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Abstract

Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from
some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the
association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP
associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed
Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-
locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the
posterior probability of complex hypotheses is a pressing need.

Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the
difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model,
and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a
hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a
hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results
of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that
the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data
sets, previous findings in the literature are confirmed and additional findings are found.

Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the
posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of
investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease
loci associations.
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Introduction

The advent of high-throughput technologies has enabled

genome-wide association studies (GWAS). A GWAS can involve

examining a million representative single-nucleotide polymor-

phisms (SNPs) in individuals from some population. Often GWAS

are conducted on cases and controls, where cases are individuals

with a disease and controls are individuals without the disease. We

then investigate the statistical association of each SNP with the

disease. In doing so, a million hypotheses (disease-SNP relation-

ships) or more may be investigated.

GWA studies provide researchers unprecedented opportunities

to investigate the complex genetic basis of diseases such as cancer.

For example, GWAS have indicated that alleles in the FGFR2 gene

are associated with sporadic postmenopausal breast cancer [1];

that five loci are associated with breast cancer including the

plausible causative genes FGFR2, TNRC9, MAP3K1, and LSP1 [2];

and that GAB2 alleles may modify Alzheimer’s risk in APOE e4
carriers [3]. Studies investigating SNPs in tumorous and non-

tumorous tissue have revealed somatic mutations possibly

associated with cancer. For example, recent studies showed eight

genes somatically mutated in glioblastoma tumors [4], and 26

genes somatically mutated in lung adenocarcinoma [5]. The 1000

Genomes Project plans to produce sequence coverage that will

extend the list of human genetic variation [6], and gene-

environment-wide association studies are emerging [7], both of

which will increase the number of hypotheses investigated. Epistasis

is the interaction between two or more genes to affect a phenotype

such as disease susceptibility. Biologically, epistasis likely arises

from physical interactions occurring at the molecular level.

Statistically, epistasis refers to an interaction between multiple

loci such that the net affect on phenotype cannot be predicted by

simply combining the effects of the individual loci. Researchers

now believe that epistasis may account for a significant portion of

the dark matter of genetic risk for disease [8], and it is becoming

increasingly commonplace for researchers to investigate epistasis

using GWAS data sets [9,10], which dramatically increases the

number of hypotheses investigated. For example, if we only
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considered all 2-SNP interactions when there are 500,000 SNPs,

we would have 1: 25|1011 additional hypotheses.

These exciting possibilities for learning potential disease risk

from high-dimensional data sets presents us with a challenge -

namely how do we analyze and interpret our results when there

are possibly billions of hypotheses? The hypothesis testing involved

here is substantially different than that involved in a typical

analysis where we might analyze the effect of a new drug. In this

latter case, we are analyzing only one hypothesis, and the drug has

a fairly high prior probability of being effective, otherwise the

study would not have been considered. In discovery studies

involving many hypotheses, each hypothesis has a very low prior

probability.

Historically, the most common strategy for handling this

multiple hypotheses testing problem has been to control type I

error (false discovery) by using the Bonferroni correction to

constrain the family-wise error rate. For example, the results in [3]

were reported as being significant with Bonferroni correction.

However, these corrected results often fail to duplicate across

studies [8]. More recently developed techniques include the false

discovery rate [11], false positive report probability [12], and

Bayesian false discovery probability [13].

These methods all have the same purpose, namely to provide us

with a way to decide which SNPs to ‘‘flag as noteworthy for further

investigation’’ [13]. A difficulty with these methods is that they are

not applicable to a complex multi-locus hypothesis, which has

several competing hypotheses rather than only a null hypothesis.

However, as mentioned above, it is becoming increasingly

commonplace to investigate gene-gene interactions. So, a method

that computes the posterior probability of a complex multi-locus

hypothesis (and thereby flags the SNPs in the hypothesis as

noteworthy) is a pressing need. In the Methods section we present

a fully Bayesian method called the Bayesian network posterior

probability (BNPP) method that is able to handle multi-locus

hypotheses by computing the posterior probability of a hypothesis;

it does so by assigning prior probabilities over all the hypotheses

and computing the likelihoods of specialized Bayesian network

structures [14], as explained below. The Results section shows

results of experiments illustrating the effectiveness of the BNPP at

both evaluation and discovery, using both simulated and real data

sets. In the remainder of this section we briefly review current

methods and point out difficulties that they encounter.

When testing multiple hypotheses as in a GWAS, one of the

hypotheses is likely to have a significant p-value by chance. As a

result, researchers often use the Bonferroni correction to control the

family-wise error rate by multiplying the p-value by the number of

hypotheses n. For example, if p~2:1|10{7 for a given SNP-

outcome association and n~500, 000, then the Bonferroni-

corrected p-value is p|n~500, 000|2:1|10{7~0:105. This

result would not be deemed significant by most standards, and the

null hypothesis would not be rejected. A related correction is the

Šidák correction, which is 1{(1{p)n.

Wakefield [13] notes that in the case of a GWAS the Bonferroni

correction will often be an overly conservative procedure since at

least in the current early stages of such studies we are more

concerned with avoiding missed associations, and making some

false discoveries is not too high a cost to pay to find real

associations. Neapolitan [15] has a more fundamental problem

with the Bonferroni correction. He argues that it is a misguided

practice, and that the significance we attach to a result concerning

a particular hypothesis cannot depend on the number of

hypotheses we happen to test along with that hypothesis.

Regardless of one’s stance on this matter, there are clear

difficulties in applying the Bonferroni correction in GWA studies.

Suppose that one study investigates 100, 000 SNPs while another

investigates 500, 000 SNPs. Suppose further that the data

concerning a particular SNP and the disease is identical in the

two studies. Due to the different corrections, that SNP could be

reported as significant in one study but not the other. Yet the data

concerning the SNP is identical in the two studies. As noted

earlier, in GWAS results are often not duplicated across studies.

One reason may be the practice of using different corrections

across different studies. Initially GWAS data were analyzed by

investigating only 1-SNP models (hypotheses). We use the terms

‘‘model’’ and ‘‘hypothesis’’ interchangeably. Strictly speaking, the

hypothesis is the statement that the model is correct.

So if there were 500, 000 SNPs, there would be 500, 000
hypotheses. Based on these studies, quite a few results have been

reported as significant with correction [3,16–18]. It is becoming

increasingly popular to also investigate 2-SNP models in the effort

to identify epistatic relationships [8–10]. As mentioned above, if

there are 500, 000 SNPs, there are about 1: 25|1011 2-SNP

models. If the researchers who previously reported significant

results had also investigated the 2-SNP models, the corrections

would have been based on many more hypotheses and the results

likely would not have been reported as significant.

Realizing these problems, some researchers [17,19] have

suggested that we uniformly use a Bonferroni correction assuming

106 independent tests in GWA studies. This value was arrived at

based on assuming only 1-SNP models are tested. If this were

done, the problem concerning using different corrections when

analyzing 1-SNP models in different studies would be addressed,

but the problem of analyzing 1-SNP models along with 2-SNP

models would not. We could correct the significance of a 1-SNP

model assuming 106 tests, and then perhaps we could correct the

significance of a 2-SNP model assuming a much larger number of

tests. However, even if we did all this we would still have the

problem identified by Wakefield [13] concerning the correction

being overly conservative, and the problem that we have ignored

the probability of the data given the alternate hypothesis (power).

Benjamin and Hochberg [11] concluded that a desirable error

rate to control is the expected proportion of errors among the

rejected null hypotheses, which they termed the false discovery rate

(FDR). That is, the FDR is E(V/R), where E denotes expected

value, R is the number of null hypotheses rejected and V is the

number of true null hypotheses rejected (Recall that we make a

discovery when we reject a null hypothesis). They prove the

following theorem, which enables us to control the FDR in

practice: Suppose we have n hypotheses with corresponding p-

values p1ƒp2ƒ . . . ƒpn. Denote by Hi the null hypothesis

corresponding to pi. Let

k be the largest i such that piƒ
i

n
q:

Then if we reject H1, H2, . . . , Hk, the FDR is #q.

Storey [20] gave the FDR a Bayesian interpretation, showed

that the E(V/R|R.0) (called the positive FDR) does not depend on

n, and defined the q-value. Storey and Tibshirani [21] develop an

empirical method for estimating the q-value from the observed

distribution of p-values.

Storey et al. [22] developed a method that computes the

posterior probability that a locus is in the true model given the

data, without ever estimating the entire true model. However, this

method is applicable to the situation in which we are investigating

many phenotype traits simultaneously rather than a single trait.

The FDR was used to correct for multiple comparisons in this

method.

A Bayesian Method for Disease Loci Evaluation
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The next two methods discussed concern the following analysis.

We test H0 : h~0 vs. H1 : hw0 where h is the log odds ratio. For

example, if H1 is the hypothesis that a particular SNP S is

associated with disease D,

h~ln
Odds(D~1jS~11)

Odds(D~1jS=11)

� �
,

where by D = 1 we mean the disease is present, and by S~11 we

mean that an individual has two copies of the mutant allele 1. We

have assumed in this example that the wild type is dominant. The

model assumes a test statistic T with E(T)~h. For example, we

may fit a logistic regression model so that T is the maximum

likelihood estimate of the log odds ratio.

The false positive report probability (FPRP) [12] is defined as follows:

FPRP~P(H0jData)~
p|P(H0)

p|P(H0)zpower|P(H1)
,

where p is the p-value, the Data are assumed to be the result that

jT jwtobs where tobs is the observed value of T, and

power~P(Datajh1) is evaluated at a pre-specified h1.

There are a number of difficulties with this method:

1. Information is being lost by considering the data as being the

result that jT jwtobs rather than the point value (tobs) we

observed.

2. How do we decide on a particular value of h1? Perhaps we

should consider a range of values.

3. The odds ratio only considers two possibilities, either a

condition is present or it is not. However, we may want to

model that there could be a different effect on disease for each

of the three values a SNP can obtain.

4. We can only consider a null hypothesis H0 and an alternative

hypothesis H1. However, if we model 2-SNP, 3-SNP models,

etc., there are several competing models (hypotheses) besides

the one whose probability we are computing and each has a

different likelihood. This issue is discussed in more detail in the

Methods section.

As an alternative to the FPRP, Wakefield [13] developed the

Bayesian false discovery probability (BFDP) which addresses several of

the difficulties just presented. We do not go into its details here,

but only mention that it does not attend to Difficulties 3 and 4.

A Bayesian method was used to compute the strength of

association of a finding obtained using GWAS data in the

Wellcome Trust Case Control Consortium study [23]. This

method identified the following three hypotheses concerning the

association of a single SNP with the disease:

1. H0 denotes a model with no association with the disease.

2. H1 denotes a two-parameter model with an additive effect on

the log-odds scale. That is, the log-odds for the ith individual is

mzcZi

where Zi is the genotype (codes as 0, 1, or 2), m is the baseline

odds, andci is the increase in odds for every copy of the allele

coded as 1.

3. H2 denotes a three-parameter model with an additive effect on

the log-odds scale.

The Bayes factor for Hi versus H0 is

P(DatajHi)

P(DatajH0)
,

where

P(DatajHi)~

ð
P(Datajhi, Hi)P(hijHi)dhi

and hi denotes the parameters in the model. For all three models

a logistic regression model was used for the likelihood

P(Datajhi,Hi). The log of the Bayes factor was reported for both

H1 and H2. This method addresses Difficulty 3 to some extent by

considering three values of the genotype. However, it does not

concern multi-locus hypotheses and address Difficulty 4.

Zhang and Liu [24] developed Bayesian epistasis association

mapping (BEAM) for the purpose of discovery. However, the

method does assign prior probabilities to loci being associated with

the disease and reports posterior probabilities. It does not consider

multiple competing hypotheses.

Sebastiani et al. [25] computed the posterior probabilities of

individual SNPs using a likelihood like the one presented here.

These researchers performed a GWAS concerning 298,734 SNPs

with the purpose of developing a system for predicting extended

longevity (EL). In the first stage of their investigation they computed

the posterior probability of each SNP being associated with EL,

where the prior probability was assumed to be 0.5. They used

these posterior probabilities to rank the SNPs and thereby flag

SNPs to include in the second phase of the investigation, which

was to decide which SNPs to include in the predictive model.

Bayesian networks have previously been used to discover disease

loci interactions using likelihoods [10,26–28]. However, we know

of no previous research that used them to determine the posterior

probability of a complex multi-SNP model being associated with

the disease.

Methods

We developed the BNPP method specifically to enable us to

compute the posterior probability of multi-locus models, which

addresses Difficulty 4 above; however, it also attends to the other

three difficulties.

A 1-locus model is the model that a single locus by itself is

associated with a phenotype such as a disease, a 2-locus model is

the model that two loci together are associated with a phenotype,

and so on. The BNPP method represents such models using

particular types of Bayesian network structures and computes the

posterior probability of a model based on the likelihoods of these

structures and their prior probabilities.

The BNPP was designed for the purpose of flagging SNPs for

further investigation; that is, it is intended to compute the posterior

probability of a model that was already discovered or conjectured.

We previously used Bayesian networks for discovery of disease loci

associations [10,26,27]. However, we only computed the likeli-

hoods of the models; we did not consider their prior probabilities.

A bigger model (more loci) will sometimes have a higher

likelihood, but be less probable because of its smaller prior

probability. The BNPP accounts for this situation, whereas a

method that only looks at likelihoods does not. So, the BNPP is

also a new, promising technique for discovery.

Before describing the BNPP algorithm, we first review Bayesian

networks on which the algorithm is based.

A Bayesian Method for Disease Loci Evaluation
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Bayesian Networks
Bayesian networks [14] have been used for modeling and

knowledge discovery in many domains, including applications to

bioinformatics [29]. A Bayesian network (BN) consists of a directed

acyclic graph (DAG) Gwhose set of nodes V contains random

variables and a joint probability distribution P(V ) that satisfies the

Markov condition with G. We say that (G, P) satisfies the Markov

condition if for each variable X[V , it holds that X is conditionally

independent in P of the set of all its nondescendents in G given the

set of all its parents in G. It is a theorem [14] that (G, P) satisfies

the Markov condition (and therefore is a BN) if and only if P is

equal to the product of its conditional distributions of all nodes

given their parents in G, whenever these conditional distributions

exist. That is, if our variables are X1, X2, . . . , Xn, and PAi is the

set of parents of Xi, then

P(X1, X2, . . . , Xn)~ P
n

i~1
P(XijPAi):

Due to this theorem, BNs are often developed by first defining a

DAG that satisfies the Markov condition relative to our belief

about the probability distribution of the nodes in the DAG, and

then determining the conditional probability distributions for this

DAG. Often the DAG is a causal DAG, which is a DAG in which

there is an edge from X to Y if and only if X is a direct cause of Y

relative to the other nodes in the DAG.

Figure 1 shows a BN representing the causal relationships

among gene expression levels. The expression levels have been

discretized into two values, low and high. Using this BN, we can

determine conditional probabilities of interest using the BN and a

BN inference algorithm. For example, if a given individual has

C~low and S~high, we can for example determine the

conditional probability of A being low and of D being low. That

is, we can compute

P(A~lowjC~low, S~high)

and P(D~lowjC~low, S~high):

Methods have been developed both for learning the parameters

in a BN and the structure (called a DAG model) from data. The

research discussed here concerns structure learning, which we

discuss next. The task of learning a unique DAG model from data

is called model selection. As an example, if we had data on a large

number of individuals and their expression levels of the genes

shown in Figure 1, we might be able to learn the DAG in Figure 1

from data. When the edges represent causal influences, this means

we can learn causal influences from data under assumptions. In

the score-based structure learning approach, we assign a score to a

DAG based on how well the DAG fits the data.

Cooper and Herskovits [30] developed the Bayesian score for

discrete variables, which is the probability of the Data given the

DAG. This score uses a Dirichlet distribution to represent our

prior belief for each conditional probability distribution in G and

contains hyperparameters that represent these prior beliefs. The

score is as follows:

scoreBayes(G : Data)~P(DatajG)

~ P
n

i~1
P
qi

j~1

C(
Xri

k~1
aijk)

C(
Xri

k~1
aijkz

Xri

k~1
sijk)

P
ri

k~1

C(aijkzsijk)

C(aijk)
,
ð1Þ

where

1. n is the number of variables in the DAG model G;

2. ri is the number of states of Xi;

3. qi is the number of different values that the parents of Xi in G
can jointly assume;

4. aijk is our assessed prior belief from previous experience (before

obtaining the current data) of the number of times Xi took its

kth value when the parents of Xi took their jth value;

5. sijk is the number of times in the data that Xi took its kth value

when the parents of Xi took their jth value.

The Bayesian score does not necessarily assign the same score to

Markov equivalent DAG models. Two DAGs are Markov equivalent

if they entail the same conditional independencies. For example,

the DAGs XRY and XrY are Markov equivalent. Heckerman

et al. [31] show that if we determine the values of the

hyperparameters from a single parameter a called the prior

equivalent sample size then Markov equivalent DAGs obtain the

same score. If we use a prior equivalent sample size a and want to

represent a prior uniform distribution for each variable in the

network, then for all i, j, and k we set aijk~a=riqi, where ri and qi

are defined as above. When we use a prior equivalent sample size

a in the Bayesian score, the score is called the Bayesian Dirichlet

equivalent (BDe) score. When we also represent a prior uniform

distribution for each variable, the score is called the Bayesian

Dirichlet equivalent uniform (BDeu) score and is given by the following

formula, which is a special case of Equation 1:

P(DatajG)~scorea(G : Data)

~ P
n

i~1
P
qi

j~1

C(a=qi)

C(a=qiz
Pri

k~1 sijk)
P
ri

k~1

C(a=riqizsijk)

C(a=riqi)
:

ð2ÞFigure 1. A Bayesian network showing possible relationships
among gene expression levels. The levels have been discretized to
the values low and high. The network is for illustration purposes only; it
is not meant to accurately portray real relationships.
doi:10.1371/journal.pone.0022075.g001
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Posterior Probabilities of Disease-SNP Models
In what follows, for simplicity we refer to variables that might be

associated with a disease as SNPs. However, in general they could

be any genetic information or environmental factors. We can

represent the relationship between a disease and SNPs using

simple DAG models like those shown in Figure 2. The first model

represents that SNP S1 is associated with diseaseD. The third

model represents that SNPs S1 and S3 together are associated with

D (this could happened because each individually is associated

with D or because together they are associated with D due to an

epistatic interaction), and the fourth model represents that SNPs

S4, S6, and S8 together are associated with D.

Our goal is to compute the posterior probability of a model M
given Data. We can do that using Bayes’ Theorem as follows:

P(MjData)~
P(DatajM)P(M)

P(Data):
ð3Þ

The P(DatajM) term can be computed using the BDeu score

(Equation 2) with a particular choice of a. The BDeu score has

been used successfully to learn epistatic interactions from real

GWAS data sets, and in one analysis [26] it has been shown to

more often identify the model generating the data than

multifactor-dimensionality-reduction (MDR) [32], a well-known

method for learning epistatic interactions. The P(M) term is the

prior probability of M. We discuss the assessment of this

probability in Supporting Information S1. We call the posterior

probability in Equation 3 the Bayesian Network Posterior Probability

(BNPP). Next we show how to compute the BNPP.

Computing the BNPP
Consider first a 1-SNP model. Let Mi be the model that Si all by

itself is associated with D and M0 be the model that it is not (see

Figure 3). Then the posterior probability of Mi is given by

P(MijData)~
P(DatajMi)P(Mi)

P(DatajMi)P(Mi)zP(DatajM0)P(M0)
: ð4Þ

Note that the model in Figure 3 is not just that Si is associated with

the disease, but rather that it is associated all by itself. That is, if Si

was involved in an epistatic interaction with no marginal effects,

the model would be false. Note further that Si can have any

number of discrete values in the model. We are not restricted to

only two values as in some of the methods discussed previously. So

we can represent all three values of a SNP, or if we are

representing an environmental feature with many values we can

represent all of them. If the environmental feature is continuous,

we can discretize it. So we overcome Difficulty 3 mentioned in the

introduction (recall that Difficulty 3 is that the odds ratio only

considers two possibilities, either a condition is present or it is not).

Figure 4 shows the model Mij that Si and Sj together are

associated with D (without needing other interacting SNPs). Note

that this model includes the possibility that there is epistasis with

no marginal effects, as well as the possibility that each SNP by itself

has an association with D. The three competing models are on the

right. Note further that the model denoted as Mi is not the same as

the model Mi in Figure 3. Model Mi in Figure 4 represents that Sj

is not associated with D either by itself (other than possibly

through Si) or together with Si, whereas model Mi in Figure 3 says

nothing about Sj .

No other method discussed in the introduction considers these

multiple competing hypotheses. They would only consider the null

hypothesis M0 in which no association with D holds versus Mij .

However, if either model Mi or Mj were the correct model, we

would observe an association of the two SNPs together with D
(and therefore reject M0) even though Mij is incorrect. An

example of this situation is the relationship between APOE and

rs41377151, which will be discussed when we analyze an

Alzheimer’s data set in the Results section. So we attend to

Difficulty 4 mentioned in the introduction (recall that Difficulty 4

is that other methods only consider a null hypothesis and an

alternative hypothesis).

The posterior probability of Mij is as follows:

P(Mij jData)~

P(DatajMij)P(Mij)

P(DatajMij)P(Mij)zP(DatajM0)P(M0)z
P

k P(DatajMk)P(Mk)
,

where k sums over the two 1-SNP models.

Figure 5 shows a 3-SNP model and the competing models. The

number and complexity of the competing models increases with

the size of the model. However, we need not identify all the

competing models because we have developed the following

recursive algorithm for computing P(Data) for an arbitrary

number of SNPs, which is the denominator in the formula for the

posterior probability of a model:

Algorithm: Compute P(Data).

The SNPs in the model being evaluated are S1, S2,…., Sn.

prior½m� is the prior probability of an m-SNP model.

Figure 2. DAG models representing associations between SNPs
and a disease.
doi:10.1371/journal.pone.0022075.g002

Figure 3. The model that Si is associated with D all by itself is on
the left and the model that it is not is on the right.
doi:10.1371/journal.pone.0022075.g003
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We assume all m-SNP models have the same prior probability,

but this assumption is not necessary.

P(Data)~0;

for m~0 to n

likelihood~0;

M~1;

ComputeLikely(1, m);

P(Data)~P(Data)zlikelihood|prior½m�;

endfor

procedure ComputeLikely(k, m) // m is the size of the model

being considered.

if m~0

likelihood~likelihoodzP(DatajM); // likelihood and M are

global to this procedure.

else

for i~k to n{mz1

add Si to M;

ComputeLikely(iz1, m{1);

remove Si from M;

endfor

endif

There are n SNPs in the model being analyzed. The algorithm

proceeds by calling procedure Computelikely for every m#n. For

each value of m this routine then computes the contribution of all

m SNP models to the likelihood by recursively visiting all such

models. Since every subset of the n SNPs determines a competing

model, the likelihoods for 2n models are computed. However, since

ordinarily there are at most 5 SNPs in a model, this computation is

feasible.

There are various possibilities for the data structure we could

use in representing a model. We currently choose to represent a

model simply as an n-element array M, where M[i] contains the

index of the ith SNP in the model. For example, if n = 3 and S2, S4,

and S10 are the SNPs in the model, then M[1] = 2, M[2] = 4, and

M[3] = 10.

Results

Next we present results of evaluating the BNPP using both

simulated and real data sets. All experiments were done using a

Figure 4. The model that Si and Sj together are associated with D is on left; the three competing models are on the right.
doi:10.1371/journal.pone.0022075.g004

Figure 5. A 3-SNP model and its competing models.
doi:10.1371/journal.pone.0022075.g005
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Macbook Pro notebook with a 2.66 GHz processor and 8 GB of

RAM. For the sake of focus, in what follows we will always refer to

the phenotype as a disease.

Simulated Data
Velez et al. [33] created 70 epistasis models that are described in

Supplementary Table one to that paper. Each model represents a

probabilistic relationship in which two SNPs together are

statistically associated with the disease, but neither SNP is

individually predictive of disease. The relationships represent

various degrees of penetrance, heritability, and minor allele

frequency. Data sets were generated with case-control ratio of

1:1. To create one data set they fixed the model. Based on the

model, they then generated data concerning the two SNPs that

were related to the disease in the model, 18 other unrelated SNPs,

and the disease. For each of the 70 models, 100 data sets were

generated for a total of 7000 data sets. This procedure was

followed for data set sizes equal to 200, 400, 800, and 1600.

The data sets were generated separately. See http://discovery.

dartmouth.edu/epistatic_data to obtain these data sets.

For each of these data sets, we computed the posterior

probability of each 1-SNP, 2-SNP, and 3-SNP model using the

BNPP, making a total of 1350 models investigated per data set. As

discussed in Supporting Information S1, researchers estimate that

in an agnostic study the prior probability of an individual SNP

being associated with a disease is between 0:0001 and 0:00001. An

agnostic study is an explorative study in which we have no special

prior belief concerning any particular locus. Lower and upper

posterior probabilities were obtained using each of these priors for

an individual SNP being associated with a disease, and using the

strategy for determining model priors based on individual SNP

priors, which is also presented in Supporting Information S1. To

compute the likelihoods the BDeu score (Equation 2) was used.

The hyperparameter a was set equal to 54 because this value

yielded good epistasis discovery in a previous study [27] using the

Velez and other data.

Table 1 shows the results. The average probability of the true

models is much higher than that of the false models. Furthermore,

this average probability is moving toward 1 as the sample size

increases, whereas that of the false models remains quite small.

Finally, the results for the two different priors are not substantially

different. This robustness result is encouraging because the

assessment of priors is arguably the most onerous part of a

Bayesian analysis.

We repeated the analysis using p-values obtained from Pearson’s

chi-square test. Table 2 shows the results. These p-values are

uncorrected since a Bonferroni or Šidák correction would be the

same for all of them, and therefore not change the relative order.

Notice that the average p-value of the best false models is smaller

than that of the true models (recall that smaller p-values are more

significant). Table 1 shows that the average posterior probability of

the best false models is smaller than that of the true models (larger

posterior probabilities are more significant).

The performance of an evaluation method can be judged by

how high it ranks true models and how low it ranks false models.

The previous results support that the BNPP algorithm exhibits

better evaluation performance than the method based on p-values.

Next we address discovery. Figure 6 shows ROC curves

concerning the posterior probabilities when the individual SNP

prior is 0:00001 and the p-values for the simulated data sets. The

results for the posterior probabilities were almost identical when

the prior was 0:0001; so we do not show them. A receiver operating

characteristic (ROC) curve plots the true positive rate (sensitivity) on

the y-axis and the false positive rate (1 - specificity) on the x-axis. It

is obtained by considering various threshold probabilities as being

binary indicators of discovery. For example, the point

(0:014, 0:449) appears on the curve for the posterior probability

in Figure 6 (a) because 0:014 fraction of the false models have

posterior probabilities exceeding a threshold (in this case

2:95|10{7), while 0:449 fraction of the true models have

posterior probabilities exceeding this threshold. The point

(0:16, 1:0) appears on the curves in Figures 6 (a), (b), and (c)

and the point (0:13, 1:0) appears on the curve in Figure 6 (d). This

means that if we were using the posterior probability as a binary

indicator of discovery in the case of samples sizes of 200, 400, or

800, we could discover all the true models with a false discovery

rate of about 16% (based on this analysis). On the other hand, the

true positive rate for the p-value does not reach 1 until the false

positive rate reaches 1. This is true even when the data set has size

1600 (this is not noticeable in the display of its ROC curve). This

result supports the effective discovery performance of the BNPP.

Velez et al. [33] showed that models 55–59 in the Velez Data

are the most difficult models to learn. They have the weakest

broad-sense heritability (0.01) and a minor allele frequency of 0.2.

These models are arguably most like relationships we might find in

nature. ROC curves concerning only these models appear in

Figure 7. Although the curves for the posterior probability are not

that much worse than when we consider all models, the ones for

the p-value are substantially worse except when the sample size is

1600. The worst possible ROC curve is a straight line from (0,0) to

(1,1). The p-value ROC curve when the sample size is 200 is not

much better than that line.

We can perhaps apply different corrections to different sized

models and stay in the framework in which the correction is

applied by arguing that 1-SNP models, 2-SNP models, and 3-SNP

models are different families of models and we should apply

different corrections for each of these families. Since there were 20

SNPs total in the simulations, we applied the Šidák correction

using 20 for 1-SNP models,
20

2

� �
~190 for 2-SNP models, and

20
3

� �
~1140 for 3-SNP models. The resultant curves appear

with a dotted line in Figure 7. Although we have improved the

results, they are still not as good as those for the posterior

probability. Also, if we did a study with a different number of

SNPs, we would need to apply a different correction, and we

would expect to obtain different results. On the other hand, the

BNPP model suggests using the same prior probabilities across all

agnostic studies.

The average times to compute the posterior probabilities and

the p-values for all one to three SNP models were 1.8 seconds and

0.7 seconds respectively.

Real Data
Alzheimer’s Data set. Reiman et al. [3] analyzed a GWAS

late onset Alzheimer’s disease (LOAD) data set on 312,317 SNPs

from an Affymetrix 500K chip, plus the measurement of a locus in

the APOE gene, which is known to be predictive of LOAD. The

data set consists of three cohorts containing a total of 1411

participants. Of the 1411 participants, 861 had LOAD and 550

did not. In addition, 644 participants were APOE e4carriers, who

carry at least one copy of the APOE e4 genotype and 767 were

APOE e4 non-carriers. See http://www.tgen.org/neurogenomics/

data concerning this data set. Reiman et al. found the APOE gene

is significantly associated with LOAD, the GAB2 gene is not

significantly associated with LOAD, the GAB2 gene is significantly

associated with LOAD in APOE e4 carriers, and the GAB2 gene is

not significantly associated with LOAD in the APOE e4 non-
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carriers. These results indicate that APOE and GAB2 may interact

epistatically to affect LOAD. Using these same data, we computed

the posterior probability of each locus being associated with

LOAD (1-locus models), and the posterior probability of each

locus together with APOE being associated with LOAD (2-locus

models).

The average posterior probability of all 1-locus models was

2:85|10{5 for the individual SNP prior equal to 0.0001, and

9:18|10{6 for that prior equal to 0.00001. Furthermore, the

numbers of models (loci) with posterior probabilities less than

0.01 were respectively 312,301 and 312,273 for the two priors.

Figure 8 shows bar charts depicting the results concerning the

remaining loci. Table 3 shows the loci in the 10 most probable

models. APOE has a posterior probability of ,1, regardless of the

prior, as does SNP rs41377151. SNP rs41377151 is on the

APOC1 gene, which is in strong linkage disequilibrium with APOE

and for which previous studies have indicated that they predict

LOAD equally well [34]. The 3rd most probable locus is

rs1082430, which is on the PRKG1 gene. There are a number of

previous studies associating this gene with LOAD [35,36]. Of the

seven remaining probable loci, there is some previous evidence

linking four of them to LOAD [37].

As mentioned in Supporting Information S1, as more genome-

wide association studies are carried out we will better be able to

assess appropriate priors. These results indicate that 0.00001 may

be more appropriate than 0.0001 since the latter prior resulted in

fairly high posterior probabilities for three SNPs that have no

known previous association with LOAD; nonetheless, these might

be valid predictors of LOAD that have not been appreciated

previously.

The average posterior probability of all 2-locus models, in which

one of the loci was APOE, was 1:05|10{4 for the individual SNP

prior equal to 0.0001 and 1:41|10{5 for that prior equal to

0.00001. Furthermore, the numbers of models with posterior

probabilities less than 0.01 were respectively 312,267 and 312,028

for the two priors. Figure 9 shows bar charts depicting the results

concerning the remaining models. Table 4 shows the loci in the

ten most probable models. Eight of those loci are SNPs located on

the GAB2 gene. The prior probability of a 2-SNP model is

6610210 when the individual SNP prior is 0.0001 and 6610212

when that prior is 0.00001 (See Supporting Information S1). We

see from Table 4 that the posterior probabilities of 2-locus models

containing APOE and a GAB2 SNP are much greater than these

prior probabilities. On the other hand, the 1-locus models

containing GAB2 SNPs had posterior probabilities about equal

to their prior probabilities. These results together indicate GAB2

by itself does not affect LOAD, but that GAB2 interacts with APOE

to affect LOAD.

The two loci in the top ten 2-locus models that are not on GAB2,

namely SNPs rs6784615 and rs12162084, are among the 10 most

probable 1-locus models (see Table 3). These results together

indicate that each of these SNPs may affect LOAD independently

of APOE. As indicated in Table 3, previous studies have associated

these SNPs with LOAD.

Another interesting result is that APOE and rs41377151 (the two

loci with posterior probabilities about equal to 1 in Table 3), when

considered together, had posterior probabilities of 1:25|10{4

and 1:25|10{5 for the individual SNP priors of 0.0001 and

0.00001 respectively. This result indicates that the model

containing both loci is incorrect. As mentioned above, SNP

Table 1. The posterior probability results for the simulated data sets.

prior
probability

sample
size

times true model
was highest

avg. posterior probability
of true models

avg. posterior probability
of best false models

avg. posterior probability
of all false models

0:00001 200 2783 0:2009 4:5|10{4 4:5|10{7

0:00001 400 4265 0:4555 0:0019 1:72|10{6

0:00001 800 5433 0:6502 0:0053 4:62|10{6

0:00001 1600 6191 0:8128 0:0069 5:72|10{6

0:0001 200 3135 0:2651 0:0036 3:85|10{6

0:0001 400 4549 0:5024 0:0095 9:27|10{6

0:0001 800 5580 0:6910 0:0136 1:32|10{5

0:0001 1600 6298 0:8351 0:0134 1:25|10{5

The 1st column shows whether the smaller or larger priors were used; the 3rd column shows the number of times (out of 7000 data sets) the true (i.e., the data-
generating) model had the highest posterior probability; the 4th column shows the average posterior probability of the true models; the 5th column shows the average
posterior probability of the most probable false models (in each of the 7000 data sets); and the last column shows the average posterior probabilities of all false models.
doi:10.1371/journal.pone.0022075.t001

Table 2. The p-value results for the simulated data sets.

sample size avg. p-value of true models avg. p-value of best false models avg. p-value of all false models

200 0:0605 0:0026 0:478

400 0:0271 0:0011 0:4829

800 0:0083 3:92|10{4 0:486

1600 0:0012 7:87|10{5 0:487

The values are like those in Table 1 except they concern the p-values obtained using Pearson’s chi-square test.
doi:10.1371/journal.pone.0022075.t002
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rs41377151 is on the APOC1 gene, and previous investigations

have shown that APOE and APOC1 are in linkage disequilibrium

and each of them predicts LOAD as well as the other [34].

However, we know of no previous study substantiating that the

two loci identify the same single causal mechanism of LOAD. This

result could not have been obtained with a method that only

considered the null hypothesis that the two loci together are not

associated with LOAD, and the alternative hypothesis that they

are. For example, using Pearson’s chi-square test, we obtained p-

values all equal to ,0 for APOE alone, rs41377151 alone, and

APOE and rs41377151 together (the 2-locus model). The BNPP

determined that the 2-locus model is improbable because it also

evaluated the competing hypotheses that only one locus is directly

causative of LOAD. To learn that the 2-locus model is not

significantly better than the 1-locus model using commonly

applied frequentist statistics, we would need to perform an analysis

such as stepwise regression or regression on the two loci followed

by an investigation of the coefficients.

The three interesting results just discussed (the first concerning

GAB2, the second rs6784615 and rs12162084, and the third

rs41377151) follow from our computing the posterior probabilities

of all 1-locus models and all 2-locus models containing APOE. It

was not necessary to suspect any of them ahead of time or perform

a focused analysis.

The running times were 196 seconds and 193 seconds to

investigate all 312,318 1-locus models using individual SNP priors

0.0001 and 0.00001, respectively. The corresponding running

times to investigate all 2-locus models containing APOE were

593 seconds and 584 seconds.

Breast Cancer Data set. Hunter et al. [1] conducted a

GWAS concerning 546,646 SNPs and breast cancer as part of

the National Cancer Institute Cancer Genetic Markers of Susceptibility

(CGEMS) Project. (see http://cgems.cancer.gov/.) They deter-

mined the significance of each SNP using logistic regression with

two degrees of freedom. Two of the six most significant SNPs were

on the FGFR2 gene. Furthermore, two other FGFR2 SNPs were

among the 16 most significant SNPs. Previously, it was known that

FGFR2 is amplified and overexpressed in breast cancer [38,39].

Furthermore, a large, three-stage GWAS of breast cancer had

identified SNPs in FGFR2 as the strongest of its associations [2].

Figure 6. ROC curves concerning the posterior probabilities when the prior is 0.00001 and the p-values for the simulated data sets.
The curve for the posterior probability is a solid line, while the one for the p-values is a dashed line. 1-specificity is on the x-axis and the sensitivity is
on the y-axis.
doi:10.1371/journal.pone.0022075.g006
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Figure 7. ROC curve concerning the posterior probabilities when the prior is 0.00001 and the p-values for models 55–59. The curve
for the posterior probability is a solid line, the one for the p-value is a dashed line, and the one for the p-value with the Šidák correction is a dotted
line. 1-specificity is on the x-axis and the sensitivity is on the y-axis.
doi:10.1371/journal.pone.0022075.g007

Figure 8. Bar charts showing the number of 1-locus models in each posterior probability range. The posterior probability is that of the
model in which a single locus is associated with LOAD.
doi:10.1371/journal.pone.0022075.g008
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Based on their results and these previous findings, Hunter et al. [1]

investigated FGFR2 in three additional studies and found further

support for an association of FGFR2 with breast cancer.

Using this same GWAS data set, we computed the posterior

probability of all 1-locus models using the agnostic individual SNP

priors of 0.00001 and 0.0001 and the informative priors of 0.01 and

0.1. The average posterior probability of all 1-locus models was

3:81|10{7 for the prior equal to 0.00001 and 3:78|10{6 for the

prior equal to 0.0001. Furthermore, the numbers of models (loci)

with posterior probabilities less than 0.01 were respectively 546,645

and 546,637 for the two priors. Table 5 shows results concerning the

ten most probable models. Columns 2–5 show posterior probabil-

ities while Columns 6 and 7 show p-values and Sidák-corrected p-

values. The six most significant SNPs discovered by Hunter [1] are

in our ten most probable models. These are the SNPs for which we

show p-values, which were obtained from [1]. However, we

performed the Sidák-correction as this was not done in [1].

If we consider a result significant based on the Šidák correction,

no result would be close to significant and the findings in this study

would not support any of the SNPs being predictive of breast

cancer. Given the considerable prior knowledge concerning

FGFR2, we can follow a practice established in Wacholder et al.

[12] of assigning a prior probability of 0.01 to 0.1 to an FGFR2

SNP. Using even the smaller of these priors, our Bayesian analysis

of these data strongly supports that FGFR2 is associated with breast

cancer. Hunter et al. [1] drew a similar conclusion without

performing a formal analysis involving priors. We had no prior

belief that SNP rs10510126 was associated with breast cancer, and

Hunter et al. [1] did not discuss this SNP further, even though it

had the smallest p-value. However based on our priors for an

agnostic search, the posterior probability of this SNP is between

0.0118 and 0.1185, and is much larger than any of the other

posterior probabilities. Based on this result and the utility of

further analysis (see the Conclusions section), this SNP appears to

warrant additional study.

Besides the three FGFR2 SNPs, three other SNPs in the top ten

have been previously associated with breast cancer [40,41]. See

Table 5.

A Comparison to the FPRP. Kuschel et al. [42] investigated

16 SNPs in seven genes involved in the repair of double-stranded

DNA breaks and breast cancer in a case-control study involving

2200 cases and 1900 control subjects. Using standard significance

testing, they found two polymorphisms in XRCC3 and one

polymorphism in each of XRCC2 and LIGA to be the most

significant. They also performed a haplotype analysis investigating

the effect of the genetic variants in the XRCC3 gene on breast

cancer. Wacholder et al. [12] analyzed these same data using the

FPRP method. Statistical power in their analysis was the power to

detect an odds ratio of 1.5 for the homozygote with the rare

genetic variant and an odds ratio of 1.0 for the homozygote with

the common variant. Based on previous findings [40,41],

Wacholder et al. [12] assigned a prior range of 0.01 to 0.1.

We analyzed these same data using the BNPP algorithm to

obtain the posterior probabilities of the models. Table 6 shows the

results. The last two columns show posterior probabilities of

association with breast cancer; to make comparisons easier, we

show 1-FPRP in columns 3 and 4. The p-values in the second

column were computed using the chi-square test with two degrees

of freedom.

The FPRP and BNPP exhibit similar results concerning the four

SNPs and the haplotype, however, the results for BNPP are more

Table 3. Results concerning the 10 most probable 1-locus
models in the LOAD study in [3].

locus
posterior probability
range

previous LOAD
association

APOE (1, 1) Yes

rs41377151 (1, 1) Yes

rs10824310 (0:124, 0:586) Yes

rs4356530 (0:086, 0:485) No

rs17330779 (0:066, 0:416) Yes

rs6784615 (0:048, 0:335) Yes

rs10115381 (0:027, 0, 222) No

rs12162084 (0:027, 0:217) Yes

rs4862146 (0.024,0.192) No

rs249153 (0.017,0.152) Yes

doi:10.1371/journal.pone.0022075.t003

Figure 9. Bar charts showing the number of models in each posterior probability range. The posterior probability is that of the 2-locus
model in which each locus together with APOE is associated with LOAD.
doi:10.1371/journal.pone.0022075.g009
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conservative. Recall that a particular value of the odds ratio (1.5)

was used for statistical power in the case of the FPRP. A larger

value would result in smaller posterior probabilities. The BNPP

makes no assumptions about a statistic such as the odds ratio; it

only conditions on the models being true. Note that the posterior

probabilities (using both the FPRP and BNPP) for the LIG4 SNP

are somewhat larger than those for XRCC2 SNP even though the

latter SNP has a smaller p-value. Wacholder et al. [12] discuss how

this result may be due to the fact that there is very little data

concerning the rare homozygote in the case of the XRCC2 SNP.

A Decision Analytic Approach to Using the BNPP
The question remains as to what to with BNPP results. In an

agnostic GWAS investigation the prior probabilities are ordinarily

very low. So, given the limited number of samples in current

GWAS data sets, often the posterior probabilities of even our most

probable models are not very high. For example, consider the

result in Table 5 that the posterior probability of rs10510126 being

associated with breast cancer is either 0:0118 or 0:1185 depending

on whether the prior probability is 0:00001 or 0:0001. The

average of these values, namely 0:0652, can be used to represent

our posterior belief in the validity of this association. This value is

not very high, and so one may ask whether it is significant. In

general, statistics cannot tell us whether a result is significant; it can

only change our belief. It has become a controversial practice by

some to consider a p-value of 0:05 or smaller to be significant

largely because of R.A. Fisher’s [43] statement in 1926 that ‘‘it is

convenient to draw the line at about the level at which we can say:

Either there is something in the treatment, or a coincidence has

occurred such as does not occur more than once in twenty trials.’’

However, as has been often discussed, there is nothing special

about the value 0:05 for a p-value that enables a dichotomous

announcement, just as there is nothing special about a particular

posterior probability.

The value 0:0652 represents our belief concerning the truth of

the model based on our knowledge concerning the model,

namely our prior belief and the data. Although we cannot

dichotomously announce whether the value is significant, we

can use it to make a decision about what to do. We should

report the finding concerning model M if the expected utility of

not reporting M is less than the expected utility of reporting M.

Let UTD be the utility of a true discovery, which is the utility of

reporting a true model, UFD be the utility of a false discovery,

which is the utility of reporting a false model (and which is

therefore negative), UTND be the utility of a true non-discovery,

which is the utility of not reporting a false model, and UFND be

the utility of a false non-discovery, which is the utility of not

reporting a true model (and which is therefore negative). We

should report model M if

UFND(P(MjData)zUTND(1{(P(MjData))

vUTD(P(MjData)zUFD(1{(P(MjData))

or

UTND{UFD

UTD{UFND

v

P(MjData)

1{P(MjData)
~Odds(MjData): ð5Þ

In the current analysis, Odds(MjData)~0:0652=(1{0:0652)~
0:0697. So we should report the finding (and therefore investigate

the model further) if (UTND{UFD)=(UTD{UFND)v0:0697.

If we take this decision-analytic approach to using the BNPP, we

conclude that it provides researchers with a useful tool for guiding

how they should proceed based on their findings.

Table 5. Results concerning the ten most probable models in the breast cancer study in [1].

SNP prior = 0.00001 prior = 0.0001 prior = 0.01 prior = 0.1 p-value Šidák previous BC association

rs10510126 0.0118 0.1185 0.9967 0.9992 2:4|10{6 0.7307 No

rs17157903 0.0031 0.0306 0.9693 0.9968 8:8|10{6 0.9919 Yes

rs2420946 (FGFR2) 0.0022 0.0218 0.9570 0.9955 1:5|10{5 0.9997 Yes

rs1219648 (FGFR2) 0.0021 0.0209 0.9552 0.9953 1:2|10{5 0.9986 Yes

rs7696175 0.0013 0.0131 0.9298 0.9925 1:5|10{5 0.9997 Yes

rs197275 0.0012 0.0123 0.9256 0.9920 Not Avl. Not Avl. No

rs12505080 0.0012 0.0123 0.9255 0.9920 8:1|10{6 0.9881 No

rs210739 0.0011 0.0114 0.9204 0.9914 Not Avl. Not Avl. Yes

rs10779967 0.0011 0.0113 0.9194 0.9913 Not Avl. Not Avl. No

rs2981579 (FGFR2) 0.0008 0.0083 0.8933 0.9882 Not Avl. Not Avl. Yes

Columns 2–5 show posterior probabilities for various priors, while Columns 6 and 7 shows p-values (obtained from [1]) and Sidák-corrected p-values.
doi:10.1371/journal.pone.0022075.t005

Table 4. Results concerning the ten most probable 2-locus
models, where one locus is APOE, in the LOAD study in [3].

locus posterior probability range GAB2

rs1007837 (0:266, 0:784) Yes

rs7101429 (0:214, 0:731) Yes

rs901104 (0:201, 0:715) Yes

rs4291702 (0:139, 0:617) Yes

rs4945261 (0:144, 0:564) Yes

rs12162084 (0:144, 0:563) No

rs7115850 (0:108, 0:547) Yes

rs10793294 (0:099, 0:523) Yes

rs2450130 (0:088, 0:491) Yes

rs6784615 (0.081, 0.462) No

doi:10.1371/journal.pone.0022075.t004
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Wakefield [13] proposed a formula similar to Equation (5), but

only considered the UFD and the UFND. That is, the utilities of a

true discovery and of a true non-discovery were not factored into

the decision.

Discussion

We identified four difficulties with many current methods for

computing the posterior probability of a model analyzed using a

GWAS data set. Most importantly, they only consider a null

hypothesis H0 and an alternative hypothesis H1. So, they cannot

handle a complex multi-locus hypothesis which has several

competing hypotheses. Yet it is becoming increasingly common-

place to investigate multi-locus hypotheses. We developed the

BNPP method which enables us to compute the posterior

probability of such hypotheses, and which also attends to the

other difficulties. We illustrated its effectiveness by applying it to

both simulated and real data sets. We showed how the BNPP can

be used to obtain a decision analytic solution as to when to report

a finding.

The greatest difficulty in most Bayesian analyses is arguably the

assessment of prior probabilities. The early rejection and now the

slow acceptance of the Bayesian approach has been due in large

part to the perceived arbitrary nature of these assessments. For

example, in 1921 R.A. Fisher [44] stated that ‘‘The Bayesian

approach depends upon an arbitrary assumption, so the whole

method has been widely discredited.’’ However, the Bayesian

approach does provide an elegant and general solution to the

multiple hypothesis testing problem. Let p1 denote the prior

probability that the model is correct. Wakefield [13] points out

that ‘‘as more genome-wide association studies are carried out

lower bounds on p1~1{p0 will be obtained from the confirmed

‘hits’ - it is a lower bound since clearly many non-null SNPs for

which we have low power of detection will be missed.’’ We agree

that in time results will help us to determine priors. However, one

avenue of research that builds on the results presented here, would

be to hasten this process by performing a comprehensive literature

search to investigate current beliefs concerning agnostic priors.

Supporting Information S1 proposes initial prior probabilities

based on beliefs reported in two articles.

The BNPP was designed for the purpose of flagging SNPs for

further investigation; that is, it is intended to compute the posterior

probability of a model that was already discovered or conjectured.

However, as mentioned at the beginning of the Methods section,

the BNPP is also a promising technique for loci-disease association

discovery. Indeed, in order to illustrate the effectiveness of the

BNPP we showed results in which it was used for discovery. Future

research can further investigate its discovery capability and

compare its performance to other related discovery methods such

as those appearing in [10,24,26–28].

An immediate plan we have for using the BNPP is the following.

We will expand our previous work on discovery to develop a

system that outputs likely one to five SNP models in the first stage.

The BNPP will then be used in the second stage to compute the

posterior probability of each model consisting of a subset of the

SNPs from each of these models. The most probable models will

be reported. This method will be compared to using the BNPP

directly for discovery.

Supporting Information

Supporting Information S1 Assessing Prior Probabilities.
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