, as long as the search time per region is comparable for the
Bayesian and frequentist methods, we expect the Bayesian approach to be approximately
1000x faster. In Table 2, we compare the run times of the Bayes, BBayes, and frequen-



Table 2: Comparison of run times for varying grid sizeN
method N = 16 N = 32 N = 64 N = 128 N = 256

Bayes (naive) 0.7 sec 10.8 sec 2.8 min 44 min 12 hrs
BBayes (naive) 0.6 sec 9.3 sec 2.4 min 37 min 10 hrs

frequentist (naive) 12 min 2.9 hrs 49 hrs ∼31 days ∼500 days
frequentist (fast) 20 sec 1.8 min 10.7 min 77 min 10 hrs

tist methods for searching a single grid and calculating significance (p-values or posterior
probabilities for the frequentist and Bayesian methods respectively), as a function of the
grid sizeN. All rectangles up to sizeN/2 were searched, and for the frequentist method
R = 1000 replications were performed. The results confirm our intuition: the Bayesian
methods are 900-1200x faster than the frequentist approach, for all values ofN tested.
However, the frequentist approach can be accelerated dramatically using our “fast spatial
scan” algorithm [2], a multiresolution search method which can find the highest scoring
region of a grid while searching only a small subset of regions. Comparing the fast spatial
scan to the Bayesian approach, we see that the fast spatial scan is slower than the Bayesian
method for grid sizes up toN = 128, but slightly faster forN = 256. Thus we now have two
options for making the spatial scan statistic computationally feasible for large grid sizes:
to use the fast spatial scan to speed up the frequentist scan statistic, or to use the Bayesian
scan statistics framework (in which case the naive algorithm is typically fast enough). For
even larger grid sizes, it may be possible to extend the fast spatial scan to the Bayesian
approach: this would give us the best of both worlds, searching only one grid, and using a
fast algorithm to do so. We are currently investigating this potentially useful synthesis.

5 Discussion
We have presented a Bayesian spatial scan statistic, and demonstrated several ways in
which this method is preferable to the standard (frequentist) scan statistics approach. In
Section 3, we demonstrated that the Bayesian method, with a relatively non-informative
prior distribution, consistently outperforms the frequentist method with respect to detec-
tion power. Since the Bayesian framework allows us to easily incorporate prior informa-
tion about size, shape, and impact of an outbreak, it is likely that we can achieve even
better detection performance using more informative priors, e.g. obtained from experts in
the domain. In Section 4, we demonstrated that the Bayesian spatial scan can be computed
in much less time than the frequentist method, since randomization testing is unnecessary.
This allows us to search large grid sizes using a naive search algorithm, and even larger
grids might be searched by extending the fast spatial scan to the Bayesian framework.

We now consider three other arguments for use of the Bayesian spatial scan. First, the
Bayesian method has easily interpretable results: it outputs the posterior probability that
an outbreak has occurred, and the distribution of this probability over possible outbreak
regions. This makes it easy for a user (e.g. public health official) to decide whether to
investigate each potential outbreak based on the costs of false positives and false negatives;
this type of decision analysis cannot be done easily in the frequentist framework. Another
useful result of the Bayesian method is that we can compute a “map” of the posterior proba-
bilities of an outbreak in each grid cell, by summing the posterior probabilitiesP(H1(S) |D)
of all regions containing that cell. This technique allows us to deal with the case where the
posterior probability mass is spread among many regions, by observing cells which are
common to most or all of these regions. We give an example of such a map below:

Figure 1: Output of Bayesian spatial scan on baseline OTC data, 1/30/05.
Cell shading is based on posterior probability of an outbreak in that cell,
ranging from white (0%) to black (100%). The bold rectangle represents
the most likely region (posterior probability 12.27%) and the darkest cell
is the most likely cell (total posterior probability 86.57%). Total posterior
probability of an outbreak is 86.61%.



Second, calibration of the Bayesian statistic is easier thancalibration of the frequentist
statistic. As noted above, it is simple to adjust the sensitivity and specificity of the Bayesian
method by setting the prior probability of an outbreakP1, and then we can “sound the
alarm” whenever posterior probability of an outbreak exceeds some threshold. In the fre-
quentist method, on the other hand, many regions in the baseline data have sufficiently
high likelihood ratios that no replicas beat the original grid; thus we cannot distinguish the
p-values of outbreak and non-outbreak days. While one alternative is to “sound the alarm”
when the likelihood ratio is above some threshold (rather than whenp-value is below some
threshold), this is technically incorrect: because the baselines for each day of data are dif-
ferent, the distribution of region scores under the null hypothesis will also differ from day
to day, and thus days with higher likelihood ratios do not necessarily have lowerp-values.
Third, we argue that it is easier to combine evidence from multiple detectors within the
Bayesian framework, i.e. by modeling the joint probability distribution. We are in the pro-
cess of examining Bayesian detectors which look simultaneously at the day’s Emergency
Department records and over-the-counter drug sales in order to detect emerging clusters,
and we believe that combination of detectors is an important area for future research.

In conclusion, we note that, though both Bayesian modeling [7-8] and (frequentist) spa-
tial scanning [3-4] are common in the spatial statistics literature, this is (to the best of our
knowledge) the first model which combines the two techniques into a single framework.
In fact, very little work exists on Bayesian methods for spatial cluster detection. One no-
table exception is the literature on spatial cluster modeling [11-12], which attempts to infer
the location of cluster centers by inferring parameters of a Bayesian process model. Our
work differs from these methods both in its computational tractability (their models typi-
cally have no closed form solution, so computationally expensive MCMC approximations
are used) and its easy interpretability (their models give no indication as to statistical sig-
nificance or posterior probability of clusters found). Thus we believe that this is the first
Bayesian spatial cluster detection method which is powerful and useful, yet computation-
ally tractable. We are currently running the Bayesian and frequentist scan statistics on
daily OTC sales data from over 10000 stores, searching for emerging disease outbreaks on
a daily basis nationwide. Additionally, we are working to extend the Bayesian statistic to
fMRI data, with the goal of discovering regions of brain activity corresponding to given
cognitive tasks [13, 6]. We believe that the Bayesian approach has the potential to improve
both speed and detection power of the spatial scan in this domain as well.
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