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Abstract. Rule mining is an important class of data mining methods
for discovering interesting patterns in data. The success of a rule mining
method heavily depends on the evaluation function that is used to assess
the quality of the rules. In this work, we propose a new rule evaluation
score - the Predictive and Non-Spurious Rules (PNSR) score. This score
relies on Bayesian inference to evaluate the quality of the rules and con-
siders the structure of the rules to filter out spurious rules. We present
an efficient algorithm for finding rules with high PNSR scores. The ex-
periments demonstrate that our method is able to cover and explain the
data with a much smaller rule set than existing methods.

1 Introduction

The large amounts of data collected today provide us with an opportunity to
better understand the behavior and structure of many natural and man-made
systems. Rule mining is an important direction of machine learning and data
mining research, which aims to elicit knowledge from data in terms of if-then
rules that are intuitive and easy to understand by humans.

In this work, we study and apply rule mining to discover patterns in su-
pervised learning tasks, where we have a specific target variable (outcome) and
we want to find patterns (subpopulations of data instances) where the distribu-
tion of the target variable is statistically “most interesting”. Examples of such
patterns are: “subpopulation of patients who smoke and have a positive family
history are at a significantly higher risk for lung cancer than the rest of the
patients”. This task has a high practical relevance in many domains of science
or business. For example, finding a pattern that clearly and concisely defines a
subpopulation of patients that respond better (or worse) to a certain treatment
than the rest of the patients can speed up the validation process of this finding
and its future utilization in patient-management.

In order to perform supervised rule discovery, we need to define a search al-
gorithm to explore the space of potential rules and a scoring function to assess
the interestingness of the rules. In this work, we use Frequent Pattern Mining
(FPM) [1] to search for rules. The advantage of FPM is that it performs a more
systematic search than heuristic rule induction approaches, such as greedy se-
quential covering [7–9]. However, its main disadvantage is that it often produces
a large number of rules. Moreover, many of these rules are spurious because they
can be naturally explained by other simpler (more general) rules. Therefore, it is
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crucial to devise an effective scoring function that allows us to select important
and non-redundant rules from a large pool of frequent patterns.

To achieve this goal, we introduce the Predictive and Non-Spurious Rules
(PNSR) score. This score applies Bayesian inference to evaluate the quality of
individual rules. In addition, it considers the structure of patterns to assure that
every rule is not only predictive with respect to the general population, but also
with respect to all of its simplifications (generalizations). We show that using our
score to mine the top rules, we are able to cover and explain the data with much
fewer rules compared with classical supervised rule discovery methods. Finally,
we present an efficient algorithm that integrates rule evaluation with frequent
pattern mining and applies pruning strategies to speed up the mining.

2 Supervised Descriptive Rule Discovery

In this work, we are interested in applying rule mining in the supervised setting,
where we have a special variable of interest Y (the target variable) and we want
to mine rules that can help us to uncover “interesting” dependencies between Y
and the input variables (attributes).

The dominant paradigm for supervised rule induction is to apply a sequential
covering method [7–9], which learns a set of rules by first learning a single rule,
removing the positive instances it covers and then repeating the process over the
remaining instances. However, this approach is not appropriate for knowledge
discovery because the rules are induced from biased data (including only positive
instances not covered by previous rules). Therefore, the rules are difficult to
interpret and understand by the user.

In contrast to the sequential covering approach, our task is to find a set of
comprehensible rules/patterns that are statistically interesting with respect to
the entire data, e.g., the rules should have wide coverage and unusual distribu-
tional characteristics with respect to the target variable [18]. This task appeared
in the literature under a variety of different names, such as contrast set mining
[2], emerging pattern mining [11] and subgroup discovery [17, 18]. Later on, [23]
provided a unifying framework of this work which is named Supervised Descrip-
tive Rule Discovery (SDRD).

To apply SDRD, we need to define a search algorithm to explore the space
of potential rules and a scoring function S (quality measure) to assess the inter-
estingness of each rule (S maps each rule Ri to a real number S(Ri) ∈ R that
reflects its importance). Our objective in this work is to design a function S such
that the top rules do not only predict well the target class variable compared to
the entire population, but are also non-spurious in that their prediction is better
than all of their generalizations (simplifications).

2.1 Definitions

Let D = {xi, yi}ni=1 be our data, where each instance xi is described by a fixed
number of attributes and is associated with a class label yi ∈ dom(Y ). We assume
that all attributes have discrete values (numeric attributes must be discretized
[13, 28]).
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We call every attribute-value pair an item and a conjunction of items a
pattern. A pattern that contains k items is called a k-pattern. For example,
Education = PhD ∧ Marital-status = Single is a 2-pattern.

Pattern P is a subpattern of pattern P ′, denoted as P ⊂ P ′, if every item
in P is contained in P ′ and P 6= P ′. In this case, P ′ is a superpattern of P .
For example, P1 :Education=PhD is a subpattern of P2 :Education=PhD ∧
Marital-status=Single. This subpattern (more-general-than) relation defines a
partial ordering of patterns, i.e. a lattice structure, as shown in Figure 1.

Fig. 1. The box on the left shows the set of all patterns and the box on the right
shows the set of all instances. Each pattern is associated with a group of instances that
satisfy the pattern. The patterns are organized in a lattice structure according to the
subpattern-superpattern relation.

Instance xi satisfies pattern P , denoted as P ∈ xi, if every item in P is
present in xi. Every pattern P defines a group (subpopulation) of the instances
that satisfy P : GP = {(xi, yi) : xi ∈ D∧P ∈ xi}. If we denote the empty pattern
by φ, Gφ represents the entire data D. Note that P ⊂P ′ (P is a subpattern of
P ′) implies that GP ⊇ GP ′ (see Figure 1).

The support of pattern P in dataset D, denoted as sup(P,D), is the number
of instances in D that satisfy P (the size of GP ). Given a user defined minimum
support threshold σ, P is called a frequent pattern if sup(P,D) ≥ σ.

A rule is defined as P ⇒ y, where P (the condition) is a pattern and y ∈
dom(Y ) (the consequent) is a class label. We say that P ⇒ y is a subrule of
P ′ ⇒ y′ if P ⊂ P ′ and y = y′. The coverage of rule P ⇒ y is the proportion of
instances in the data that satisfy P . The confidence of rule P ⇒ y, denoted as
conf (P⇒y), is the proportion of instances from class y among all the instances
that satisfy P , i.e., it is the maximum likelihood estimation of Pr(Y =y|P ).

2.2 Rule Evaluation

A straightforward approach to SDRD is to use a rule quality measure (cf [14]) to
score each rule by contrasting it to the general population (the entire data) and
report the top rules to the user. We will argue that this approach is ineffective
and can lead to many spurious (redundant) rules. We start by illustrating the
spurious rules problem using an example and then describe it more formally in
Section 2.3.
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Example 1. Assume our objective is to identify populations of patients who are
at high risk of developing coronary heart disease (CHD). Assume our dataset
contains 150 instances, 50 of them are CHD cases and the others are controls.
That is, the CHD prior, i.e. conf (Φ⇒CHD), is 50/150 ≈ 33.3%.

Now, our task is to evaluate the following 3 rules:

– R1:Race=White ⇒ CHD
[#cases=29, #controls=61, conf=32.2%]

– R2:Family history=Yes ⇒ CHD
[#cases=30, #controls=20, conf=60%]

– R3:Family history=Yes ∧ Race=White ⇒ CHD
[#cases=21, #controls=11, conf=65.6%]

For each rule, we show the number of CHD cases and the number of controls
that the rule covers. We also show the confidence of the rule.

One of the commonly used approaches to filter out uninteresting rules is to
apply the χ2 test to assure that there is a significant positive correlation between
the condition and the consequent of each rule [22, 2, 20, 5]. If we apply the χ2 test
on our three rules, the p-values we get for R1, R2, and R3 are 0.724, 9.6×10−7,
and 1.2×10−5, respectively. That is, both R2 and R3 are statistically (very)
significant with respect to a significance level α = 0.05. Moreover, these two
rules will be considered interesting using most rule quality measures [14].

[3] proposed the confidence improvement constraint, which says that each
rule in the result should have a higher confidence than all of its subrules:

conf (P⇒y)−max
S⊂P
{conf (S⇒y)} > 0

This filter have been used quite a lot in the rule mining literature [15, 26, 20, 19].
If we applied the confidence improvement constraint to our working example,
both R2 and R3 will be retained.

As we can see, both χ2 test and confidence improvement agree that R3 is an
interesting rule. However, this rule may seem predictive only because it contains
a simpler predictive rule (R2). So should we consider R3 to be interesting (show
it to the user) or spurious? We will revisit this question after introducing the
PNSR score.

2.3 Spurious Rules

Spurious rules are formed by adding irrelevant items to the antecedent of a
simpler predictive rule. Let us illustrate this using the simple Bayesian belief
network in Figure 2. In this network, the value of the class variable Y only
depends on the value of feature F1 and is independent of the values of the other
features: Y ⊥⊥ Fi : i ∈ {2, ..., n}. Assume that pattern P : F1 = 1 is predictive
of class Y = y1, so that Pr(y1|P ) > Pr(y1). Clearly, P is the only important
pattern for predicting y1.

Now consider pattern P ′ that is a superpattern of P , P ′ : F1 = 1 ∧ Fq1 =
vq1 ∧ ... ∧ Fqk = vqk , where Fqi ∈ {F2, ..., Fn} and vqi is any possible value of
variable Fqi . The network structure implies that Pr(y1 |P ′) =Pr(y1 |P ), hence
Pr(y1 |P ′) is also larger than the prior Pr(y1).
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Fig. 2. Illustrating the problem of spurious rules.

The problem is that if we evaluate the rules individually (without considering
the nested structure of the patterns), we may falsely think that P ′⇒ y1 is an
important rule. However, this rule is totally redundant given its subrule P ⇒ y1.
Even by requiring complex rules to have a higher confidence than their simpli-
fications (the confidence improvement) [3, 15, 26, 20, 19], the problem still exists
and many spurious rules can easily satisfy this constraint due to noise in sam-
pling. Clearly, having spurious rules in the results is undesirable because they
overwhelm the user and prevent him/her from understanding the real causalities
in the data.

3 Mining Predictive and Non-Spurious Rules

In this section, we present our approach for scoring/ranking rules. We start by
defining a Bayesian score to evaluate the predictiveness of a rule with respect to
a more general population. After that, we introduce the PNSR-score to address
the problem of spurious rules. Lastly, we present an efficient mining algorithm
that integrates rule evaluation with frequent pattern mining.

3.1 Classical Rule Quality Measures

A large number of rule quality measures have been proposed in the literature to
evaluate the interestingness of individual rules. Examples of such measures in-
clude confidence, lift, weighted relative accuracy, J-measure, and others (cf [14]).
Most of these measures trade-off two factors: 1) the distributional unusualness
of the class variable in the rule compared to the general population and 2) the
coverage of the rule, which reflects its generality [18, 23]. This trade-off is often
achieved in an ad-hoc way, for instance by simply multiplying these two factors
as in the weighted relative accuracy score [17] or in the J-measure [25]. Further-
more, most interestingness measures rely on point estimates of these quantities,
often using the maximum likelihood estimation, and they do not capture the un-
certainty of the estimation. In the following, we present a novel Bayesian score
to evaluate the quality of a rule.

3.2 The Bayesian Score

Suppose we want to evaluate rule P⇒y with respect to a group of instances G
where GP ⊆G. Intuitively, we would like the rule to get a high score when there
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is a strong evidence in the data to support the hypothesis that Pr(Y =y|GP )>
Pr(Y =y|G). Our Bayesian score treats these probabilities as random variables
as opposed to using their point estimation as in the classical measures [14].

Let us begin by defining Me to be the model that conjectures that all in-
stances in group G have the same probability for having class Y = y, even
though we are uncertain what that probability is. Let us denote Pr(Y =y|G) by
θ. To represent our uncertainty about θ, we use a beta distribution with param-
eters α and β. Let N∗1 be the number of instances in G with class Y =y and let
N∗2 be the number of instances in G with class Y 6=y. The marginal likelihood
for model Me is as follows:

Pr(G|Me) =

∫ 1

θ=0

θN∗1 · (1− θ)N∗2 · beta(θ;α, β)dθ

The above integral yields the following well known closed-form solution [16]:

Pr(G|Me) =
Γ (α+β)

Γ (α+N∗1+β+N∗2)
· Γ (α+N∗1)

Γ (α)
· Γ (β+N∗2)

Γ (β)
(1)

where Γ is the gamma function.
Let us define Mh to be the model that conjectures that the probability of

Y = y in GP , denoted by θ1, is different from the probability of Y = y in the
instances of G not covered by P (G \ GP ), denoted by θ2. Furthermore, Mh

believes that θ1 is higher than θ2. To represent our uncertainty about θ1, we use
a beta distribution with parameters α1 and β1, and to represent our uncertainty
about θ2, we use a beta distribution with parameters α2 and β2. Let N11 and N12

be the number of instances in GP with Y =y and with Y 6=y, respectively. Let
N21 and N22 be the number of instances outside GP with Y =y and with Y 6=y,
respectively (see Figure 3). Note that N∗1 = N11 +N21 and N∗2 = N12 +N22.

Fig. 3. A diagram illustrating model Mh.

The marginal likelihood for model Mh is defined as follows:

Pr(G|Mh) =

∫ 1

θ1=0

∫ θ1

θ2=0

θ1
N11 ·(1−θ1)N12 ·θ2N21 ·(1−θ2)N22

· beta(θ1;α1, β1) · beta(θ2;α2, β2)

k
dθ2dθ1

(2)
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where k is a normalization constant for the parameter prior3. Note that
this formula does not assume that the parameters are independent, but rather
constrains θ1 to be higher than θ2.

Below we show the closed form solution we obtained by solving Equation
2. The derivation of the solution is omitted in this manuscript due to space
limitation4.

Pr(G|Mh) =
1

k
· Γ (α1+β1)

Γ (α1)Γ (β1)
· Γ (α2+β2)

Γ (α2)Γ (β2)
·

a+b−1∑
j=a

(
Γ (a)Γ (b)

Γ (j+1)Γ (a+b−j) ·
Γ (c+j)Γ (a+b+d−j−1)

Γ (a+b+c+d−1)

) (3)

where a=N21 + α2, b=N22+β2, c=N11+α1, d=N12+β1. We solve for k by
applying Equation 3 (without the k term) with a=α2, b=β2, c=α1 and d=β1.

Equation 3 can be expressed in logarithmic form (to avoid computing very
large numbers). Its computational complexity is O(b)=O(N22+β2) (the number
of terms in the summation). It turns out that we can redefine the solution of
Equation 2 so that its computational complexity is O(min(N11+α1, N12+β1, N21+
α2, N22+β2)). The modifications that achieve this complexity result are omitted
due to space limitation5.

Lastly, let Ml be the model that conjectures that θ1 is lower than θ2. The
marginal likelihood for Ml is similar to Equation 2, but integrates θ2 from 0 to
1 and constrains θ1 to be integrated from 0 to θ2 (forcing θ1 to be smaller than
θ2). The solution for P (G|Ml) can reuse the terms computed in Equation 3 and
can be computed with complexity O(1).

Now that we computed the marginal likelihood for models Me, Mh and Ml,
we compute the posterior probability of Mh (the model of interest) using Bayes
theorem:

Pr(Mh|G) =
Pr(G|Mh)Pr(Mh)

Pr(G|Me)Pr(Me)+Pr(G|Mh)Pr(Mh)+Pr(G|Ml)Pr(Ml)
(4)

To be “non-informative”, we might simply assume that all three models are
equally likely a-priori: Pr(Me) = Pr(Mh) = Pr(Ml) = 1

3 .
Equation 4 quantifies in a Bayesian way how likely (a posteriori) is the model

which presumes Pr(Y = y|GP ) is higher than Pr(Y = y|G). Since this is the
quantity we are interested in, we use Pr(Mh|G) to score rule P⇒y with respect
to group G. We denote this Bayesian score by BS(P ⇒ y,G).

Example 2. Let us use the Bayesian score to evaluate rule R2: Family his-
tory=Yes ⇒ CHD in Example 1. We evaluate R2 with respect to the entire
dataset Gφ by computing BS(R2, Gφ). Using the notations introduced earlier,
N∗1 =50 and N∗2 =100 (the number of cases and controls in the dataset). Also,
N11 =30, N12 =20, N21 =N∗1−N11 =20 and N22 =N∗2−N12 =80. Let us use uni-
form beta priors for all parameters: α=β=α1 =β1 =α2 =β2 =1. The likelihood

3 k = 1
2

if we use uniform priors on both parameters by setting α1 = β1 = α2 = β2 = 1.
4 The derivation can be found on the author’s website: www.cs.pitt.edu/~iyad.
5 These modifications can found on the author’s website: www.cs.pitt.edu/~iyad.
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of Me is 3.2×10−43, the likelihood of Mh is 1.5×10−38 and the likelihood of Ml

is 1×10−44. Hence, BS(R2, Gφ)=Pr(Mh|Gφ)=0.99998. This implies that there
is a strong evidence in the data to conclude that pattern Family history=yes
makes CHD more likely.

3.3 The Predictive and Non-Spurious Rules Score

The Bayesian score proposed in the previous section provides a way to evaluate
the predictiveness of a rule by contrasting it to a more general population than
the population covered by the rule. One approach to supervised descriptive rule
discovery is to score each rule Ri with respect to the entire data BS(Ri, Gφ) and
report the top rules to the user. However, this approach does not overcome the
spurious rules problem: if a rule P⇒y achieves a very high score, many spurious
rules P ′⇒y: P ′⊃P are expected to have a high score as well (provided that P ′

have enough support in the data). As a result, the rules presented to the user
would contain a lot of redundancies and fail to provide a good coverage of the
data.

To overcome this problem, we propose the Predictive and Non-Spurious Rules
score, denoted as PNSR-score, which we define as follows:

PNSR-score(P ⇒ y) = min
S:S⊂P

{BS(P ⇒ y,GS)}

If a rule R achieves a high PNSR-score, then there is a strong evidence in the
data not only to conclude that R improves the prediction of its consequent with
respect to the entire data, but also with respect to the data matching any of its
subrules. That is, the rule’s effect on the class distribution cannot be explained
by any more general rule that covers a larger population. This implies that every
item in the condition of the rule is an important contributor to its predictiveness
(the rule is concise).

Example 3. Let us go back to Example 1 and compute the PNSR-score for rule
R3. If we evaluate R3 with respect the entire dataset, BS(R3, Gφ) = 0.9997. If
we evaluate R3 with respect to subrule R1, BS(R3, GR1

) = 0.999992. Finally,
if we evaluate R3 with respect to subrule R2, BS(R3, GR2

) = 0.47. We can see
that R3 is considered very predictive when compared to the entire dataset or to
subrule R1, but is not predictive when compared to subrule R2. Therefore, we
do not consider R3 an important rule because it is equivocal whether it predicts
CHD as being more likely than does R2.

Example 4. Let us consider again the simple Bayesian network in Figure 2.
Assume we have 10 binary features (F1 to F10) and the CPTs are defined
as follows: Pr(Fi = 1) = 0.4 : i ∈ {1, ..., 10}, Pr(Y = y1|F1 = 1) = 0.9 and
Pr(Y = y1|F1 = 0) = 0.5. Let the data D be 500 instances that are randomly
generated from this network and let us use D to mine rules that are predictive
of class y1

6. As we discussed earlier, the only important rule for predicting y1 is
F1 =1⇒ y1 and all other rules are just spurious.

6 The prior of y1 in this network is Pr(Y =y1)=0.66.
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We use frequent pattern mining to explore all patterns that occur in more
than 10% of the data. Doing so, we obtain 1,257 frequent patterns (potential
rules). If we apply the χ2 test with significance level α= 0.05, we get 284 rules
that positively predicts y1 and are statistically significant. Even if we apply the
False Discovery Rate (FDR) technique [4] to correct for multiple hypothesis test-
ing, we get 245 positive significant rules! If we use our Bayesian score to evaluate
each rule (individually) with respect to the entire dataset and report rules with
BS(Ri, Gφ)≥0.95, we get 222 rules7. Note that this approach still suffers from
the spurious rules problem. Let us now apply the confidence improvement con-
straint to filter out “non-productive” rules [3, 15, 26, 20, 19]. By doing so, we get
451 rules! This clearly demonstrates that the confidence improvement constraint
is ineffective for removing spurious rules. Lastly, let us use our proposed PNSR-
score and report rules with PNSR-score(Ri)≥0.95. Doing so, we obtain only a
single rule F1 = 1 ⇒ y1 (the only important rule) and effectively filter out all
other spurious rules.

3.4 The Mining Algorithm

In this section, we present the algorithm for mining predictive and non-spurious
rules. The algorithm utilizes frequent pattern mining to explore the space of
potential rules and applies the PNSR-score to evaluate the rules.

To search for rules, we partition the data according to the class labels y ∈
dom(Y ) and mine frequent patterns for each class separately (using a local min-
imum support σy that is related to the number of instances from class y). The
reason for doing this as opposed to mining frequent patterns from the entire data
is that when the data is unbalanced, exploring only patterns that are globally
frequent may result in missing many important rules for the rare classes.

The mining algorithm takes as input 1) the data instances from class y:
Dy = {(xi, yi) : yi = y}, 2) the data instances that do not belong to class y:
D¬y = {(xi, yi) : yi 6= y}, 3) the local minimum support threshold σy and 4)
a user specified significance parameter g. The algorithm explores the space of
frequent patterns and outputs the rules with PNSR-score higher than g.

A straightforward way to obtain the result is to apply the commonly used
two-phase approach as in [6, 26, 27, 17, 12, 10, 20], which generates all frequent
patterns in the first phase and evaluates them in the second phase (a post-
processing phase). That is, we need to perform the following two steps:

1. Phase I: Mine all frequent patterns: FP = {P1, ..., Pm : sup(Pi)≥σy}
2. Phase II: For each pattern Pi ∈ FP , output rule Pi ⇒ y if PNSR-score(Pi ⇒
y) ≥ g.

In contrast to this two-phase approach, our algorithm integrates rule evalua-
tion with frequent pattern mining, which allows us to apply additional pruning
techniques that are not applicable in the two-phase approach.

The mining algorithm explores the lattice of frequent patterns level by level
from the bottom-up starting from the empty pattern. That is, the algorithm

7 The 0.95 threshold is chosen so that it is comparable to the commonly used frequen-
tist 0.05 significance level.
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first explores frequent 1-patterns, then frequent 2-patterns, and so on. When the
algorithm visits a frequent pattern P (a node in the lattice), it computes the
PNSR-score of rule P ⇒ y and adds it to result if PNSR-score(P⇒y)≥g.

Lossless pruning: We now illustrate how to utilize the PNSR-score to prune
portions of the search space that are guaranteed not to contain any result.

We say that pattern P is pruned if we do not explore any of its superpatterns
(P ′⊃P ). This means that we exclude the entire sublattice with bottom P from
the lattice of patterns we have to explore.

Frequent pattern mining relies only on the support of the patterns to prune
infrequent patterns according to the following anti-monotone property: if a pat-
tern is not frequent, all of its superpatterns are guaranteed not to be frequent.

By integrating rule evaluation with frequent pattern mining, we can apply
an additional pruning technique. The idea is to prune pattern P if we guarantee
that none of its superpatterns will be in the result:

Prune P if ∀P ′ ⊃ P : PNSR-score(P ′⇒y) < g

However, since patterns are explored in a level-wise fashion, we do not know
the class distribution in the superpatterns of P . But we know that for any P ′⊃P :
GP ′⊆GP , and hence sup(P ′, Dy)≤sup(P,Dy) ∧ sup(P ′, D¬y)≤sup(P,D¬y).

We now define the optimal superpattern of P with respect to class y, denoted
as P ∗, to be a hypothetical pattern that covers all instances from y and none of
the instances from the other classes:

sup(P ∗, Dy) = sup(P,Dy) ∧ sup(P ∗, D¬y) = 0

P ∗ is the best possible superpattern for predicting y that P can generate.
Therefore, PNSR-score(P ∗⇒ y) is an upper bound on the PNSR-score for the
superpattern of P . Now, we safely prune P when PNSR-score(P ∗⇒y)<g.

4 Experimental Evaluation

The experiments compare the performance of different rule quality measures for
the problem of supervised descriptive rule discovery. In particular, we compare
the following measures:

1. GR: Rules are ranked using the Growth Rate measure, which was used in
[11] in the context of emerging pattern mining.

GR(P⇒y) =
sup(P,Dy)/|Dy|
sup(P,D¬y)/|D¬y|

where Dy and D¬y represent the instances from class y and not from class
y, respectively.

2. J-measure: Rules are ranked using the J-measure [25], a popular information
theoretic measure that scores the rules by their information content.

J-measure(P⇒y) =
sup(P,D)

|D| ×
∑

z∈{y,¬y}

conf(P⇒z) · log2
(
conf(P⇒z)

conf(Φ⇒z)

)
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3. WRAcc: Rules are ranked using the Weighted Relative Accuracy, which was
used in [17] in the context of subgroup discovery8.

WRAcc(P⇒y) =
sup(P,D)

|D| × (conf(P⇒y)− conf(Φ⇒y))

Note that this measure is compatible (provides the same rule ranking) with
the support difference heuristic used in [2] for contrast set mining (see [23]).

4. BS : Rules are ranked using our proposed Bayesian score. However, this
method scores each rule individually with respect to the entire data and
do not filter out spurious rules.

5. Conf-imp: Only rules that satisfy the confidence improvement constraint are
retained [3, 15, 26, 20, 19] and they are ranked according to their confidence.

6. PNSR: Only rules Ri that have a PNSR-score(Ri)≥0.95 are retained9 and
they are ranked according to the Bayesian score.

Note that the GR measure does not consider the coverage of the rule when
assessing its interestingness. For example, GR favors a rule that covers 8% of
the instances of in one class and 1% of the instances in the other classes over a
rule that covers 70% of the instances of in one class and 10% of the instances
in the other classes (as 8

1 > 70
10 ). As a result, GR often chooses rules that are

very specific (with low coverage) and do not generalize well. To overcome this,

the J-measure and WRAcc explicitly incorporate the rule coverage Sup(P,D)
|D| in

their evaluation functions to favor high coverage rules over low coverage rules.
This is done by multiplying the rule coverage with a factor that quantifies the
distributional surprise (unusualness) of the class variable in the rule (the cross
entropy for J-measure and the relative accuracy for WRAcc). However, it is not
clear whether simply multiplying these two factors leads to the optimal trade-
off. On the other hand, BS achieves this trade-off automatically by modeling the
uncertainty of the estimation (the more data we have, the more certain we are
about the estimated probabilities).

Note that the first four methods (GR, J-measure, WRAcc and BS ) evaluate
each rule individually with respect to the entire data and do not consider the
nested structure of rules. On the other hand, conf-imp and PNSR evaluate each
rule with respect to all of its subrules. Conf-imp simply requires each rule have
a higher confidence than its subrules, while PNSR requires each rule to show a
substantial evidence that it improves the prediction over its subrules, which is
evaluated using our proposed PNSR-score.

For all methods, we use frequent pattern mining to explore the space of po-
tential rules and we set the local minimum support (σy) to 10% the number of
instance in the class. For BS and PNSR, we use uniform beta priors (uninfor-
mative priors) for all parameters.
8 The algorithm by [17] uses weighted sequential covering and modifies the WRAcc

measure to handel example weights.
9 The 0.95 threshold is chosen so that it is comparable to the commonly used frequen-

tist 0.05 significance level.
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4.1 Datasets

We evaluate the performance of the different rule quality measures on 15 public
datasets from the UCI Machine Learning repository. We discretize the numeric
attributes into intervals using Fayyad and Irani discretization [13]. Table 1 shows
the main characteristics of the datasets.

dataset # features # instances # classes

Lymphography 18 142 2
Parkinson 22 195 2

Heart 13 270 2
Hepatitis 19 155 2
Diabetes 8 768 2

Breast cancer 9 286 2
Nursery 8 12,630 3

Red wine 11 1,599 3
Mammographic 5 961 2

Tic tac toe 9 958 2
Ionosphere 34 351 2
Kr vs kp 36 3,196 2
Pen digits 16 10,992 10

Zoo 16 74 3
WDBC 30 569 2
Table 1. UCI Datasets characteristics

4.2 Quality of Top-K Rules

For a set of rules to be practically useful, the rules should be accurate to predict
the class label of unseen data instances (high precision) and the rule set should
provide a good coverage of the data (high recall).

In this section, we compare the different rule evaluation measures according
to the quality of the top rules. In particular, for each of the compared evaluation
measures, we mine the top k rules from the training data and use them to classify
the testing data. The classification is done according to the highest confidence
rule [21]:

Prediction(x ) = arg max
yi

{conf (P ⇒ yi): P ∈ x}

The classification performance is evaluated using the F1 score [24], which is
the harmonic mean of the precision and recall. All results are reported using a
10-fold cross-validation scheme, where we use the same train/test splits for all
compared methods.

Figure 4 shows the classification performance for the different number of top
rules. We can see that GR is the worst performing method for most datasets.
The reason is that rules with the highest GR scores are usually very specific
(low coverage) and may easily overfit the training data. The other measures
(J-measure, WRAcc and BS ) perform better than GR because they favor high-
coverage rules over low-coverage rules, which results in rules that generalize
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Fig. 4. Comparison of the performance of several rule evaluation measures. The X-axis
is the number of the top rules and the Y-axis is the F1 score of the rule set.
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better on the testing data. However, because these measures do not consider
the relations among the rules, the top rules contain many spurious rules (rules
describing the same underlying pattern and are small variations of each other).
As a result, they fail to provide a good coverage of the data (see for example the
lymphography and the zoo datasets). Finally, we can see that for most datasets,
PNSR achieves the best performances with the smallest number of rules.

4.3 Mining Efficiency

In this section, we study the efficiency of our mining algorithm. In particular,
we compare the running time of the following methods:

1. FPM : Frequent patterns mining, where we partition the data according to
the class label and mine frequent patterns for each class (see Section 3.4).
We apply the algorithm by [29], which mines frequent patterns using the
vertical data format.

2. PNSR-Naive: The naive two-phase implementation for mining predictive
and non-spurious rules, which applies FPM to mine all frequent patterns
and then computes the PNSR-score of the patterns.

3. PNSR: Our mining algorithm, which integrates rule evaluation with frequent
pattern mining and applies the lossless pruning technique described in Sec-
tion 3.4 to prune the search space.

The running time is measured on a Dell Precision T1600 machine with an
Intel Xeon 3GHz CPU and 16GB of RAM. As before, we set the local minimum
support (σy) to 10% the number of instance in the class. Table 2 shows the
execution time (in seconds) of the compared methods on the UCI datasets.

dataset FPM PNSR-Naive PNSR

Lymphography 328 410 153
Parkinson 9,865 11,229 800

Heart 45 69 37
Hepatitis 1,113 1,284 391
Diabetes 3 5 5

Breast cancer 3 5 4
Nursery 2 9 9

Red wine 28 52 50
Mammographic 1 1 1

Tic tac toe 3 4 4
Ionosphere 16,899 19,765 1,077
Kr vs kp 1,784 2,566 2,383
Pen digits 71 144 138

Zoo 185 244 23
WDBC 2,348 4,320 282

Table 2. The execution time (in seconds) of frequent pattern mining (FPM ), two-
phase PNSR mining (PNSR-Naive) and our mining algorithm (PNSR).

The results show that on seven of the fifteen datasets (lymphography, Parkin-
son, Heart, Hepatitis, Ionosphere, Zoo and WDBC ), PNSR is more efficient than
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FPM, which is the cost of the first phase of any two-phase method [6, 26, 27, 17,
12, 10, 20]. For some of these datasets, PNSR drastically improves the efficiency.
For example, on the Parkinson, Ionosphere datasets, PNSR is more than an or-
der of magnitude faster than FPM. This shows that utilizing the predictiveness
of patterns to prune the search space can greatly help improving the mining
efficiency.

5 Conclusion

In this paper, we study the problem of supervised descriptive rule discovery
and propose a new rule evaluation score, the Predictive and Non-Spurious Rules
(PNSR) score. This score relies on Bayesian inference to measure the quality
of the rules. It also considers the structure of the patterns to ensure that each
rule in the result offers a significant predictive advantage over all of its gener-
alizations. We present an algorithm for mining rules with high PNSR scores,
which efficiently integrates rule evaluation with frequent pattern mining. The
experimental evaluation shows that our method is able to explain and cover the
data with fewer rules than existing methods, which is beneficial for knowledge
discovery.
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