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Abstract. Algorithms for detecting anomalous events can be divided into those 
that are designed to detect specific diseases and those that are non-specific in 
what they detect. Specific detection methods determine if patterns in the data 
are consistent with known outbreak diseases, as for example influenza. These 
methods are usually Bayesian. Non-specific detection methods attempt broadly 
to detect deviations from some model of the non-outbreak situation, regardless 
of which disease might be causing the deviation. Many frequentist outbreak 
detection methods are non-specific. In this paper, we introduce a Bayesian 
approach for detecting both specific and non-specific disease outbreaks, and we 
report a preliminary study of the approach. 
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1   Introduction 

Detection of anomalous events in data has important applications in domains such as 
disease outbreak detection [1], fraud detection [2] and intrusion detection [3]. In a 
typical scenario, a monitoring system examines a sequence of data to determine if any 
recent activity can be considered a deviation from baseline behavior. These 
anomalous events can be divided into two types – those that we know about and those 
that are unexpected. As a result, algorithms within these monitoring systems can be 
classified into two categories that we will refer to as specific detection algorithms and 
non-specific detection algorithms. A robust detection system would use a combination 
of detection algorithms from both of these categories. 

Specific detection algorithms look for pre-defined anomalous patterns in the data.  
For example, in the context of disease-outbreak detection, a specific detection 
approach might examine health-care data for the onset of a particular disease, such as 
inhalational anthrax. In contrast, a non-specific detection approach would try to detect 
any anomalous events that are missed by the specific detectors. By combining these 
two approaches we might be able to obtain a hybrid approach that detects anticipated 
diseases well, while having the non-specific approach serve as a “safety net” that is 
able to detect unanticipated (and possibly never before seen) diseases. We call this 
combined approach a safety-net algorithm. In this paper, we describe a Bayesian 
safety-net algorithm for detecting disease outbreaks. While the analysis in this paper 
is basic, we can apply the fundamental ideas to develop much richer Bayesian safety-
net models and detection algorithms. 



2   Methodology 

This section introduces an example model and describes how we use the model for 
outbreak detection. Due to space limitations, we are only able to present an outline of 
the complete method. 

Let d0 represent all the diseases that Emergency Department (ED) patients can 
have in the absence of any disease outbreak in the population. Let dk denote one 
specific outbreak disease that we know about. If we assume that there are n types of 
outbreak diseases, then 1 ≤ k ≤ n. Finally, we use d* to represent any unknown or 
unexpected outbreak disease.  

 
Fig. 1. A Bayesian network showing the population-wide disease model 

The disease detection model we use is a population-wide Bayesian network model, 
as shown in Fig. 1, which represents all the people in the population (not just the ED 
patients). Let the total number of the population be N. Let i represent the index of a 
specific person in the population, where 1 ≤ i ≤ N. We use pop_dx to represent the 
values that node outbreak disease in population can take. Then pop_dx could be NOB 
(no outbreak), dk (outbreak of known disease dk) or d* (outbreak of unknown disease 
d*). The node fraction represents the fraction of the total population who have the 
outbreak disease (either dk or d*) and visit the ED. We use psi_dx to denote the values 
that node person_i disease can take, which represents the possible diseases that 
person i can have given pop_dx. For the people who do not come to the ED, we assign 
them the disease state called none. For a patient who comes to the ED, his or her 
disease state is a latent (hidden) variable.  

When pop_dx = dk (or d*), a specific person i could have disease d0, dk, d* or none. 
The probability of person i having dk (or d*) is equal to the value of the fraction node 
by the construction of that node. If pop_dx = NOB, a specific person i either has d0 or 
he/she did not come to the ED, and therefore pop_dx = none. The probability that the 
person has d0 is estimated from past ED data.  

Given the disease state of person i, as represented by psi_dx, we use psi_fd to 
model the state of a binary symptom of that person. The symptom state of a person is 
modeled using a Bernoulli distribution. It is possible to model more than one 
symptom, but for simplicity of presentation, we restrict this paper to an example that 
contains only one symptom. In particular, we consider the symptom states as being 
cough or no cough. For the patients that come to the ED, we define P(psi_df = cough | 
psi_dx = NOB) = p0, P(psi_df = cough | psi_dx = dk) = pk and P(psi_df = cough | psi_dx 
= d*) = p*. In the next section we describe how we model p0, pk and p* under 
uncertainty. 



2.1   The Disease Model 
As stated, the model represents that a person has disease state du, for 0 ≤ u ≤ n. Let pu 
denote P(psi_df  = cough | psi_dx = du). We assume that pu is distributed according to 
a Beta distribution, namely, pu ~ Beta(αu, βu). We assessed the parameters of these 
Beta distributions based on real data and expert judgments.  

2.2   The Safety-Net Model 
The example safety-net model introduced in this paper is designed to detect diseases 
that have a probability of cough, call it p*, that is not equal to p0, p1, …, pn. We will 
represent a distribution over p*. We use d- (d+) to denote a hypothetical disease that 
has a distribution of the probability of cough that is a delta function at 0 (1). 
Correspondingly, p- = 0 and p+ = 1. Consider every pair of known diseases being 
modeled, du and dv. We consider the possibility that p* is between pu and pv, for every 
u and v, such that { }+−∈ ,,1,0,, nvu L . Each such possibility, pu < p* < pv, constitutes 
one instance of the d* disease hypothesis, which we denote as duv. 

For duv we define the distribution over p* as follows. We assume that p* is 
uniformly distributed between pu and pv, and that pu and pv are distributed as Beta(αu, 
βu) and Beta(αv, βv), respectively. We stochastically sample p* according to these 
distributions to obtain a distribution over p*. 

2.3   Inference 
We wish to derive P(pop_dx | data), where data denotes the status of the symptom 
cough for every person in the population. We assume the status is either cough or no 
cough for people who come to the ED, and that it is always unknown for people who 
do not. We derive P(pop_dx | data) by deriving P(data | pop_dx), assessing 
P(pop_dx), and applying the Bayes rule. 

We derive P(data | pop_dx) by setting pop_dx to be one of d0, dk or d*, and then 
performing inference on the Bayesian network in Fig. 1. Inference is complicated by 
the fact that we have distributions over P(psi_df | psi_dx), as described in Sections 2.1 
and 2.2; thus, inference includes integrating over these distributions. 

We applied a variation of the inference method given in [4], which is polynomial 
time in the number of people who come to the ED. For the detailed description of 
inference, please see [5]. 

3   Preliminary Evaluation 
For simplicity, we will assume that the fraction node has the value 0.0001 with 

probability 1; this assumption is not necessary, although it does reduce computational 
complexity. 

3.1   Creating the Datasets 
We created 20 datasets (scenarios), assuming a population size of 100,000 people. 
Each scenario represents data on the population for one given day of interest. In the 
remainder of this section, we describe how we created a scenario. 

We sampled a Poisson distribution with mean λ = 90 to determine the number of 
people who came to the ED on the given day without any outbreak disease. For each 



of these people, we sampled their cough status using the distributions defined in 
Section 2.1.  

When simulating the presence of outbreak disease dk in the population, we 
assumed that the value of the node fraction in Fig. 1 is 0.0001. We assumed 100,000 
× 0.0001 = 10 people had dk and came to the ED. For each of these 10 people, we 
sampled from the distribution of P(psi_df = cough | psi_dx = dk) to determine their 
cough status. We then combined these 10 cases with the simulated ED cases without 
outbreak disease in order to create a complete dataset for the scenario. 

3.2   Experimental Setup 

Let du and dv be any two of the eight CDC Category A diseases [6], du ≠ dv. Table 1 
shows the experiments for one pair of du and dv, where du is the simulated outbreak 
disease. In experiment B1 (B2), there is an explicit modeling of disease du (dv), while 
in experiment A1 and A2 we also include safety-net disease d* in the model. In each 
of the four experiments, we compute the likelihood ratio (LR) P(data | outbreak) / 
P(data | non-outbreak) as given by Eq. 1. In experiment A1 (A2), the sum in Eq. 1 is 
taken over du (dv) and d*; in contrast, in experiment B1 (B2) the sum of pop_dx 
consists only of the term du (dv). For any given outbreak disease dk being modeled, we 
assumed that P(pop_dx = dk | outbreak) = P(pop_dx = d* | outbreak) = 0.5. 

Table 1.  A 2 × 2 table that summarizes the experiments. 

 A B 

1 Model d0, du, d*. 
Simulate outbreak cases from du.

Model d0, du. 
Simulate outbreak cases from du. 

2 Model d0, dv, d*. 
Simulate outbreak cases from du.

Model d0, dv. 
Simulate outbreak cases from du. 

To investigate the degree to which modeling the safety-net disease d* has an 
impact on detection performance, we made du and dv to be all possible pairs of the 
eight outbreak diseases and carried out 8 × 7 = 56 sets of experiments. In each set, we 
computed the mean RR1 and the mean RR2 over the 20 scenarios, where for a given 
scenario RR1 = LR(SB1) / LR(SA1) and RR2 = LR(SA2) / LR(SB2), where SA1 = {du, d*}, 
SB1 = {du}, SA2 = {dv, d*}, and SB2 = {dv}. Our hypothesis is that usually RR2 > RR1, 
which supports that modeling d* is doing more good than harm in detecting outbreak 
diseases. 
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4   Results and Discussion 
Recall that the distribution of P(psi_df = cough | psi_dx = dk) was assessed by a 
domain expert, for 1 ≤ k ≤ 8. We sorted the eight outbreak diseases by their 
expectations for P(psi_df = cough | psi_dx = dk) in ascending order. In Tables 2, 3 and 
4, each row represents a disease du and each column represents a disease dv. We list 
the eight diseases according to the sorted order from left to right and from up and 



down. The closer du and dv are to the diagonal, the closer are their means, and in a 
sense the closer the two diseases are in their symptomatic presentation. 

Table 2.  The mean RR2 given different du (rows) and dv (columns). 

dv 
du

small
pox 

cryptospo
-ridiosis 

early 
anthrax 

late 
anthrax asthma influenza early 

plague  
late 

plague  
small pox - 0.84 0.84 1.94 2.88 2.33 4.65 6.74 
cryptospo
-ridiosis 0.90 - 0.84 1.66 2.27 1.98 3.42 4.62 

early 
anthrax 1.05 0.97 - 1.40 1.77 1.64 2.48 3.15 

late 
anthrax 2.13 1.90 1.38 - 0.91 0.93 1.02 1.11 

asthma 2.54 2.29 1.59 0.82 - 0.84 0.87 0.91 
influenza 2.75 2.54 1.72 0.82 0.82 - 0.88 0.92 

early 
plague 2.76 2.51 1.70 0.80 0.78 0.81 - 0.84 

late 
plague 3.35 3.14 2.04 0.77 0.73 0.75 0.75 - 

Table 2 shows the mean RR2 given different combinations of du and dv. The mean 
RR2 tends to increase from the diagonal to the top right and to the bottom left corners. 
It shows that when there is an unexpected disease du present, the greater the difference 
in presentation of dv relative to du, the greater the expected benefit from modeling d*. 

Table 3.  The mean RR1 given different du. 

dv
du

small 
pox 

cryptospo
-ridiosis 

early 
anthrax 

late 
anthrax asthma influenza early 

plague  
late 

plague  
small pox - 1.21 1.21 1.21 1.21 1.21 1.21 1.21 
cryptospo
-ridiosis 1.18 - 1.18 1.18 1.18 1.18 1.18 1.18 

early 
anthrax 1.14 1.14 - 1.14 1.14 1.14 1.14 1.14 

late 
anthrax 1.15 1.15 1.15 - 1.15 1.15 1.15 1.15 

asthma 1.24 1.24 1.24 1.24 - 1.24 1.24 1.24 
influenza 1.21 1.21 1.21 1.21 1.21 - 1.21 1.21 

early 
plague 1.23 1.23 1.23 1.23 1.23 1.23 - 1.23 

early 
plague 1.34 1.34 1.34 1.34 1.34 1.34 1.34 - 

Table 3 shows the mean RR1. Since there is no disease dv involved in deriving RR1, 
every row has the same values. Table 3 shows that RR1 is quite stable at a value only 
modestly greater than 1, which provides support that when there is no unanticipated 
disease present, modeling d* only weakly degrades the detection of du. 

We performed the sign tests to calculate P-values over the null hypothesis Ho: RR1 
> RR2 versus the alternative hypothesis Ha: RR1 ≤ RR2. Table 4 shows the P-values 
given different combinations of du and dv. Notice that the P-values close to the 
diagonal are very big, so that we cannot reject the null hypothesis, while the P-values 



away from the diagonal are zeros, which rejects the null hypothesis. Table 4 provides 
support that modeling d* helps detect unanticipated diseases more than it interferes 
with detecting known diseases. 

Table 4.  A table shows the P-values given different combinations of du and dv. 

dv
du

small 
pox 

cryptospo
-ridiosis 

early 
anthrax 

late 
anthrax asthma influenza early 

plague  
late 

plague  
small pox - 0.99 0.99 0 0 0 0 0 
cryptospo
-ridiosis 0.99 - 1 0 0 0 0 0 

early 
anthrax 0.99 0.99 - 0 0 0 0 0 

late 
anthrax 0 0 0 - 0.99 0.99 0.99 0.99 

asthma 0 0 0 1 - 1 1 1 
influenza 0 0 0 1 1 - 0.99 0.98 

early 
plague 0 0 0 1 1 1 - 1 

late 
plague 0 0 0 1 1 1 1 - 

5   Conclusion and Future Work 
This paper introduced a Bayesian method for detecting disease outbreaks that 
combines a specific detection method with a non-specific method. Preliminary results 
provide support that this hybrid approach helps detect unexpected diseases more than 
it interferes with detecting known diseases. 

We plan to test this approach on real datasets and evaluate its detection 
performance using other measures, such as AMOC curves [2].  
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