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Abstract. We present a novel approach to the problem of detecting
multivariate statistical differences across groups of data. The need to
compare data in a multivariate manner arises naturally in observational
studies, randomized trials, comparative effectiveness research, abnormal-
ity and anomaly detection scenarios, and other application areas. In such
comparisons, it is of interest to identify statistical differences across the
groups being compared. The approach we present in this paper addresses
this issue by constructing statistical models that describe the groups
being compared and using a decomposable Bayesian Dirichlet score of the
models to identify variables that behave statistically differently between
the groups. In our evaluation, the new method performed significantly
better than logistic lasso regression in indentifying differences in a variety
of datasets under a variety of conditions.

1 Introduction

There are many circumstances in which data collected from different sources are
similar in some respects, but nonetheless differ in ways that are interesting to
report. Such circumstances arise naturally in observational studies, where, for
example, a clinical researcher may observe a difference in the prevalence of a
condition between two groups of patients and would like to explore the reasons
behind the difference; in randomized trials, where we might be interested not
only in the effectiveness of a treatment but also whether its effects are particular
to subgroups of the subjects and if so, what the relevant contextual relationships
are; in comparative effectiveness research, where an observed difference between
two clinical treatment approaches is to be explained; and other application areas.
Identifying patterns of differences is also useful in abnormality and anomaly
detection scenarios, where data on a potentially anomalous population of samples
are compared to a “normal” baseline population.

We approach the problem of identifying interesting patterns of differences
from a statistical standpoint, where given a pair of data groups over a vector
of discrete random variables we would like to identify variables that exhibit
statistical differences. A variable might have a different marginal distribution in
the two groups and/or a different conditional distribution when conditioning on
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the values of some of the other variables. We present and evaluate a method for
identifying differences in both of those categories.

The method accomplishes this task by building models for each of the groups
and for both groups, scoring local differences in distribution by comparing how
well these alternative parameterizations fit the data locally, and using these local
scores to obtain a score of how different the two groups are as a whole. In this
paper, the performance of our method for identifying differences between groups
at the variable-level is evaluated using data based on four UCI Machine Learning
Repository data sets [1].

2 Background

We review some general background literature about distribution comparison
followed by background relevant to Bayesian networks, which is the model that
our method uses, with a particular focus on learning models from data and the
Bayesian Dirichlet score which we use.

2.1 Comparing Distributions

There are various statistical methods that are applicable to the problem of
identifying differences across a pair of groups. The statistical approach that
most closely relates is that of contrast set mining. Bay and Pazzani [2] present
contrast-set mining as the discovery of joint variable-value assignments that
have different levels of support in different groups. The approach taken parallels
association-rule mining in that the space of possible joint variable-value assign-
ments is searched to maximize a score (in association-rule mining, this score is
the lift of a rule, while in contrast-set mining a chi-square test is used). The main
challenge in contrast-set mining is the search of the exponentially large space of
possible sets (joint variable-value assignments), and much of the literature is ded-
icated to discussing heuristics and pruning rules to make the search feasible. The
output of contrast-set mining is the list of joint variable-value assignments (the
sets) which have differing support across groups, ranked by the extent of that
difference and tested for significance. Novak et al. [11] summarize further litera-
ture on contrast-set mining and its relation to association-rule mining, emerging
pattern mining, and subgroup mining. While these approaches address a similar
task to that of our method, these are all value-based approaches. Their task is
to identify specific value ranges in which the differences between the groups are
most pronounced. In contrast, our approach is variable-based, meaning that we
identify variables the distributions of which are different across the groups.

The variable-based nature of our approach bears some similarity to tradi-
tional statistical methods. There are multiple traditional statistical tests that
are designed to compare distributions. For categorical variables, the Chi-Square
test is applicable, it tests whether two groups are independent. This can be used
to determine if a variable has different distributions across two groups by test-
ing whether it is dependent on the group variable. For continuous variables, the
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Kolmogorov-Smirnov test is often used to determine equality of distributions.
Note that these tests are univariate, and cannot therefore be used to compare
two multivariate groups of data directly. There are other measures of distribution
differences that are multivariate in nature, such as Hotelling’s T-squared test,
mutual information, or Kullback-Leibler divergence. These measures are mul-
tivariate, but they do not allow for examining the contributions of differences
in individual variables to the overall measure of difference across the groups.
The approach we present bridges this gap by providing both a measure of over-
all difference, as well as a breakdown into contributions in the differences of
distributions of individual variables.

2.2 Bayesian Networks

As mentioned above, the approach we present relies on building statistical models
for the data groups to be compared. In particular, the model we construct is a
Bayesian Network (BN). A BN over the variables X = (X1, . . . , Xn), where each
variable Xi is discrete and takes Ki values, consists of a directed acyclic graph
(DAG) where each node represents a variable Xi and each node is associated
with a conditional probability table (CPT) defined by a set of parameters

θijk = P (Xi = xik|Πi = πij) (1)

where xik represents the k-th value Xi takes and πij represents the j-th config-
uration of Xi’s set of parents Πi [8].

In order to obtain a BN from data, the DAG structure is needed. In some
cases the structure or elements of the structure for a given domain may be
known, but often the structure must be learned from data. Daly et al. [5] pro-
vide an extensive review of BN structure learning and divide existing methods
into constraint-based methods, where conditional independencies (CI) in the
data are used to constrain the structure; and score search, where the space of
BN structures is searched for a structure that has the best score according to
some scoring criterion. Constraint-based methods use CIs obtained from statis-
tical tests on the data to eliminate possible arcs in the network structure, such
as the the PC algorithm by Spirtes and Glymour [13], for example. Score-based
techniques seek to optimize some score function of the graph based on the data.
The space over which many methods in this category search is that of possi-
ble DAGs, which is combinatorial in the number of variables, and the task of
optimizing the score is NP-hard in general [3]. Algorithms that feasibly search
the entire space of DAGs in the case of up to approximately 30 variables include
dynamic programming approaches [10,12] and an application of A∗ search to the
space of DAGs [14]. For data with more variables, many search methods apply
various heuristics and do not perform an exhaustive search of the space; most
commonly these methods employ some sort of greedy search strategy [5].

In our implementation we used greedy-thick-thinning, an algorithm described
but not named in [8], which maximizes the K2 score [4] in a greedy fashion by
starting with an empty graph, adding arcs that most increase the score until no
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more arc additions can increase the score, and then performs arc removals that
increase the score most until no more removals increase the score. Any score
search strategy can be used with our method.

2.3 Bayesian Dirichlet Scores for Bayesian Networks

In this work we use Bayesian Dirichlet (BD) scoring in order to leverage both
the mathematical properties of the score and its statistical interpretation. The
BD score is motivated by the search for a maximum a posteriori (MAP) model,
a graph structure M that is most probable given the data D and prior belief.
Directly computing a posterior P (M|D) for the structure is an intractable task;
however, we can show that it is proportional to an easily computable quantity.
From Bayes’ rule we have that P (M|D) ∝ P (M)P (D|M), where P (M) is a
prior for the graph structure. Often the graph structure prior is assumed to
be uniform, an assumption that we make in this paper, but one that can be
easily relaxed, and the goal becomes to maximize P (D|M), which is a marginal
likelihood. Under the assumptions of global and local parameter independence,
and parameter modularity [9], the marginal likelihood for the full model P (D|M)
is the product of local marginal likelihoods:

P (D|M) = EΘ|M
n∏

i=1

Ji∏

j=1

P (D|Θij ,M) =
n∏

i=1

Ji∏

j=1

EΘij |MP (D|Θij ,M). (2)

Here we treat BN parameters as random variables with a prior distribution
rather than as point values; that is, the particular value for a network parameter
θijk is just a point in the continuum of possible values that a random variable
Θijk takes. In the context of a BD score such as K2 [4] or the BDeu score [9],
the prior distribution of Θij = (Θij1, . . . , ΘijKi

) is Dirichlet with parameters
αij = (αij1, . . . , αijKi

). For a given structure, the distribution of a variable
Xi given a parent configuration πij is Dirichlet-multinomial, with a closed-form
marginal likelihood

EΘij |MP (D|Θij ,M) =
Γ (αij·)

Γ (αij· + Nij·)

Ki∏

k=1

Γ (αijk + Nijk)
Γ (αijk)

(3)

where Ji is the number of configurations of the parent set Πi, αij· :=
∑Ki

k=1 αijk,
Nijk is the number of samples in the data for which Xi = xik and Πi = πij ,
and Nij· :=

∑Ki

k=1 Nijk. Different choices of the Dirichlet parameter priors lead
to different BD scores: for example, the K2 score is obtained from using uniform
priors (all αijk = 1), and the BDeu score is obtained from using priors with
αijk = α∗

JiKi
where α∗ is the Equivalent Sample Size (ESS) hyperparameter.

Having outlined the differences of the proposed method with common
approaches to the statistical comparison of data and reviewed the relevant back-
ground regarding about BNs and the BD score, we next describe our method.
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3 Method

Consider two groups of data D1 and D2 over the same set of variables X =
(X1, . . . , Xn), and denote the concatenation of D1 and D2 by D∪. If D1 and
D2 are not different in a statistical sense, they follow the same distribution,
which is therefore the distribution of D∪. Let M1, M2, M∪ denote maximum
a posteriori (MAP) models within some space of models for the data in D1,
D2, and D∪ respectively. In the case where D1 and D2 are the same, we expect
that P (D1|M1) × P (D2|M2) ≤ P (D∪|M∪) in the large sample limit, since
modeling the two groups as governed by independent distributions does not
yield a better fitting model than when the groups are modeled as coming from
the same distribution. In the case where D1 and D2 are statistically different,
we expect P (D1|M1) × P (D2|M2) > P (D∪|M∪) in the large sample limit.

Let us extend this idea from the model level to the parameters of the models,
an extension that can be applied when the models have the following properties:
the distribution of a variable Xi is defined by a vector of parameters θi, para-
meters θi are drawn from a distribution Θi, and parameter independence holds,
such that, Θi ⊥ Θi′ for i �= i′. BNs with Dirichlet parameter priors have these
two properties. In order to compare parameters across models, the parameters
compared must match in meaning. First we will consider the case where M1,
M2, and M∪ have the same structure, and therefore, have parameters that can
be perfectly matched across models; next we will extend the approach to the
more general case of structures that have consistent ordering, where matching
happens between sets of parameters.

In the case where M1, M2, and M∪ have the same structure, we can consider
each Dirichlet-multinomial component of the full model in isolation. Consider
comparing the marginal likelihood of modeling θij = P (Xi|πij) independently
across the two groups of data

Tij = P (D1,D2|Θ(1)
ij ⊥ Θ

(2)
ij ) =

(
EΘij |M1P (D1|Θij ,M1)

) (
EΘij |M2P (D2|Θij ,M2)

)
(4)

to the marginal likelihood of modeling θij as being the same for both groups

Sij = P (D1,D2|Θ(1)
ij = Θ

(2)
ij ) = EΘij |M∪P (D∪|Θij ,M∪). (5)

The ratio Tij/Sij of these quantities is a Bayes factor that we can use to quantify
the difference in the distribution Xi|πij across the two groups of data.

Next, let us consider the more general case where the structures of M1, M2,
and M∪ differ, but have consistent ordering, meaning that if Xi is an ancestor
of Xj in any one of the networks, Xj cannot be an ancestor of Xi in any other
network. Note that constraining the ordering of the variables in a BN does not
constrain the space of joint probability distributions that can be represented. In
our evaluation we enforce that constraint by learning M∪ without order con-
straints and use the topological order of the learned network to constrain M1 and
M2. There are many other possible approaches to enforcing these constraints,
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ranging from obtaining an order a priori to minimizing the number of explicit
constraints using an iterative process. Exploring these alternative approaches is
outside of the scope of this paper.

In this more general setting, the parent sets of a variable Xi can turn out to
be different in the three models, and may have some partial overlap. To handle
such overlap, we introduce a new index η as follows: Denote the parent sets of Xi

in M1, M2, and M∪ by Π
(1)
i , Π

(2)
i , Π

(∪)
i respectively. Let J

(·)
i be the number

of possible configurations of Π
(·)
i , and enumerate those configurations by j =

1, . . . , J
(·)
i . Let Π∩

i denote Π
(1)
i ∩Π

(2)
i ∩Π

(∪)
i . Let Hi be the number of possible

configurations of Π∩
i and enumerate those configurations by η = 1, . . . , Hi. For

example, suppose that in data where all variables are binary, for a variable X1

we have Π
(∪)
1 = {X2,X3,X4}, Π

(1)
1 = {X2,X3,X5}, and Π

(2)
1 = {X2,X4,X5}.

Then we have that Π∩
1 = {X2}, and there are two possible configurations η = 1

and η = 2 for this set, corresponding to x21 and x22. Let J ·
i(η) indicate the subset

of parent configurations j ∈ {1, . . . , J ·
i} that are consistent with configuration η.

That is, for example, if η = 1 represents x21 in our example, then J∪
1 (1) is the

set of j-values that correspond to the set of parent assignments {(x21, x31, x41),
(x21, x31, x42), (x21, x32, x41), (x21, x32, x42)}.

We can then then compare the marginal likelihood of modeling the entire
parameter set indexed by η as independent

Siη = P (D1,D2|Θ(1)
iη ⊥ Θ

(2)
iη ) =

=

⎛

⎝
∏

j∈J1
i (η)

EΘij |M1P (D1|Θij ,M1)

⎞

⎠

⎛

⎝
∏

j∈J2
i (η)

EΘij |M2P (D2|Θij ,M2)

⎞

⎠(6)

to the marginal likelihood of modeling the parameter set indexed by η as identical

Tiη = P (D1,D2|Θ(1)
iη = Θ

(2)
iη ) =

∏

j∈J∪
i (η)

EΘij |M∪P (D∪|Θij ,M∪). (7)

In the case of identical structures, Siη and Tiη are equivalent to Sij and Tij .
One interesting and useful task is the detection of differences in the distribu-

tions when only a few parameters (out of many) differ between the two groups.
We can use the marginal likelihoods derived above to obtain a measure that is
sensitive to the presence of changes in only some conditional distributions of a
variable Xi, while other conditional distributions may indeed be identical across
groups. Particularly, we can compute the posterior odds of seeing a difference in
Xi as follows:

Oi =
1 − P (Θ(1)

i = Θ
(2)
i |D1,D2)

P (Θ(1)
i = Θ

(2)
i |D1,D2)

=

(
Hi∏

η=1

1

P (Θ(1)
iη = Θ

(2)
iη |D1,D2)

)
− 1. (8)

Since the η-level is defined to be the finest level at which parameters can be
compared across the two groups, we consider only the two cases of Θij either
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being independent for the two groups or being identical for the two groups.
By introducing priors for these two cases we are able to compute Eq. (8). Let
piη = P (Θ(1)

iη = Θ
(2)
iη ) denote the prior probability that the distribution of Xi|πiη

is the same across the two groups. Then we have that

1

P (Θ(1)
iη = Θ

(2)
iη |D1,D2)

=
Siη(1 − piη) + Tiηpiη

Tiηpiη
. (9)

Plugging Eq. (9) into Eq. (8) gives

Oi =

(
Hi∏

η=1

(
Siη(1 − piη)

Tiηpiη
+ 1

))
− 1. (10)

In the absence of information that would lead one to expect differences in
some parameters more than in others, the priors piη can be related to the prior
probability pi of seeing no difference in the conditional distribution of variable
Xi by the relation piη = p

1/Hi

i .
The same approach can be extended to obtain posterior odds of observing a

difference in any parameter of the model, expressed as

O =
1 − P (Θ(1) = Θ(2)|D1,D2)

P (Θ(1) = Θ(2)|D1,D2)
=

(
n∏

i=1

Hi∏

η=1

(
Siη(1 − piη)

Tiηpiη
+ 1

))
− 1. (11)

Using (11) entails that the prior for seeing no difference between the two groups
is p =

∏n
i=1

∏Hi

η=1 piη. Given such an overall prior p, a natural choice for non-
informative priors is piη = p1/(nHi): this choice of priors assumes that we are
equally and independently likely to see a difference in each variable, and equally
and independently likely to see a difference in each conditional probability dis-
tribution of each variable.

4 Evaluation

We evaluated the performance of the odds ratio Oi in Eq. 10 as a score for
detecting variable-level differences. Next we describe the baseline method against
which we compared our method and the experimental setup, followed by the
experimental results.

4.1 Baseline Method

As mentioned in the introduction, to our knowledge there is no prior work that
addresses the difference detection problem in the same manner as our approach:
a variable-based analysis, accounting for multivariate relationships, identifying
variable-level differences, and requiring no informative prior knowledge. As a
result, we chose to simulate a process often followed by analysts and researchers,
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where logistic regression models with interactions are constructed to predict a
variable Xi using candidate predictors, and the researcher would judge a predic-
tor’s relevance based on the strength of its corresponding weight.

For this purpose, we use lasso-regularized logistic regression [7], which maxi-
mizes an L1-regularized log-likelihood of a logistic model, where the strength of
the regularization is modulated by a parameter λ. The effect of regularization
is that as λ decreases from +∞, predictors enter the model (their coefficients
in the logistic model become nonzero). To detect variable-wise differences across
two pre-defined groups using lasso-regularized logistic regression, we take the
data from the two groups and add a group-indicator variable Z to the data. The
group indicator Z is a binary variable that takes the value 1 for cases coming
from one of the groups, and the value 0 for cases coming from the other group.
A regression model is built for predicting each variable Xi given all the other
data variables Xj : 1 ≤ j < i that precede it in the variable ordering (we provide
an ordering from a true generating model for the purposes of this evaluation),
the group indicator Z, and interactions of Z with each of the data variables Xj .
Non-binary variables were handled by using multinomial logistic regression for
the target and binary coding for input variables. The largest value of λ at which
a given predictor becomes nonzero can then be used as a score of how useful that
predictor is for predicting Xi. Hence, for each Xi we can use the largest λ that
corresponds to a nonzero coefficient in the logistic model for Z or an interaction
with Z as the score for seeing a difference in the distribution of Xi across groups.

4.2 Data and Experimental Setup

Since in real-world data the differences between groups of data are not known in
advance, for the evaluation we generated pairs of data groups from known dis-
tributions that are based on real-world data. We chose to learn networks from
which to generate data because publicly available BN models are overwhelmingly
diagnostic, meaning that they often contain many hidden variables, whereas we
would like to have a ground-truth model that directly relates observed variables
to each other. We picked data where all variables are categorical, since the BD
score is designed for BNs that represent multinomial distributions. In this eval-
uation we used the balance-scale, car, hayes-roth, and nursery datasets available
from the UCI Machine Learning Repository [1]. We learned a BN from the data
for each of these sets, which is referred to as the “original BN” in the following
description of the data-generation process.

We ran 72 blocks of tests, where each block is characterized by a data source
(one of the UCI Datasets), a type of perturbation, the number of perturbations,
and the number of samples per group. Each block consists of 20 group pairs,
where each pair consists of a group of samples generated from the original BN
of the data source and a group of samples generated from a perturbed BN of a
data source (a different perturbed BN is obtained for each group pair). The per-
turbed BN was obtained by performing perturbations to the original BN. There
were two categories of perturbations: parametric perturbations and structural
perturbations. A parametric perturbation was performed by uniformly randomly
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Table 1. Table of AUCs obtained from 72 blocks of tests. The first column indicates
the data source for each block, the second column indicates whether the perturbation
introduced was structural (Struct.) or parametric (Param.), and the third column indi-
cates the number of perturbations. AUCs that were statistically significantly higher at
the α = 0.05 level are shown in bold.

selecting a variable Xi to perturb, selecting for it a conditional distribution Xi|πij

to perturb, and then replacing its probability mass vector with a permutation of
itself. A structural perturbation was performed by randomly (with probability
1/2) deciding whether to remove or add an arc, and then selecting a random arc
to add (or remove) from the existing (or absent) arcs in the network. A node
(variable) is considered perturbed by a structural perturbation only if an arc
into the node is added or removed.

We provide the ordering of the variables in the generating model to the
logistic regression method so that it may take advantage of that information. We
do not provide this information to our method in the tests reported in Table 1.

4.3 Results

Table 1 shows areas under receiver operating characteristic curves (AUC) of per-
turbation detection obtained using the posterior odds Oi as compared to AUC’s
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obtained using the λ-based score from lasso-regularized logistic regression for
data group pairs generated from the respective data sources. The table also
shows the p-value for a two-tailed test of the difference between the AUCs of the
two methods, based on [6]. Of a total of 72 blocks of tests, in 53 the Oi AUC
is higher than the λ AUC. At the α = 0.05 significance level, the Oi AUC’s
are statistically significantly better than the λ AUC’s in 21 test blocks, whereas
the Oi AUC is statistically significantly worse than the λ AUC in only eight
test blocks. The p-value of a two-sided paired Wilcoxon signed rank test on the
AUCs is less than 10−4, supporting that the overall better performance of Oi is
not due to chance.

Every case where the the posterior odds performs statistically significantly
worse than the regression-based method is a case of a structural perturbation,
and we suspect that this is because perturbed structure is more difficult to
recover with no order information. In a different series of tests where we provided
order information to the posterior odds based method, of a total of 72 blocks of
tests, in 62 the Oi AUC was higher than the λ AUC. At the α = 0.05 significance
level, the Oi AUC was statistically significantly better than the λ AUC in 43
test blocks, and worse in only one block.

As is typical for statistical methods, we see better performance for data with
more samples as well as for lower-dimensional data. The results also suggest that
structural differences are easier to detect than parametric ones. We believe that
this is because a structural difference reflects a more substantial distributional
difference than a simple parametric one, since it can be expressed as a collection
of parametric differences in a network containing the removed or added arcs.
Overall, our experiments show consistently good AUC for the Oi score over the
various generated group pairs.

5 Discussion

We introduced a novel variable-based approach for identifying statistical dif-
ferences across a pair of groups. Evaluation of the approach on simulated data
showed good performance compared to a logistic lasso baseline. The data used in
the evaluation is low-dimensional because the logistic lasso baseline scales poorly
to many dimensions. The most computationally demanding step in our approach
is learning the three network structures. Consequently, our method scales to more
dimensions to the extent that the BN structure learning algorithm used with it
does. Any structure search strategy that maximizes a Bayesian Dirichlet score
is a good fit for our method.

For Bayesian networks with Bayesian Dirichlet priors, we showed how to com-
pute the posterior odds that a given variable has different distribution across the
two groups, as well as the posterior odds that the two groups are different overall.
The property that enables this is parameter independence in the BD framework.
This approach can be applied to other models as well. The distribution of a
variable in the BN formulation is simply a grouping of finer-level model parame-
ters. Hence, any model that has similar groupings of parameters in a framework
where parameter independence holds can be used with this approach.
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Identification of variable-level differences across groups of multivariate data
is useful in many application areas. The method presented here considers dif-
ferences over the sets of relationships that are present in the MAP models con-
structed for modeling the groups as independent vs. identical. Particularly, for
settings in which the typical approaches in practice tend to be univariate analy-
ses and ad-hoc exploration of relationships that are suspected to be important
a priori, we present a more systematic approach.
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