
Journal of Intelligent Information Systems, 4, 71-88 (1995)
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Bayesian Method for Learning Belief Networks
that Contain Hidden Variables

GREGORY F. COOPER

Section of Medical lnJbrmatics, University of Pittsburgh, B50A Lothrop Hall, Pittsburgh, PA 15261

Abstract. This paper presents a Bayesian method for computing the probability of a Bayesian belief-network
structure from a database. In particular, the paper focuses on computing the probability of a belief-network
structure that contains a hidden (latent) variable. A hidden variable represents a postulated entity that has not been
directly measured. After reviewing related techniques, which previously were reported, this paper presents a new,
more efficient method for handing hidden variables in belief networks.

Keywords: probabilistic networks, Bayesian belief networks, hidden variables, machine learning, induction

1. Introduction

A belief-network structure can provide insight into probabilistic dependencies that exist
among the variables in a database. One application is the automated discovery of depen-
dency relationships. The computer program searches for a belief-network structure that has
a high posterior probability given the database, and outputs the structure and its probabil-
ity. A related task is computer-assisted hypothesis testing: The user enters a hypothetical
structure of the dependency relationships among a set of variables, and the program cal-
culates the probability of the structure given a database of cases on the variables. We will
emphasize this task in the current paper. We also note that given a belief-network structure
and a database, we can construct a belief network and use it for computer-based diagnosis
and prediction.

In Cooper & Herskovits (1992) a Bayesian method is presented for computing the prob-
ability of a belief-network structure that contains hidden variables. The major problem
with this approach is that its computational time complexity is exponential in the number
of database cases (i.e., records or instances). In this paper, we present a method that has a
time complexity that is polynomial in the number of cases, yet it always computes the same
result as the exponential method. By being more efficient, this polynomial-time method
permits us to solve modeling problems that previously were not computationally feasible.
In some instances, which we explain, the polynomial degree of the new method can be
high. As the polynomial degree increases, the number of cases considered in the database
must decrease in order to maintain computational tractability. We will initially focus our
discussion on handling a single hidden variable, and then extend the method to handle
multiple hidden variables.

72 COOPER

2. Background on belief networks

A belief-network structure Bs is a directed acyclic graph in which nodes represent domain
variables and arcs between nodes represent probabilistic dependencies (Cooper, 1989; Pearl,
1988). The representation of conditional dependence and independence among variables
is the essential function of belief networks. For a detailed discussion of the formal mathe-
matical properties of belief networks, see Pearl (1988).

A belief-network structure, Bs, is augmented by conditional probabilities, Bp, to form
a belief network B. 1 Thus, B = (Bs, Bp). For each node 2 in a belief-network structure,
there is a conditional-probability function that relates this node to its immediate predecessors
(parents). We shall use 7ri to denote the parent nodes of variable xi. If a node has no parents,
then a prior-probability function, P(xi), is specified.

Belief networks are capable of representing the probabilities over any discrete sample
space: The probability of any sample point in that space can be computed from the prob-
abilities in the belief network. As mentioned, the key feature of belief networks is their
explicit representation of the conditional independence and dependence among events. In
particular, investigators have shown (Kiiveri, et al., 1984; Pearl, 1988; Shachter, 1986) that
the joint probability of any particular instantiation 3 of all n variables in a belief network
can be calculated as follows:

n

P(x l , = 1-I P(X 17rd,
i = 1

where Xi represents the instantiation of variable xi and 7I'i represents the instantiation of
the parents of xi.

Therefore, the joint probability of any i nstantiation of all the variables in a belief network
can be computed as the product of only n probabilities. In principle, we can recover the com-
plete joint-probability space from the belief-network representation by calculating the joint
probabilities that result fi'om every possible instantiation of the n variables in the network.
Thus, we have suff• information to determine any probability of the form P(W] V),
where W and V are sets of variables with known values (i.e., instantiated variables).

In the last few years, researchers have made significant progress in formalizing the theory
of belief networks (Neapolitan, 1990; Pearl, 1988), and in developing more efficient algo-
rithms for probabilistic inference on belief networks (Henrion, 1990). The feasibility of
using belief networks in constructing diagnostic systems has been demonstrated in several
domains (Agogino & Rege, 1987; Andreassen, et al., 1987; Beinlich, et al., 1989; Chavez &
Cooper, 1990; Cooper, 1984; Heckerman, et al., 1992; Henrion & Cooley, 1987; Holtzman,
1989; Suermondt & Amylon, 1989).

Although researchers have made substantial advances in developing the theory and ap-
plication of belief networks, the actual construction of these networks often remains a
difficult, time-consuming task. The task is time-consuming because typically it must be
performed manually by an expert or with the help of an expert. In domains that are large or
in which there are few, if any, readily available experts, automated methods are needed for
augmenting the manual expert-based methods of knowledge acquisition for belief-network

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 73

construction. In this paper, we present one such method and show how it can handle
hidden variables.

Researchers have developed non-Bayesian methods for discovering the presence of hidden
variables in belief-network structures (Spirtes & Glymour, 1990; Spirtes, et al., 1993;
Verma & Pearl, 1990). These methods use statistical tests of independence to infer a set of
independence and dependence relationships among the model variables. For example, in
the case of discrete variable models, the chi-square test has been used (Spirtes, et al., 1993).
The algorithms then search to discover a class of belief-network structures that is consistent
with the inferred relationships. Thus, the validity of the output of these algorithms depends
on whether the conditional independence and dependence relationships among variables
can be determined accurately from the available sample of cases. The application of non-
Bayesian methods has produced promising results (Spirtes, et al., 1993). Also, in the case of
linear systems, non-Bayesian algorithms exist for uncovering relationships between hidden
variables and continuous measured variables, as well as uncovering relationships among
the hidden variables themselves (Spirtes, et al., 1993).

The non-Bayesian methods do not provide a probability of a belief-network structure that
contains one or more hidden variables. Bayesian methods can provide such probabilities.
A promising direction for future research may be to use non-Bayesian methods to search for
likely alternative belief-network structures that contain hidden variables, and then compare
the probabilities of these structures using Bayesian methods. In this paper we discuss
an exact Bayesian method for determining the probability of a belief-network structure
when there are hidden variables or missing data. We note that in related work researchers
have developed simulation (York & Madigan, 1993) and approximation (Spiegelhalter &
Cowell, 1992; Spiegelhalter & Lauritzen, 1990) techniques to perform Bayesian parameter
estimation in belief-networks when there is missing data.

3. An example

In this section we introduce a simple example that we will use throughout the paper to
illustrate basic concepts. Assume we have the database shown in Table 1, which we
designate as database D. To be more concrete, suppose Xl regs the cause of a disease, and
x2 and z3 represent two patient symptoms. Assume from independent knowledge that we
are quite certain neither symptom causally leads to the other symptom. More particularly,
suppose we believe that the causal relationships among the three variables correspond to one
of the following two possibilities: (1) the symptom variables are conditionally independent
given the state of the disease-etiology variable (see Figure 1), or (2) the symptom variables
are caused by an intermediate pathophysiological process between the disease-etiology
variable and the two symptoms (see Figure 2). Figures 1 and 2 show the two possible
belief-network structures under consideration, which we denote as Bsl and Bs2. In Bs2
the variable h represents an unknown pathophysiological process. In general, for a belief
network with this structure, z2 and z3 will not be conditionally independent given xl . To
keep the example simple, we will assume that h is a binary variable and that we have the
following prior probabilities for Bs~ and Bs~ : P(Bs1) = P(Bs2) = 0.5.

74 COOPER

Table 1. A database example, which we denote as D. The term case in the first column denotes a single training
instance (record) in the database--as for example, a patient case.

Variable values for each case
Case Xl X2 X3

1 present absent present
2 present present present
3 absent absent absent
4 present present present
5 absent present absent
6 absent present present
7 present present present
8 present present present
9 absent present present

10 present absent absent

Figure 1. Belief-network structure Bs1 , which represents that x2 and x3 are conditionally independent given x l .

Figure 2. Belief-network structure Bs2 , which represents that x2 and x 3 are conditionally independent given
some hidden variable h.

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 75

Although the current example is hypothetical, Henrion has documented a case in which
an expert (who was building a belief network to diagnosis particular apple-tree diseases)
first constructed the subnetwork structure shown in Figure 1 (Henrion, 1989). The expert
later realized that the belief-network structure in Figure 2 more accurately reflects the
relationships among the variables. The methods we propose in this paper are intended to
automatically suggest refinements like the one in this example, as well as other refinements.

Our goal is to determine P(Bsl [D) and P(Bs2[D). Using the assumptions and
techniques to be presented in Section 4, we can show that P(Bsl]D) = 0.25 and
P(Bs2 I D) = 0.75. Deriving these results with the methods in Section 4, however, re-
quires that we perform 1024 operations on the data in Table 1. In Section 5, we introduce
a more efficient method that derives the same results in only 240 operations. In Sections 4
and 5 we provide a general analysis of the computational time complexity of both methods.

4. Previous results

Previously, a method was described for Bayesian belief-network-structure learning from a
database that is generated by a process that can be accurately modeled by a belief network
with no missing values or hidden variables (Cooper & Herskovits, 1992). In Section 4.1,
we present those results. In Section 4.2, we show previous extensions of this method that
learn belief-network structures containing hidden variables.

4.1. Results when there are no missing data or hidden variables

Suppose for the moment that we have a method for calculating P(Bs~, D) for some belief-
network structure Bs., and database D. Let Q be the set of all those belief-network structures
that have a non-zero prior probability. We can derive the posterior probability of t3s~ given
D as P(Bs~]D) = P(Bs~, D)/~B~eQP(t3s~, D). Sometimes all we want to know
is the ratio of the posterior probabilities of two belief-network structures. To calculate
such a ratio for belief-network structures t?s~ and Bss, we can use the equivalence that
P(Bs~] D) /P(Bsj I D) = P(Bs~, D) /P (Bsj, D). An algorithm called K2 is reported
in Cooper & Herskovits (1992) that makes such comparisons of belief-network structures,
as it searches heuristically for the most likely structure.

Our focus in this paper will be on computing the term -P(Bs~ i D), which we can derive
using the equivalence that P (B s~ , D) = P (D t Bs~)P(Bs~). The term P (B s~) represents
our prior probability that a process with belief-network structure Bs~ generated data D.
We will assume that P(Bs~) is specified by the user and available. The likelihood term
P(D I Bs~) remains to be determined. The following theorem, which is proved in Cooper
& Herskovits (1992), provides a method for computing P(D 1Bs).

THEOREM 1 Let Z be a set of n discrete variables, where a variable xi in Z has ri
possible value assignments: (v i i , . . . , vir~). Let D be a database of rn cases, where each
case contains a value assignment for each variable in Z. Let Bs denote a belief-network
structure containing just the variables in Z. Each variable xi in Bs has a set of parents,

76 COOPER

which we represent with a list of variables rci. Let wij denote the jth unique instantiation
of rri relative to D. Suppose there are qi such unique instantiations of rci. Define Nijk to
be the number of cases in D in which variable xi has the value vik and rc~ is instantiated
as wij.

Let Nij = ~ 2 L 1 Nijk. Suppose the following assumptions hold:

1. The variables in Z are discrete

2. Cases occur independently, given a belief-network model

3. There are no cases that have variables with missing values

4. Before observing D, we are indifferent regarding which numerical probabilities to
assign to the belief network with structure Bs.

From these four assumptions it follows that

(~ - 1) !
P (D I Bs) = (N~ -+-7"-~--- 1)! Nijk!.

k = l

(1)

[]

The complete proof of Theorem 1 is given in the Appendix in Cooper & Herskovits
(1992). We only discuss here the parts of the proof we will need later in this paper. From
Assumption 1 we have that

P (D I Bs) = ~ P(D I B s , B p) f (B p I Bs)dBp ,
P

(2)

where B e is a vector whose values denote the conditional-probability assignments associ-
ated with belief-network structure Bs, and f is the conditional-probability-density function
over Bp given Bs. The integral is over all possible value assignments to Bp. It follows
from the conditional independence of cases expressed in Assumption 2 that Equation 2 can
be rewritten as

(3)

where m is the number of cases in D, and Ct is the tth case in D.
As shown in Cooper & Herskovits (1992), we can apply Assumptions 3 and 4 to derive

Equation 1 from Equation 3. Since Equation 3 is all we need for the current paper, we will
not show these additional steps here.

As a point of illustration, we describe now one application of Theorem 1. The K2
algorithm mentioned previously uses Equation 1 and assumes uniform priors over belief-
network structures. We briefly summarize here the results of applying K2 to data generated
by the ALARM belief network. The ALARM network is a laboratory research prototype
that models potential anesthesia problems in the operating room (Beinlich, et al. 1989).

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 77

ALARM, which contains 37 nodes and 46 arcs, was used to stochastically generate a
database of 3000 cases. When given these cases, and a node order, K2 reconstructed the
ALARM belief-network structure exactly, except there was one missing arc and one extra
arc. The missing arc was not strongly supported by the 3000 cases, and the extra arc was due
to the greedy nature of the K2 search algorithm. Additional details about this experiment are
discussed in Cooper & Herskovits (1992), and further evaluation of K2 on other databases
is presented in Herskovits (1991).

In this paper, we will adopt Assumptions 1, 2, and 4 listed in Theorem 1, although
Assumption 4 can be relaxed, as shown in Cooper & Herskovits (1992). We note that
Assumption 4 implies a uniform prior over each of the conditional probability distributions
(the parameters of the model) associated with a given Bs (the model structure).

In this paper, we will relax Assumption 3 in one important way: All variables in the belief
network are assumed to have known values, except one variable for which we know none
of its values. This variable is a hidden variable.

4.2. Previous hidden-variable results

In this section, we consider belief-network structures that contain a single hidden variable,
which we denote as h. In Cooper & Herskovits (1992) we describe a more general (yet still
inefficient) method that handles both missing data and multiple hidden variables.

Let h denote a hidden variable in Bs. We use ht as a variable that represents h in case
~--we call ht a case-specific hidden variable. Let Ut denote the set of variable assignments
for those variables in the tth case that have known values (i.e., all the variables except h).
The probability of the tth case can be computed as

P(Ct [Bs, Bp) = Z P(Ct, ht [Bs, Bp),
ht

(4)

where the sum ~h~ indicates that ht is run through all the possible values of h.
By substituting Equation 4 into Equation 3, we obtain

(5)

We now can rearrange Equation 5 as follows by converting an integral of a product of a
sum into sums of an integral of a product:

E (6)

The sums in Equation 6 are taken over every possible value of the hidden variable for
every possible case in the database. Equation 6 is a sum over the type integral that occurs
in Equation 3, and as Theorem 1 shows, we can solve such integrals with Equation 1.
Thus, Equation 6 can be solved by multiple applications of Equation 1. The complexity

78 c o o p E a

of computing Equation 6 is exponential in the number of cases m in the database. In
particular, if the hidden variable can take on one of r possible values, then to solve Equation
6 directly requires r ~ applications of Equation 1. This high level of complexity is not
computationally tractable for most applications. In Section 5, we describe a more efficient
method for computing Equation 6.

Example: Let us augment Table 1 to represent a hidden variable. In particular, this new
table is the same as Table 1, except that a column is added for the hidden variable h. For
each of the ten cases in the table, the variable h is represented by a case-specific hidden
variable ht, for t = 1 to 10. Each case-specific hidden variable can be instantiated to
either the value absent or present. We apply Equation 6 to this table in order to compute
P(D I Bs2), where Bs2 is the belief-network structure in Figure 2. Since there are ten
cases in D, the total number of instantiations of the ten binary variables hi, h2 hi0
is 2 l~ = 1024. Thus, by using Equation 6 to solve for P(D I Bs2), Equation 1 must be
solved 1024 times. If we use Equation 6, then as the number of cases with a hidden variable
increases, the number of times we must solve Equation 1 grows exponentially. To address
this problem of exponential growth in complexity, we introduce a more efficient solution
method in the next section.

5. A method for handling hidden variables more efficiently

In this section we present a method that computes Equation 6, but does not use exhaustive
summation over the values of the case-specific hidden variables. Instead, we aggregate
cases in the database into groups, and we use these groups to calculate a result equivalent
to one produced by Equation 6. Before introducing the general method, we first illus-
trate the basic ideas underlying it by showing how to apply the method to the example
previously introduced.

5.1. Application to the example

In this section we partially formalize the new hidden-variable method by using the previous
example to illustrate basic concepts. In Section 5.2 we complete the formalization to the
general case.

According to Assumption 2 in Theorem 1, cases are assumed to occur independently
given a belief-network model, which implies that the order of the cases in the database is
irrelevant. Therefore, in Table 2 we have aggregated identical cases into groups. There are
six groups: four of the groups contain only one case, one group contains two cases, and
another group contains four cases.

The basic idea underlying a more efficient method for handling hidden variable h is this:
we compute the integrals in Equation 6 using groups of cases rather than individual cases.
Recall that the integral in Equation 6 is solved by Equation 1. According to Equation 1,
it does not matter which case-specific hidden variable in a given group has a particular
value. Rather, all that matters is the total number of values of present and of absent for the

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 79

case-specific hidden variables in a group. Thus, for example, the solution of the integral in
Equation 6 will be the same, regardless of whether we instantiate the case-specific hidden
variables in group 2 as (h6 := present, h9 := absent) or as (h6 := absent, h9 := present).

Suppose a given group Gi contains ei case-specific hidden variables, and it has di of those
variables instantiated to the value present and ci - di of the variables instantiated to absent.
In this situation, we will say that Gi is set to the value di. Note that di can range from 0 to
ci, and thus, Gi has ei + 1 possible settings. Rather than compute the integral in Equation 6
over all possible instantiations of the case-specific hidden variables in D, we compute only
over the possible settings for each group. Note that there are (~) ways to instantiate the
case-specific hidden variables in G i s o that di of them have the value present and ci - di
of them have the value absent. Suppose there are u total groups. According to Equation 6,
for a given setting of each group, the integral in that equation is solved [L=I ,~ (~) times.
Thus, for a given setting of the groups, we must multiply our solution of the integral by the

factor 1-[i=l,u (~)"
Consider, as an example, computing the integral in Equation 6 for the situation in which

two of the case-specific hidden variables in group 1 have the value present (and thus, two
must have the value absent), one case-specific hidden variable in group 2 has the value
present, and in groups 3 through 6, each case-specific hidden variable has the value present.
These settings of the groups correspond to (4) 2 1 1 (1) (1)(1)(11)(~) = 12 solutions to the integral
in Equation 6, if the exhaustive technique represented by that equation is used. However,
each of these 12 solutions will be the same. The solutions are the same because for a given
setting of the groups, Equation 1 is insensitive to any particular instantiation of the case-
specific hidden variables that is consistent with those given group settings. Thus, to be more
efficient (for the given group settings in this example), we solve the integral in Equation
6 only once (by using Equation 1), and we multiply that solution to 12. We perform this
procedure for each possible setting of the groups. We sum the results of each such procedure
application to obtain a solution equivalent to that obtained by using Equation 6. The total
number of joint settings of all the groups is equal the product of the possible settings of
each group. For the example, this product is 5 x 3 x 2 x 2 x 2 x 2 = 240. Thus, we must
solve Equation 1 only 240 times, rather than the 1024 times required by Equation 6.

5.2. The general method

In this section we generalize the approach discussed in Section 5.1. We extend hidden
variables to be r-valued discrete variables, for any r >__ 2. We also provide a general formula
for computing P (D [Bs) that is more efficient than Equation 6. In the next paragraph we
establish some terms and definitions that will be used in a theorem that follows.

We will designate the possible values of h a s (Vhl,... ,Vhru) , where rh ~ 2. Let
M B (h) be the Markov blanket (Pearl, 1988) of variable h. 4 For the variables in MB(h) ,
consider some instantiation of them that exists in database D, and call it instantiation i.
Suppose there are u unique such instantiations. Consider a set containing all the cases
in D with instantiation i. Suppose there are ci such cases. Let Gi represent the set of
ci case-specific hidden variables in these cases. A setting of Gi is an instantiation of the
variables in Gi that is consistent with the distribution (Y i l , . . . , Yirh), where Yij designates

8 0 C O O P E R

Table 2. In this table cases are aggregated into groups that are demarcated by bold horizontal lines. Note in the
second column that cases are classified according to the group they are in.

Variable values for each case

Case Group x l h x2 x3

2 1 present h2 present present
4 1 present ha present present
7 1 present h7 present present
8 1 present hs present present

6 2 absent h6 present present
9 2 absent h9 present present

3 3 absent h3 absent absent

10 4 present hlo absent absent

1 5 present h 1 absent present

5 6 absent h5 present absent

the number of variables in Gi that are instantiated to the value Vhj. If an instantiation Ia
of the variables in Gi has the same distribution (Yil, �9 �9 �9 Y~rh) as an instantiation Ib, then
Ia and Ib correspond to the same setting of G~. Let ~-]~G~ denote the sum over all the
possible settings of Gi. For each setting of Gi in this summation, the case-specific hidden
variables in Gi are instantiated to some set of values that correspond to this setting of Gi.
Let 9 (G1 , . . . , G~) denote the total number of possible instantiations of the m case-specific
hidden variables in G1 U. �9 �9 U G~, that are consistent with a given joint setting of the groups
G1 , . . �9 Gu. Since each Gi contains a unique set of case-specific variables, it follows that
9(G1 , . . . , Gu) = g(Gz) • x 9(G~). A term 9(Gi) denotes the total number of possible
settings of the ei variables in Gi, and as shown in Tucker (1984, page 187, Theorem 1), this
term can be computed as

9 (G ,) =
ci!

Yil!Yi2!"" Yirh!"

THEOREM 2 Let D be a database of m cases, where each case contains a value assign-
ment for each variable in Z, except for a hidden variable h, which has no value assignments.
Let B s denote a belief-network structure containing just the variables in Z. Suppose that
among the m cases in D there are u unique instantiations of the variables in M B (h). Given
these conditions and the Assumptions 1, 2 and 4 in Theorem 1, it follows that

G1 G~ P ~=1

(7)

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 8]

Proof: Recall that Equation 1 solves the integral in Equation 6. Note that the result
determined by Equation 1 is only sensitive to the values of ri, N i j k and N i j . The values
of N i j k and Nij represent numerical summaries of the database (i.e., counts), which are
insensitive to the particular order of cases that produce those counts. Thus, in Equation
6, if one instantiation of hi, �9 �9 hm leads to the same values of Nijk and Nij as another
instantiation, then theresult from Equation 1 will bethe same forbothinstantiations. A given
setting of G1, �9 �9 �9 G~ in Equation 7 corresponds to those instantiations of h i , . �9 �9 hm that
produce the same values of N i j k and N i j in Equation 1. In particular, for a given setting
of G1, �9 . . , G~ there are 9(G1, �9 . . , G~) instantiations of h i , . �9 �9 hm in Equation 6 that
produce the same result when the integral in that equation is solved using Equation 1. Thus,
to compute P (D I B s) using Equation 6, we can solve the integral in that equation using
Equation 1 for each setting of G1,. �9 G~ and then multiply by g (G 1 , . . . , G~) the solution
of the integral for each such setting. Equation 7 computes P (D I B s) in the manner just
outlined. []

5.3. Computa t iona l t ime complexi ty

In this section, we derive the time complexity for computing Equation 7. We will assume
that each variable in the database can be assigned any one of at most r possible discrete
values. As shown in Cooper & Herskovits (1992), the complexity of computing the integral
in Equation 7 is O (m n 2 r) . Now consider the number of times we must solve the integral
in Equation 7. We will use the following lemma.

L E M M A 1 Let Xl , . . . , X u denote real variables, and let m and k designate non-negative

real constants. Subject to the fo l lowing constraints: (1) x l + . . . + x , = m , and (2)
0 <_ Xl ~ m , . . . , 0 <_ xu <_ m , the fo l lowing equivalence is valid:

max xi + k = m + k .
Xl l . . . IXu

i = l

I f the variables x l , . �9 xu are fur ther constrained to be integer valued, then the maximiza-

tion on the left is less than or equal to the product on the right. []

THEOREM 3 The time required to solve Equation 7 is

O ((m n 2 r) (m / u + r - 1)u(r-1)). (8)

Proof: The number of settings of Gi is equivalent to the number of ways of distributing
ci identical objects into rh different boxes, which as shown in Tucker (1984, page 194) is
equal to (ci + rh -- 1)!/ci!(rh -- 1)!. Thus, the integral in Equation 7 is solved I] i=l ,~ (ci +
rh -- 1) ! /c i ! (rh -- 1)! times. We can express (ci + rh -- 1)[/ci[(rh -- 1)! equivalently as
(ci + rh -- 1)(Ci + rh -- 2) . . - (ci + 1)/(rh -- 1)!, which is no greater than (ci + rh -- 1) ~h-1.
Therefore, the integral in Equation 7 is solved no more than I] i=l ,~(c i + r h - - 1) r h - 1 =

(H~=I,~(c~ + rh -- 1)) ~h-1 times. By Lemma 1, this last product can be no greater than

82 COOPER

1-Ii=l,~(m/u + rh -- 1), and thus the integral in Equation 7 is solved no more than the

following number of times: (1-Ii=l,~,(m/u+rh- 1)) rh-1 = rL=l ,~(m/u+rh- 1) rh-1 =

(m/u + rh -- 1) u(rt"-l) . Thus, the number of times the integral in Equation 7 is solved is
O((m/u + rh -- l)u(rh-l)).

Since the integral in Equation 7 is solved O(m/u + rh -- 1) %~h-1)) times and each
solution requires, O(mn2r) time, a bound on the total time required to solve Equation 7 is
given by Equation 8.

Equation 8 does not take into account the time required to create the groups G1, �9 �9 G~.
We can generate these groups by inserting the m cases into a rooted tree with a branching
factor of at most r, where each path in the tree represents a unique instantiation of the
variables in MB(h). Such a tree can be constructed in O(mr[MB(h)I) = O(mrn) time,
and thus, Equation 8 still represents the time complexity required to solve Equation 7.

[]

Recall that u denotes only the number of unique instantiations actually realizedin database
D of the variables in the Markov blanket of hidden variable h. The number of such unique
instantiations significantly influences the efficiency with which we can compute Equation 7.
For any finite belief-network, the number of such unique instantiations reaches a maximum,
regardless of how many cases there are in the database. Recall that r denotes the maximum
number of possible values for any variable in the database. If u and r are bounded from
above, then the time to solve Equation 7 is bounded from above by a function that is
polynomial in the number of variables n and the number of cases m. If u or r is large,
however, the polynomial will be of high degree.

6. Results on an example using simulated data

This section provides an example application of the methods discussed in this paper. We
emphasize that this section contains only a single example, rather than a thorough empirical
evaluation of the methods in the paper.

We generated a database of 45 cases from a belief network by using a stochastic sampling
method (Henrion, 1988). Let us denote this belief network as B* and the database as D*.
The belief-network structure of B* is shown in Figure 2. The probabilities of B* are as
follows:

P(xl = present) = 0.6
P(h = present] Xl = present) = 0.9
P (h = present I xl = absent) = 0.3
P(x2 = present I h = present) = 0.9
P(x2 = present I h = absent) = 0.05
P(x3 = present I h = present) = 0.8
P(x3 = present I h = absent) = 0.05

Using the 45 cases in D*, we computed the probability of the structures in Figures 1 and
2 by applying both the exhaustive method in Section 4.2 (call it EXH) corresponding to

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 83

Table 3. The time required by the EXH and MB methods to compute the posterior probability of
belief-network structure Bs2 shown in Figure 2, using the first 5, 10, 15, . . . , or 45 cases in database
D*. The symbol s denotes seconds, m denotes minutes, h denotes hours, and y denotes years. Only the
first 5, 10, and 15 cases were computed using EXH; the remaining computation times for EXH were
made by using a conservative extrapolation that bounds the results from below.

cases: 5 10 15 20 25 30 35 40 45

EXH: 0.1 s 2.4 s 101 s > 53 m > 28 h > 38 d > 3 y > 107y > 3424y
MB: 0.1 s 0.2 s 1 s 9 s 21 s 77 s 139 s 232 s 867 s

Equation 6, and the Markov-blanket method in Section 5.2 (call it MB) corresponding to
Equation 7. Table 3 shows the timing results of applying EXH and MB to compute the
posterior probabili ty of the structure in Figure 2 for the first 5, 10, 1 5 , . . . , and 45 cases in
D* when using a Macintosh Ilci (with a Daystar cache card) and Think Pascal 4.0. The
EXH method could feasibly handle a database with up to about 15 cases on this machine,
whereas the MB method could feasibly handle about 40 cases.

These results, while limited in scope, do illustrate two general points. First, the MB
method has a run time that in general grows much more slowly than does the run time of
EXH. Second, the run t ime of MB can still grow rapidly, even though it is a much slower
growth than that of EXH. In this example, the run time of MB grows polynomial ly in the
number of cases, where the degree of the polynomial is 8, because 8 is the number of unique
instantiations in D* of the 3 binary variables in the Markov blanket of h (namely, z l , z2,
and z3).

Let us assume that belief-network structure Bsl in Figure 1 and structure Bs2 in Figure
2 each have a prior probabil i ty of 0.5. Given these priors, the probabili ty P(Bs2 [D) is
plotted in Figure 3 as a function of the number of cases in D, when D is taken to be the
first 5, 10, 1 5 , . . . , and 45 cases in D*. The first 5 cases did not provide enough data to
indicate that the most l ikely data-generating belief network had structure Bx2. Beginning
with the first 10 cases, however, the posterior probabili ty of Bs2 remains greater than that
of Bsl. The dip between case size 10 and 25 in Figure 3 is likely the result of variation due
to statistical sampling, which typically is more prominent when the number of samples is
not large.

7. Extensions and open problems

In this section we briefly discuss several possible extensions to the MB method.

7.1. Multiple hidden variables

We can improve the efficiency of computing Equation 7 by moving some terms to the
outside of the sums. This becomes more apparent if Equation 7 is rewritten with the
integral replaced by its solution (as given by Equation 1):

84 COOPER

.I

1.0-

0.9 -~

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

"<Bsl

I I I I I

0 10 20 30 40 50
N u m b e r of cases in database D

Figure 3. A plot of the posterior probability of belief-network structure Bs2 as D is set to be the first 5, 10, 15,. . . ,
and 45 cases in database D*. Lines are drawn between data points to highlight changes between those points.

P(D [Bs) = ~ . . . ~ g (G 1 , . . . , G ~) (NiT~2r;--_ 1)! Nijk!.
G1 G.~

(9)

If a node xi is not equal to h and is not a child of h, then in Equation 9 the result of the
products is not influenced by the settings made in the sums, and thus we can move these
products in front of the sums, and calculate them only once. Under these circumstances,
Equation 9 becomes

P (D [B s) =

H,
k iEZ-C (h) 3=1 k = l

• . . . l - I ,
G,. iCC*(h) j = l k = l

(m)

where C*(h) is a set containing just h and the children of h. If there is a hidden variable
in the set Z - C*(h) that is not in the Markov blanket of h, then we can apply Equation
7 to compute the products that appear in the first set of square brackets in Equation 10.
This process of successively moving products out of sums can be repeated for any number

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 85

of hidden variables, as long as none of the hidden variables have intersecting Markov
boundaries. If the Markov boundaries of two or more hidden variables do have a non-
empty intersection, then we can in effect treat these variables like a single hidden variable
(of higher dimension), and apply Equation 7 as before. This technique therefore provides
a general approach for handling multiple hidden variables. The technique can, however,
become computationally demanding, and thus, it is an open problem to discover more
efficient methods for handling multiple variables that are hidden or that have some missing
data.

7.2. Bounding the space of hidden-variable models

One difficulty in considering the possibility of hidden variables is that there are an unlimited
number of them and thus an unlimited number of belief-network structures that can contain
them. This is a difficult, open problem for which we outline here several approaches. One
way to address the problem is simply to limit the number of hidden variables in the belief
networks that we postulate, and then use a greedy search method similar to K2 (Cooper &
Herskovits, 1992) to try to locate a highly probable belief-network structure that contains
hidden variables. Another approach is to specify explicitly nonzero priors for only a limited
number of belief-network structures that contain hidden variables. This may be possible
if we have knowledge that tightly constrains a priori the possible set of structures. One
other possible approach is to use non-Bayesian methods to suggest likely locations for
hidden variables, as discussed in Spirtes & Glymour (1990), Spirtes, et al. (1993), and
Verma & Pearl (1990). We then could begin our search using Bayesian methods by initially
postulating hidden variables where the non-Bayesian methods suggest they might exist.

Another problem is to determine the number of values to define for a hidden variable.
One approach is to try different numbers of values. That is, we make the number of values
of each hidden variable be a parameter in the search space of belief-network structures.
We note that some types of unsupervised learning have close parallels to discovering the
number of values to assign to hidden variables. For example, researchers have successfully
applied unsupervised Bayesian learning methods to determine the most probable number
of values of a single, hidden classification variable (Cheeseman, et al., 1988). We believe
that similar methods may prove useful in addressing the problem of learning the number of
values of hidden variables in belief networks.

7.3. Handling missing values

Missing values in the database can be viewed as partially hidden variables. We can use a
slight variation of Equation 7 to handle missing values for a given variable h that is partially
hidden. Since the number of missing values of a variable is typically much less than the total
number of cases, handling missing values will usually be less computationally demanding
than handling hidden variables, for the methods discussed in this paper. By Assumption 4 in
Theorem 1, for a given belief-network structure Bs, if a variable zi has a missing value in a
case, then zi is believed to be just as likely to have one value as any other. If this assumption

86 COOPER

is not valid, then Assumption 4 should be modified to allow the expression of more general
distributions of missing values, as for example, by using Dirichlet distributions (Cooper &
Herskovits, 1992).

Acknowledgments

Gregory Piatetsky-Shapiro and the anonymous reviewers provided helpful comments on an
earlier version of this paper.

Support was provided by the National Science Foundation under grant IRI-9111590.

Appendix

This appendix contains a glossary of terms that appear in the paper.
D
m

n

B
Bs
B p

f(B. I Bs)
Z

x i

7fi

r i

w i j

qi
N~jk

N i j

h

hE

Gi

A database of cases (i.e., training instances or records).
The number of cases in D.
The number of variables in database D.
A belief network.
A belief-network structure.
A vector whose elements denote the conditional probability assignments
associated with a given belief-network structure.
A conditional-probability density function over Bp given Bs.
A set of variables corresponding to the nodes in belief-network/3.
A variable in D and a corresponding node in belief network t3.
The set of parents of xi in B.
The number of possible value assignments for xi.
The j th unique instantiation of 7ri relative to the cases in D.
The number of unique instantiations of rri relative to the cases in D.
The number of cases in D in which xi has the value v~k and 7ri is instan-
tiated as w~j.
A term equal to ~ = 1 N~jk.
A hidden variable. That is, a variable for which there are no measured
values in D.
A hidden variable specific to case t.
A set of case-specific hidden variables. See Section 5.2.
The total number of possible instantiations of the m case-specific hidden
variables in G1 tO. �9 �9 tO G~ that are consistent with the joint setting of the
groups G 1 , . . . , G~,.

Notes

1. The Appendix contains a glossary of terms used in this paper.

2. Since there is a one-to-one correspondence between a node in B s and variable in Bp, we shall use the terms
node and variable interchangeably.

LEARNING BELIEF NETWORKS THAT CONTAIN HIDDEN VARIABLES 87

3.

4.

An instantiated variable is a variable with an assigned value.

A Markov blanket of a node xi is given by the set of nodes consisting of the parents of xi, the children of
xi , and all the parents of the children of xi except xi itself. Knowing the values of the nodes in the Markov
blanket of xi makes the probablity distribution over xi independent of the values of all nodes outside the
Markov blanket of xi.

References

Agogino, A.M. and Rege, A. (1987). "IDES: Influence diagram based expert system," Mathematical Modelling
Vol. 8, pp. 227-233.

Andreassen, S., Woldbye, M., Falck, B. and Andersen, S.K. (1987). "MUNIN--A causal probabilistic network for
interpretation of electromyographic findings," in Proceedings of the International Joint Conference on Artificial
Intelligence, Milan, Italy, pp. 366-372.

Beinlich, I.A., Suermondt, H.J., Chavez, R.M. and Cooper, G.E (1989). "The ALARM monitoring system: A case
study with two probabilistic inference techniques for belief networks," in Proceedings of the Second European
Conference on Artificial Intelligence in Medicine, London, England, pp. 247-256.

Chavez, R.M. and Cooper, G.F. (1990). KNET: Integrating hypermedia and normative Bayesian modeling. In:
Shachter, R.D., Levitt, T.S., Kanal, L.N. and Lemmer, J.E (Eds.), Uncertainty in Artificial Intelligence 4.
North-Holland, Amsterdam, pp. 339-349.

Cheeseman, P., Self, M., Kelly, J., Taylor, W., Freeman, D. and Stutz, J. (1988). "Bayesian classification," in
Proceedings of AAA1, St. Paul, MN, pp. 607-611.

Cooper, G.E (1984). NESTOR: A Computer-Based Medical Diagnostic Aid that Integrates Causal and Proba-
bilistic Knowledge, Doctoral dissertation, Medical Information Sciences, Stanford University.

Cooper, G.F. (1989). "Current research directions in the development of expert systems based on belief networks,"
Applied Stochastic Models and Data Analysis Vol. 5, pp. 39-52.

Cooper, G.E and Herskovits, E. (1992). '% Bayesian method for the induction of probabilistic networks from
data," Machine Learning Vol. 9, pp. 309-347.

Heckerman, D.E., Horvitz, E.J. and Nathwani, B.N. (1992). "Toward normative expert systems: Part I. The
Pathfinder project," Vol. 31, pp. 90-105.

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by logic sampling. In: Lemmer, J.E and
Kanal, L.N. (Eds.), Uncertainty in Artificial Intelligence 2. North-Holland, Amsterdam, pp. 149-163.

Henrion, M. (1989). Some practical issues in constructing belief networks. In: Kanal, L.N., Levitt, T.S. and
Lemmer, J.F. (Eds.), Uncertainty in Artificial Intelligence 3. Elsevier, New York, pp. 161-173.

Henrion, M. (1990). An introduction to algorithms for inference in belief nets. In: Henrion, M., Shachter, R.D.,
Kanal, L.N. and Lemmer, J.F. (Eds.), Uncertainty in Artificial Intelligence 5. North-Holland, Amsterdam, pp.
129-138.

Henrion, M. and Cooley, D.R. (1987). "An experimental comparison of knowledge engineering for expert systems
and for decision analysis," in Proceedings of AAAI, Seattle, WA, pp. 471-476.

Herskovits, E.H. (1991). Computer-Based Probabilistic-Network Construction, Doctoral dissertation, Medical
Information Sciences, Stanford University.

Holtzman, S. (1989). Intelligent Decision Systems, Addison-Wesley, Reading, MA.
Kiiveri, H , Speed, T.P. and Carlin, J.B. (1984). "Recursive causal models," Journal of the Australian Mathematical

Society VoI. 36, pp. 30-52.
Neapolitan, R. (1990). Probabilistic Reasoning in Expert Systems, John Wiley & Sons, New York.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA.
Shachter, R.D. (1986). Intelligent probabilistic inference. In: Kanal, L.N. and Lemmer, J.E (Eds.), Uncertainty

in Artificial Intelligence. North-Holland, Amsterdam, pp. 371-382.
Spiegelhalter, D.J. and Cowell, R.G. (1992). Learning in probabilistic expert systems. In: Bernardo, J.M., Berger,

J.O., Dawid, A.P. and Smith, A.EM. (Eds.), Bayesian Statistics 4. Oxford University Press, Oxford, pp. 1-17.
Spiegelhalter, D.J. and Lauritzen, S.L. (1990). "Sequential updating of conditional probabilities on directed

graphical structures," Networks Vol. 20, pp. 579~506.
Spirtes, P. and Glymour, C. (1990). "Causal structure among measured variables preserved with umneasured

variables," Report CMU-LCL-90-5, Department of Philosophy, Carnegie-Mellon University.
Spirtes, P., Glymour, C. and Scheines, R. (1993). Causation, Prediction, andSearch, Springer-Verlag, New York.

88 COOPER

Suermondt, H.J. and Amylon, M.D. (1989). "Probabilistic prediction of the outcome of bone-marrow transplan-
tation," in Proceedings of the Symposium on Computer Applications in Medical Care, Washington, DC, pp.
208-212.

Tucker, A. (1984). Applied Combinatorics, John Wiley & Sons, New York.
Verma, T.S. and Pearl, J. (1990). "Equivalence and synthesis of causal models," in Proceedings of the Conference

on Uncertainty in Artificial Intelligence, Cambridge, Massachusetts, pp. 220-227.
York, J. and Madigan, D. (1993). "Markov chain Monte Carlo methods for hierarchical Bayesian expert systems,"

in Proceedings of the Conference on Artificial Intelligence in Statistics, Orlando, Florida, pp. 433-439.

