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Abstract	

Precision	medicine	for	cancer	involves	identifying	and	targeting	the	somatic	genome	alterations	

(SGAs)	 that	drive	 the	development	of	an	 individual	 tumor.	Much	of	 current	efforts	at	 finding	

driver	 SGAs	 have	 involved	 identifying	 the	 genes	 that	 are	 mutated	 more	 frequently	 than	

expected	 among	 a	 collection	 of	 tumors.	 When	 these	 population-derived	 driver	 genes	 are	

altered	(perhaps	in	particular	ways)	in	a	given	tumor,	they	are	posited	as	driver	genes	for	that	

tumor.	 In	this	technical	report,	we	introduce	an	alternative	approach	for	 identifying	causative	

SGAs,	 also	known	as	 “drivers”,	by	 inferring	 causal	 relationships	between	SGAs	and	molecular	

phenotypes	at	 the	 individual	 tumor	 level.	Our	 tumor-specific	 causal	 inference	 (TCI)	 algorithm	

uses	a	Bayesian	method	to	 identify	 the	SGAs	 in	a	given	tumor	that	have	a	high	probability	of	

regulating	transcriptomic	changes	observed	in	that	specific	tumor.	Thus,	the	method	is	focused	

on	identifying	the	tumor	specific	SGAs	that	are	causing	expression	changes	that	are	specific	to	

the	tumor.	Those	SGAs	that	have	a	high	probability	of	regulating	transcriptomic	changes	related	

to	 oncogenic	 processes	 are	 then	 designated	 to	 be	 the	 putative	 drivers	 of	 the	 tumor.	 In	 this	

paper,	we	describe	in	detail	the	TCI	algorithm	and	its	implementation.	
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1.		Introduction	

Cancer	 is	 mainly	 caused	 by	 SGAs,	 such	 as	 somatic	 mutations	 (SMs),	 somatic	 copy	 number	

alterations	 (SCNAs),	chromosome	rearrangement	and	other	genomic	alterations.	A	 tumor	cell	

commonly	 hosts	 hundreds	 to	 over	 a	 thousand	 SGAs,	 among	 which	 only	 a	 small	 minority	

contribute	to	tumor	development	by	perturbing	cellular	signaling	pathways	while	most	others	

are	 passenger	 SGAs	 (unrelated	 to	 cancers).	 A	 foremost	 task	 of	 precision	 oncology	 for	 cancer	

treatment	is	to	identify	and	target	the	driver	SGAs	of	an	individual	tumor.	Current	methods	of	

identifying	candidate	driver	SGAs	are	mostly	based	on	the	assumption	that,	if	a	gene	is	mutated	

at	a	frequency	significantly	above	the	expected	rate	in	a	cohort	of	tumors,	the	mutation	events	

of	 the	 gene	 are	 likely	 positively	 selected	 in	 tumors	 due	 to	 resultant	 oncogenic	 advantages.	

Therefore,	 such	 a	 gene	 is	more	 likely	 a	 cancer	 driver	 gene	 [1-4].	 Hereafter,	 we	 refer	 to	 this	

family	 of	 methods	 as	 frequency-oriented	models.	 These	models	 do	 not	 attempt	 to	 explicitly	

determine	the	 functional	 role	of	a	driver	 in	cancer	development,	 that	 is,	 they	cannot	provide	

insight	 into	 functional	 impact	 of	 oncogenic	 processes	 caused	 by	 a	 driver	 SGA.	 In	 general,	

frequency-oriented	models	are	constrained	by	the	need	to	define	the	baseline	mutation	rate,	

and	different	models	for	estimating	the	baseline	rate	will	lead	to	different	results.		

It	 is	 well	 accepted	 that	 driver	 genes	 can	 contribute	 to	 cancer	 development	 through	 various	

types	of	genomic	alterations,	such	as	chromosome	structure	variations,	non-coding	mutations,	

and	epigenetic	modifications	 [3,	 5-7].	 For	example,	 copy	number	amplification	and	promoter	

mutations	of	the	telomere	reverse	transcriptase	(TERT)	play	important	roles	in	different	cancer	

types	[8,	9].	However,	 to	our	knowledge,	there	 is	no	reported	principled	method	to	 integrate	

multiple	types	of	SGA	events	to	determine	the	significance	of	the	corresponding	gene	in	cancer	

development,	nor	there	 is	any	theoretical	method	that	can	systematically	 infer	the	functional	

impact	of	driver	SGAs	perturbing	a	common	gene.	

Here,	we	introduce	a	novel	framework	that	identifies	driver	SGAs	in	a	tumor-specific	and	signal-

oriented	 fashion.	 Our	 approach	 is	 based	 on	 the	 assumption	 that	 driver	 SGAs	 cause	 cancer	

progression	by	perturbing	signaling	pathways,	and	as	such	their	 functional	 impact	 is	reflected	
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by	the	cellular	or	molecular	phenotypes	regulated	by	these	perturbed	pathways.	Thus,	the	task	

is	to	find	the	SGAs	that	causally	regulate	cancer-related	molecular	phenotypes,	e.g.,	differential	

expression	of	genes	involved	in	oncogenic	processes,	for	each	individual	tumor.	To	this	end,	we	

designed	 a	 tumor-specific	 causal	 inference	 (TCI)	 algorithm	 that	 infers	 causal	 relationships	

between	SGAs	and	differentially	expressed	genes	(DEGs)	within	a	specific	tumor.	

The	 Bayesian	 causal	 inference	 framework	 developed	 in	 this	 study	 provides	 a	 principled	

approach	 to	not	only	 incorporate	biological	prior	knowledge	and	 theoretical	assumptions	but	

also	integrate	diverse	types	of	genomic	and	molecular	phenotypic	data	to	infer	the	functional	

impact	of	genomic	alterations	in	individual	tumors	[10,	11].	In	these	respects,	TCI	first	calculates	

the	 prior	 probability	 that	 an	 SGA	 is	 a	 driver	 in	 the	 tumor	 of	 interest.	 Based	 on	 the	 positive	

selection	assumption	underlying	the	frequency-based	methods,	we	assume	that	the	more	often	

are	the	SGA	events	perturbing	the	corresponding	gene	in	a	tumor	cohort,	the	more	 likely	the	

gene	 is	 a	 driver	 in	 the	 current	 tumor.	 As	 such,	 the	 calculation	 of	 the	 prior	 incorporates	 the	

strength	 of	 the	 frequency-oriented	 methods	 [1,	 3].	 In	 a	 signal-oriented	 fashion,	 TCI	 further	

calculates	the	marginal	 likelihood	that	the	molecular	phenotype	change	is	caused	by	the	SGA.	

Finally,	TCI	derives	a	posterior	probability	that	the	SGA	is	causally	responsible	for	the	observed	

phenotypic	 change	 in	 a	 tumor.	 Thus,	 TCI	 unifies	 the	 frequency-oriented	 and	 signal-oriented	

approaches	to	determine	the	functional	impact	of	an	SGA	event	within	a	specific	tumor.	

Previously	 reported	approaches,	e.g.	eQTL,	 can	 infer	 the	association	between	SGAs	and	gene	

expression	 levels	 across	 a	 population	 of	 tumors	 [12,	 13].	 To	 our	 knowledge,	 however,	 no	

previously	published	method	is	capable	of	inferring	the	causal	relationships	between	SGAs	and	

differentially	expressed	genes	 (DEGs)	 in	a	 tumor-specific	manner.	 In	 this	paper,	we	 introduce	

such	an	approach	which	is	tumor	specific	in	two	ways.	First,	for	a	given	DEG	E	in	a	given	tumor	t,	

the	 only	 SGAs	 that	 can	 possibly	 cause	 (drive)	 E	 are	 the	 SGAs	 in	 t;	 SGAs	 that	 occur	 in	 other	

tumors,	but	not	 in	t,	are	not	candidate	drivers	of	E	 in	t.	Thus,	 the	search	space	for	candidate	

drivers	 is	 focused	 in	a	tumor-specific	manner.	Second,	the	scoring	of	a	given	SGA	in	t	being	a	

driver	of	E	 is	scored	probabilistically	in	manner	that	is	tumor-specific,	as	we	explain	in	Section	

2.2.	
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The	 change	 in	 going	 from	population-based	 to	 tumor-specific	 causal	 inference	 is	 substantial.	

Since	multiple	SGAs	can	perturb	a	common	signaling	pathway,	we	should	consider	 the	causal	

relationships	between	SGAs	perturbing	the	pathway	and	a	DEG	regulated	by	the	pathway	as	a	

multiple-to-one	 relationship.	 For	 example,	 multiple	 perturbations	 of	 the	 PI3K	 pathway	 are	

known	 to	 regulate	 its	 downstream	 gene	 expression	 during	 tumorigenesis	 [14].	 Interestingly,	

rarely	 do	 SGAs	 perturb	 a	 common	 pathway	 in	 an	 individual	 tumor,	 which	 is	 a	 phenomenon	

referred	 to	 as	 mutual	 exclusivity	 [15-19].	 Figure	 1	 illustrates	 the	 mutual	 exclusive	 tendency	

among	 3	 members	 of	 the	 PI3K	 pathway,	 PIK3CA,	 PTEN,	 and	 PIK3R1	 [14].	 At	 the	 tumor	

population	 level,	any	SGA	perturbing	 the	PI3K	pathway	can	cause	the	expression	change	of	a	

downstream	gene,	while	in	an	individual	tumor,	it	is	more	likely	that	only	one	SGA	causes	the	

expression	 change.	 The	 multiple-to-one	 relationship	 and	 the	 mutual	 exclusivity	 of	 the	 SGAs	

significantly	dampens	the	strength	of	statistical	association	between	an	individual	SGA	and	the	

DEG	 of	 interest	 when	 viewed	 across	 all	 tumors	 (perhaps	 of	 a	 given	 type).	 Therefore,	 a	

conventional	 EQTL	 analysis	may	 fail	 to	 find	 the	 causal	 relationship	 between	 a	 low	 frequency	

SGA	 (e.g.,	 PIK3R1)	 that	 is	 perturbing	 a	 downstream	 gene	 via	 the	 PI3K	 pathway,	 because	 it	

cannot	 adequately	 account	 for	 the	 gene	 expression	 variance	 caused	 by	 other	 common	 SGAs	

that	 are	 perturbing	 the	 gene	 in	 other	 tumors	 (e.g.,	 mutation/amplification	 of	 PIK3CA	 and	

mutation/deletion	 of	 PTEN).	 Although	 at	 the	 population	 level	 it	 may	 not	 be	 significantly	

(statistically)	associated	with	a	DEG	E	that	is	downstream	of	the	PI3K	pathway,	an	alteration	of	

PIK3R1	should	nonetheless	be	the	most	probable	cause	of	E	in	an	individual	tumor	when	both	

PIK3CA	 and	 PTEN	 are	 normal.	 The	 TCI	 algorithm	 takes	 advantage	 of	 such	 tumor-specific	

relationships	between	SGAs	and	DEGs	 in	order	to	 locate	the	SGAs	that	are	most	 likely	driving	

the	DEGs.	
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Figure	1.	SGAs	mutual	 exclusivity	 among	PIK3CA,	 PTEN,	and	PIK3R1	 in	 the	PI3K	pathway.	An	example	of	
mutual	 exclusivity	 among	 PIK3CA,	 PTEN,	 and	 PIK3R1	 affecting	 the	 PI3K	 pathway	 in	 273	 Glioblastoma	
Multiforme	tumor	samples.	Each	column	represents	an	 individual	tumor.	The	combination	of	color	and	bar	
size	denotes	genetic	alteration	types:	a	 long	red	bar	represents	a	tumor	with	copy	number	amplification;	a	
long	 blue	 bar	 represents	 a	 tumor	with	 copy	 number	 deletion;	 a	 short	 green	 bar	 represents	 a	 tumor	with	
missense	 mutation;	 a	 short	 brown	 bar	 represents	 a	 tumor	 with	 inframe	 mutation;	 a	 short	 black	 bar	
represents	 a	 tumor	with	 truncating	mutation.	 These	 three	 SGAs	are	 altered	 in	156	 (57%)	out	of	 273	brain	
tumors,	and	as	shown,	only	one	of	those	SGAs	occurs	in	most	of	the	tumors.	

	

2.	Model	Specification	

Let	the	genotypes	of	all	genes	in	a	tumor	be	represented	by	a	set	of	binary	variables,	such	that	

the	state	of	a	gene	is	set	to	1	if	the	gene	is	altered	(e.g.,	mutated),	or	otherwise	it	is	set	to	0;	

similarly,	let	the	expression	states	of	all	genes	be	represented	by	a	set	of	binary	variables,	such	

that	the	expression	state	of	a	gene	is	set	to	1	if	it	is	differentially	expressed,	or	otherwise	it	is	

set	 to	 0.	 Let	TS	 =	 {T1,	 T2,	…,	 Tt,	…,	 TN}	 denote	 the	 tumor	 set	which	 contains	 a	 total	N	 tumor	

samples,	where	t	indexes	over	the	tumors	included	in	the	tumor	set.	Let	SGAt	=	{A1,	A2,	…,	Ah,	…,	

Am}	denote	a	 subset	of	m	 genes	 that	are	altered	at	 the	genome	 level	 in	a	 tumor	 t,	 i.e.,	 their	

genomic	states	are	set	to	1,	where	h	 indexes	over	the	variables	 in	SGAt;	 let	DEGt	=	 {E1,	E2,	…,	

Ei,	…,	En}	denote	n	genes	that	are	differentially	expressed	in	the	tumor	t,	where	i	indexes	over	

the	variables	in	DEGt.	Hereafter,	we	will	use	SGA	 instead	of	SGAt	and	DEG	 instead	of	DEGt	for	

simplicity	of	notation.	For	each	tumor,	we	further	include	a	variable	A0,	to	collectively	represent	

non-specific	factors	other	than	SGAs	(e.g.,	tumor	microenvironment)	that	may	affect	the	gene	

expression	in	a	tumor.	Based	on	the	assumptions	that	each	DEG	is	likely	to	be	regulated	by	one	

aberrant	signaling	pathway	and	such	a	pathway	is	likely	perturbed	by	only	one	SGA	observed	in	

the	 tumor	 (mutual	 exclusivity),	 the	 TCI	 model	 further	 constrains	 each	 DEG	 to	 be	 causally	

regulated	 by	 only	 one	 SGA	 (or	 by	 A0)	 in	 a	 given	 tumor.	 The	 TCI	 model	 assumes	 no	 hidden	

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/225631doi: bioRxiv preprint first posted online Nov. 28, 2017; 

http://dx.doi.org/10.1101/225631


common	 causes	 among	 the	 variables	 in	 SGAÈDEG,	 including	 the	 presence	 of	 mixture	

distributions.	 It	 is	 not	 concerned	with	modeling	 the	 causal	 relationships	 among	 the	 variables	

within	 DEG	 or	 among	 the	 variables	 within	 SGA.	 With	 the	 above	 settings,	 the	 task	 is	 to	

determine	 for	 each	 variable	 Ah	 in	 SGA	 the	 probability	 that	 it	 is	 the	 cause	 of	 one	 or	 more	

variables	in	DEG,	which	we	interpret	as	the	probability	that	Ah	is	a	driver	in	tumor	t.	

For	 a	 given	 tumor,	 we	 represent	 the	 causal	 relationships	 between	 the	 variables	 in	 SGA	 and	

those	in	DEG	using	a	bipartite	causal	Bayesian	network	(CBN)	in	which	the	variables	in	SGA	are	

at	level	1	and	the	variables	in	DEG	are	at	level	2.	In	such	a	CBN,	arcs	always	point	from	SGA	to	

DEG.	A	permissible	CBN	model	M	has	only	one	arc	coming	into	each	variable	Ei	in	DEG	from	one	

variable	Ah	 in	SGA	or	A0	which	means	 that	 it	 is	abnormal	due	 to	 some	non-SGA	 influence.	 In	

model	M,	a	given	Ah	can	have	zero	arcs	(a	passenger	SGA)	or	one	or	more	arcs	emanating	from	

it	to	the	variables	in	DEG;	thus,	an	SGA	can	causally	regulate	multiple	DEGs.	Figure	2	shows	an	

example	of	a	permissible	model.	Since	each	tumor	generally	has	a	unique	SGA	set	and	a	unique	

DEG	set,	the	model	is	called	tumor-specific.	

	

Figure	 2.	 Tumor-specific	 Bayesian	 causal	 inference	 framework.	 An	 example	 of	 an	 admissible	 CBN	 for	
inferring	causal	relationships	between	SGAs	and	DEGs.	Here,	each	plate	represents	one	tumor.	For	the	tumor	
T1,	set	SGA	has	three	SGA	variables	plus	the	non-specific	factor	A0	(m	=	4)	and	set	DEG	has	six	DEG	variables	
(n	=	6).	Each	Ei	must	have	exactly	one	arc	into	it,	which	represents	having	one	cause	among	the	variables	in	
set	 SGA.	 In	 this	 model,	 E1	 is	 caused	 by	 A0,	 and	 A1	 and	 A3	 are	 drivers	 of	 DEGs	 ({E2,	 E3,	 E4}	 and	 {E5,	 E6}	
respectively),	while	A2	is	not	a	driver.	
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2.1.	The	basic	Bayesian	framework	of	the	TCI	model	

Let	M	 be	a	CBN	structure	and	 let	D	 be	an	observational	 training	dataset,	 in	which	each	 case	

denotes	a	sample	that	contains	a	measurement	for	each	of	the	variables	in	M.	We	assume	that	

the	cases	in	D	are	i.i.d..	

We	can	derive	the	posterior	probability	of	a	CBN	structure	M	as	follows:	

	 𝑃 𝑀 𝐷 =	
𝑃(𝐷,𝑀)
𝑃 𝐷

=
𝑃(𝐷,𝑀)
𝑃(𝐷,𝑀′)*+

=
𝑃 𝐷 𝑀 𝑃(𝑀)
𝑃 𝐷	 	𝑀′)𝑃(𝑀′)*+

,	 (1)	

where	the	sum	is	taken	over	all	admissible	models	M’.	The	term	P(M)	denotes	prior	belief	that	

the	data-generating	CBN	has	M	as	its	structure.	

We	call	the	term	P(D,	M)	the	score	of	CBN	structure	M	in	light	of	data	D.	As	shown	in	Equation	1,	

it	can	be	expressed	as	follows:	

	 𝑃 𝐷,𝑀 = 𝑃 𝐷 𝑀 𝑃 𝑀 .	 (2)	

We	will	assume	that	P(M)	is	a	modular	prior	probability	that	can	be	expressed	as	follows:	

	 𝑃 𝑀 = 𝑃(𝐴0(1) → 𝐸1)4
156 ,	 (3)	

where	Ag(i)	is	a	node	in	SGA	that	is	the	parent	of	Ei	in	M,	and	P(Ag(i)->Ei)	is	the	prior	probability	

that	Ag(i)	is	causally	influencing	Ei	in	the	current	tumor.	The	function	g(i)	returns	an	index	of	A.	If	

g(i)	=	0	then	A0	 represents	 its	parent,	which	means	Ei	 is	 regulated	by	a	non-SGA	factor	 in	the	

tumor.	

The	 term	P(D|M)	 is	 the	marginal	 likelihood	of	M,	which	 can	be	derived	by	marginalizing	out	

model	parameters	q	as	follows:	

	 𝑃 𝐷 𝑀 = 𝑃 𝐷	 𝑀, q)𝑃 q	 𝑀	 	𝑑q
q

,	 (4)	
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where	q	represents	the	parameters	(probabilities)	associated	with	CBN	structure	M.	

If	we	assume	parameter	 independence,	parameter	modularity,	 and	Dirichlet	prior	probability	

distributions,	we	can	solve	Equation	4	to	derive	P(D|M)	in	closed	form[20]	as	follows:	

	 𝑃 𝐷 𝑀 =
G(a1:)

G(a1: + 𝑁1:)

=>

:56

4

156

G(a1:? + 𝑁1:?)
G(a1:?)

@>

?56

,	 (5)	

where:	

• i	indexes	over	the	DEG	variables	included	in	M;	

• n	is	the	number	of	DEGs	in	M,	i.e.,	the	nodes	in	the	DEG	set	of	M;	

• j	 indexes	over	the	0/1	values	(states)	of	a	gene	A	 in	SGA	 that	 is	being	modeled	as	the	

parent	of	Ei	in	M;	

• qi	is	the	number	of	values	of	parent	gene	A	of	the	node	Ei,	which	is	2,	because	the	A	is	

modeled	as	having	the	values	1	(a	somatic	genome	alteration)	and	0	(no	alteration);	

• k	indexes	over	the	0/1	values	of	the	expression	states	of	Ei;	

• ri	 is	 the	number	of	 values	of	 node	Ei,	which	 is	 2,	 because	E	 is	modeled	 as	 having	 the	

values	1	(a	differential	gene	expression	level)	and	0	(a	normal	level	of	gene	expression);	

• Nijk	 is	the	number	of	cases	in	D	that	node	Ei	has	the	value	denoted	by	k	and	its	parent	

has	the	value	denoted	by	j;	

• aijk	 is	 a	 parameter	 in	 a	 Dirichlet	 distribution	 that	 represents	 prior	 belief	 about															

P(Ei	 |	parent(Ei));	 it	 can	 be	 interpreted	 as	 belief	 equivalent	 to	 having	 previously	 seen	

(prior	to	data	D)	aijk	cases	in	which	node	Ei	has	the	value	k	and	its	parent	has	the	value	j;	

• G	is	the	gamma	function;	

• 𝑁1: = 𝑁1:?
@>
?56 	

• a1: = a1:?
@>
?56 	

Substituting	Equations	3	and	5	into	Equation	2	yields:	
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	 𝑃 𝐷,𝑀 = 𝑃 𝐴0 1 → 𝐸1
G a1:

G a1: + 𝑁1:

=>

:56

4

156

G a1:? + 𝑁1:?
G a1:?

@>

?56

.	 (6)	

Let	e(g(i),	i)	represent	the	function	that	appears	inside	the	outer	product	of	Equation	6.	Thus,	it	

is	defined	as	follows:	

	 𝑒 𝑔 𝑖 , 𝑖 = 𝑃 𝐴0 1 → 𝐸1
G a1:

G a1: + 𝑁1:

=>

:56

G a1:? + 𝑁1:?
G a1:?

@>

?56

.	 (7)	

We	can	now	write	Equation	6	as	follows:	

	 𝑃 𝐷,𝑀 = 𝑒 𝑔 𝑖 , 𝑖
4

156

.	 (8)	

Equation	7	is	the	score	for	a	causal	arc	existing	from	Ag(i)	to	Ei.	However,	we	wish	to	have	a	non-

zero	score	only	for	a	causal	relationship	that	satisfies	the	following	constraint:	Ei	is	more	likely	

to	be	abnormal	 (value	1)	when	Ag(i)	 is	abnormal	 (value	1)	 than	when	Ag(i)	 is	normal	 (value	0).	

Given	the	Dirichlet	distributions	we	are	using,	the	expectation	of	these	conditional	probabilities	

is	as	follows:		

	 𝑃 𝐸1 = 𝑘 𝐴0 1 = 𝑗 =
a1:? + 𝑁1:?
a1: + 𝑁1:

.	 (9)	

Using	conditional	probabilities	of	this	form	to	enforce	the	constraint	mentioned	above,	leads	to	

the	following	function:	

	

𝑓 𝑔 𝑖 , 𝑖 =
𝑒 𝑔 𝑖 , 𝑖 ,						𝑖𝑓	𝑃 𝐸1 = 1|𝐴0 1 = 1 > 𝑃 𝐸1 = 1|𝐴0 1 = 0 	

		𝑜𝑟	𝑔 𝑖 = 0;																																											
0,																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																				

				.																							(10)	

We	next	use	f	to	refine	Equation	8	to	be	the	following:	
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	 𝑃 𝐷,𝑀 = 𝑓 𝑔 𝑖 , 𝑖
4
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.	
												

(11)	

The	posterior	probability	that	an	SGA	Ah	causes	a	DEG	Ei	in	tumor	t	relative	to	the	SGA	and	DEG	

is	calculated	as	follows,	

	 𝑃 𝐴V → 𝐸1 𝐷, 𝑺𝑮𝑨Z, 𝑫𝑬𝑮Z =
𝑓 ℎ, 𝑖
𝑓 ℎ+, 𝑖]

V^5_
.	 	(12)	

2.2.	Tumor-centric	scoring	

When	assessing	the	causal	relationship	between	Ah	and	Ei	using	Equation	12,	we	consider	the	

states	of	Ah	and	Ei	in	all	tumors	in	the	training	set.	As	mentioned	previously,	however,	Ei	could	

be	 regulated	 by	multiple	 distinct	 SGAs	 that	 affect	 a	 common	 signaling	 pathway.	 These	 SGAs	

tend	 to	 be	 mutually	 exclusive	 across	 all	 tumors.	 For	 example,	 a	 gene	 that	 is	 expressed	

downstream	in	the	PI3K	pathway	would	be	differentially	expressed	in	tumors	hosting	either	a	

PTEN	deletion/mutation	or	a	PIK3CA	amplification/mutations,	and	these	two	SGA	events	tend	

to	 be	mutually	 exclusive	 (Figure	 1).	 Under	 such	 circumstances,	 either	 a	PTEN	 alteration	 or	 a	

PIK3CA	alteration	should	be	sufficient	to	explain	DEG	EPI3K.	

In	this	section,	we	describe	a	modified	Bayesian	scoring	measure	that	models	SGAs	affecting	a	

DEG.	Consider	the	situation	in	which	A*	is	the	driver	of	DEG	Ei	in	most	tumors.	Suppose	a	tumor	

t	that	is	currently	being	analyzed	has	Ei	as	a	DEG	but	does	not	include	A*	as	an	SGA.	In	this	case,	

we	need	to	locate	the	SGA	that	is	most	likely	the	driver	of	Ei	in	tumor	t,	in	light	of	most	of	the	

tumors	in	the	training	set	having	A*	as	the	driver	of	Ei.	

Consider	the	following	example.	Let	EPI3K	be	a	DEG	in	tumor	t.	Suppose	the	expression	of	EPI3K	is	

regulated	 by	 the	 PI3K	 pathway.	 Suppose	 also	 that	 PIK3CA	 is	 the	most	 commonly	 perturbed	

member	 along	 that	 pathway	 (Figure	 1),	 which	 leads	 it	 to	 be	 chosen	 as	A*	 according	 to	 the	

methods	in	Section	2.1.	Current	tumor	t	does	not	contain	PIK3CA	as	an	SGA,	however.	Thus,	we	

need	a	causal	explanation	for	DEG	EPI3K	 in	tumor	t.	Suppose	that	PIK3R1	 is	an	SGA	in	tumor	t.	

The	method	described	below	scores	PIK3R1	as	a	driver	of	EPI3K	for	all	the	tumors	in	the	training	
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set	 that	contain	PIK3R1	 as	an	SGA;	 the	 remaining	 tumors	 in	 the	 training	set	are	 scored	using	

PIK3CA	 as	 their	 driver;	 the	 overall	 score	 is	 a	 function	 of	 these	 two	 scores.	 This	 method	 is	

repeated	for	other	SGAs	 in	tumor	t	as	candidate	causes	of	EPI3K.	 If	PIK3R1	 turns	out	to	be	the	

SGA	in	tumor	t	that	results	in	the	highest	overall	score,	then	PIK3R1	is	output	as	the	most	likely	

driver	of	EPI3K	in	tumor	t.	While	this	example	illustrates	the	most	basic	situation	in	which	tumor-

specific	scoring	is	called	for,	the	general	method	can	be	useful	in	other	circumstances	as	well.	

We	now	describe	 the	mathematical	method	we	used	 to	 implement	 tumor-specific	 scoring.	 In	

tumor	t,	we	want	to	find	the	most	probable	cause	of	each	Ei	that	has	a	value	of	1	(i.e.,	is	a	DEG).	

Let	Ag(i)	denote	a	hypothesized	gene	that	is	causing	Ei	to	be	a	DEG	in	tumor	t.	In	order	for	Ag(i)	to	

be	a	candidate	cause,	we	require	that	it	be	altered	(i.e.,	have	a	value	of	1)	in	tumor	t.	Let	𝐷0(1)6 	

denote	 the	 set	 of	 tumors	 in	 the	 training	 set	 in	 which	 variable	 Ag(i)	 has	 the	 value	 1,	 which	

denotes	that	these	tumors	have	somatic	genome	alteration	(SGA)	in	gene	Ag(i).	We	can	calculate	

𝑒(𝑔(𝑖), 𝑖, 𝐷0(1)6 )	with	respect	the	tumor	set	𝐷0(1)6 	as	follows:		

	 𝑒 𝑔 𝑖 , 𝑖, 𝐷0 1
6 = 𝑃 𝐴0 1 → 𝐸1

G a1:
G a1: + 𝑁1:6

=>

:56

G a1:? + 𝑁1:?6

G a1:?

@>

?56

,	 (13)	

where	𝑁1:?6 	is	the	number	of	cases	in	𝐷0(1)6 	that	node	Ei	has	value	k	and	its	parent	Ag(i)	has	value	j.	

Since	𝐷0(1)6 	represents	the	tumors	for	which	Ag(i)	has	the	value	1,	this	means	that	j	is	fixed	at	the	

value	1.	Thus,	we	can	simplify	Equation	13	to	be	the	following:	

	 𝑒(𝑔 𝑖 , 𝑖, 𝐷0(1)6 ) = 𝑃(𝐴0(1) → 𝐸1)
G(a16)

G(a16 + 𝑁166 )
G(a16? + 𝑁16?6 )

G(a16?)
.

@>

?56

	 (14)	

Let	𝐷0(1)_ 	denote	 the	 set	 of	 tumors	 in	 the	 training	 set	 in	 which	 variable	Ag(i)	has	 the	 value	 0,	

which	 represents	 that	 these	 tumors	 do	 not	 have	 genome	 alteration	 in	 Ag(i).	 We	 need	 to	

determine	the	most	likely	parent	of	Ei	for	these	tumors.	An	efficient	way	to	do	so,	which	we	use,	

is	 to	 find	 the	 most	 likely	 gene	 A*	 that	 causes	 Ei	 over	 all	 tumors	 in	 dataset	 D.	 Then,	 we	

hypothesize	 that	 gene	as	 the	 cause	of	Ei	 in	𝐷0(1)_ .	 This	 approach	 is	 efficient,	 because	we	only	

have	 to	 perform	 the	 search	 once	 for	 each	 Ei	 prior	 to	 seeing	 the	 current	 tumor	 t.	 More	
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specifically,	we	use	 the	 f	 score	 from	Equation	10	 (on	 the	data	D	on	all	 the	 tumors)	 to	search	

over	all	possible	genes	to	find	the	one	that	maximizes	the	score.	Let	AG(i)	denote	such	a	maximal	

scoring	gene.	We	take	AG(i)	to	be	the	parent	of	Ei	for	all	the	tumors	in	𝐷0(1)_ .	The	score	for	this	

parent	in	these	tumors	in	as	follows:			

	 𝑒(𝐺 𝑖 , 𝑖, 𝐷0 1
_ ) = 𝑃(𝐺(𝑖) → 𝐸1)

G(a1:)
G(a1: + 𝑁1:_)

=>

:56

G(a1:? + 𝑁1:?_ )
G(a1:?)

.
@>

?56

	 (15)	

We	arrive	at	a	tumor-centric	score	e(g(i),	i)	by	taking	the	product	of	Equation	14	and	Equation	

15:	

	 𝑒 𝑔 𝑖 , 𝑖 = 𝑒 𝑔 𝑖 , 𝑖, 𝐷0 1
6 ⋅ 𝑒 𝐺 𝑖 , 𝑖, 𝐷0 1

_ .	 (16)	

In	tumor	t,	consider	an	Ei	that	is	a	DEG	(i.e.,	Ei		=	1).	We	search	over	all	the	genes	that	have	a	

value	of	1	(i.e.,	that	are	SGAs).	For	each	such	Ag(i),	we	use	Equation	16	to	score	it.	The	Ag(i)	that	

has	 the	 highest	 score	 is	 returned	 as	 the	most	 likely	 cause	 of	Ei	 in	 tumor	 t.	We	 perform	 this	

procedure	for	each	Ei	 that	 is	a	DEG	 in	tumor	t.	After	doing	so,	we	have	determined	the	most	

likely	SGA	causing	each	DEG	in	tumor	t.		

	

3.	Implementation	Details	

The	following	shows	the	implementation	details	of	our	models,	i.e.,	general	method	and	tumor-

centric	method.	Also,	in	order	to	apply	the	methods	in	the	previous	section,	we	need	to	specify	

both	structure	priors	and	parameter	priors.	

3.1.	Pseudocode	

The	TCI	pseudocode	in	this	section	consists	of	a	general	method	and	a	tumor-centric	method.	

The	general	method	is	used	to	derive	the	most	probable	parent	AG(i)	for	each	node	Ei	across	all	
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tumors	in	training	set	D.	Then,	the	tumor-centric	method	calculates	the	Bayesian	causal	score	

for	each	edge	𝐴V → 𝐸1 	in	each	tumor	t.	

3.1.1	General	method	

var	dataset	D;	set	SGA’,	DEG’;	array	cause;	integer	i,	h,	m’,	n’;	real	d;	

SGA’	=	the	set	of	genes	that	have	aberrant	genome	alterations	in	any	tumor	of	D	;	

m’	=	|SGA’|	

DEG’	=	the	set	of	genes	that	are	differentially	expressed	in	any	tumor	of	D	;	

n’	=	|DEG’|	

for	i	=	1	to	n’	do	//	search	for	the	global	driver	AG(i)	for	each	Ei	at	the	population	level	

for	h	=	0	to	m’	do	

compute	f(h,	i);	//use	Equation	10	to	compute	f(h,	i)	

AG(i)	is	identified	as	the	SGA	G(i)	that	has	the	highest	f(h,i)	for	Ei.	

3.1.2	Tumor-centric	causal	inference	

var	dataset	D;	set	SGA,	DEG;	array	cause;	integer	i,	h,	m,	n;	real	d;	

SGA	=	the	set	of	genes	in	tumor	t	that	have	aberrant	genome	alterations;	

m	=	|SGA|	

DEG	=	the	set	of	genes	in	tumor	t	that	are	differentially	expressed;	

n	=	|DEG|	

for	i	=	1	to	n	do	//populate	the	values	of	the	cause	array	

d	=	0,	

for	h	=	0	to	m	do	

use	the	global	driver	AG(i)	for	Ei	as	determined	using	the	general	method;	

d	:=	d	+	e(h,	i);	//use	Equation	16	to	compute	e(h,	i)	

for	h	=	0	to	m	do	
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cause	[h,	i]	:=	e(h,	i)/d;	

3.2.	Structure	priors	

Given	the	tumor	of	interest	with	a	unique	SGA	set	and	a	unique	DEG	set,	we	need	to	define	a	

tumor	specific	 structure	prior	P(M)	over	permissible	CBN	structures	M.	Because	 the	SGA	 and	

DEG	sets	are	(with	high	probability)	unique	to	each	tumor,	the	prior	distribution	over	M	is	also	

tumor-specific.	Assuming	the	structure	prior	is	modular,	we	can	factorize	the	P(M)	as	a	product	

of	prior	probabilities	for	each	permissible	edge	as	follows:	

	 𝑃 𝑀 = 𝑃 𝐴V → 𝐸1 .
]

V5_

4
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	 (17)	

𝑃(𝑀)	comprises	a	product	of	prior	probabilities	of	causal	edges	of	a	test.	A	prior	probability	of	

a	 causal	 edge	 from	 a	 somatic	 alteration	 of	 gene	Ah	 to	 a	 DEG	 Ei	 can	 be	 stated	 as	P(Ah	→	 Ei)	

(abbreviated	as	𝜃V)	and	determined	according	to:	

	 qV = 1 − q_
µV
µV^

]
V^56

,	 (18)	

where	𝜃_	is	a	prior	probability	that	the	cause	of	DEG	Ei	 is	not	an	SGA,	and	h’	 indexes	over	the	

number	m	of	genes	in	tumor	t	that	have	SGAs.		

Additional	 genomic	 information	 can	 be	 applied	 to	 derive	 the	 prior	 probability	 of	 each	 edge	

𝐴V → 𝐸1 	using	existing	prior	knowledge.	Consider,	for	example,	the	availability	of	the	following	

information	for	each	gene	h:	(1)	the	number	of	unique	synonymous	mutations	observed	for	h	

among	 the	 tumors	 in	D,	 and	 (2)	 the	 number	 of	 abnormal	 somatic	 copy	 number	 alterations	

(according	to	a	given	definition	of	abnormal)	of	h	in	a	normal	population	without	cancer.	Such	

information	can	be	applied	to	help	account	for	mutation	and	copy	number	alterations	that	are	

due	 to	 differences	 in	 gene	 lengths	 and	 chromosome	 locations.	 In	 particular,	 using	 the	

information	in	(1)	and	(2)	above,	we	can	calculate	𝜇V	as	follows:	

	 𝜇V = 𝑤VZ^
Z^∈fg

,	 (19)	
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where	Uh	denotes	the	tumors	in		training	set	D	that	have	a	somatic	alteration	in	gene	Ah,	and	

wht’	denotes	a	weight	proportional	 to	 the	probability	 that	SGA	h	 is	a	driver	 in	 the	genome	of	

tumor	t’.	We	calculate	wht’	as	follows:		

	 𝑤VZ^ =
𝑅VZ^
𝑅V^Z^]

V^56
,	 (20)	

where		

	 𝑅VZ^ =
𝑇VZ^
j*

𝑅Vj*
+
𝑇VZ^
jklm

𝑅Vjklm
.	 (21)	

In	 equation	 21,	𝑇VZ^
j*	denotes	whether	 gene	h	 has	 a	 non-synonymous	 somatic	mutation	 (SM)	

event	 or	 not	 in	 tumor	 t’,	 i.e.,	 1	 or	 0,	 respectively;	𝑅Vj* 	denotes	 the	 number	 of	 unique	

synonymous	mutation	events	 in	 gene	h	 observed	 in	 the	 reference	 set	 of	 tumor	 genomes,	D;	

𝑇VZ^
jklm	denotes	whether	 gene	h	 is	 affected	 by	 an	 SCNA	event	 or	 not	 in	 tumor	 t’,	 i.e.,	 1	 or	 0,	

respectively;	𝑅Vjklm	denotes	the	expected	number	of	times	gene	h	is	affected	by	copy	number	

alteration	among	the	tumors	in	D,	and	yet	is	only	a	passenger	alteration,	based	on	the	number	

of	times	gene	h	is	affected	by	copy	number	alteration	in	a	reference	set	of	cases	from	a	normal	

human	population	without	known	cancer.		

3.3.	Parameter	priors	

We	need	parameter	priors	for	when	Ei	has	A0	as	its	parent	and	for	when	it	has	an	Ah	in	SGA	set	

as	its	parent.	Table	1	addresses	the	case	when	Ei	has	A0	as	its	parent.	The	Dirichlet	parameter	

values	 in	 the	 table	 represent	 that	 every	 probability	 of	P(Ei	 =	1)	 is	 equally	 likely	 a	priori	 (i.e.,	

before	 any	 data	 are	 considered);	 recall	 that	 Ei	 =	 1	 represents	 that	 Ei	 is	 abnormal.	 Table	 2	

addresses	the	case	in	which	Ei	has	some	parent	Ah.	The	Dirichlet	parameter	values	in	the	table	

make	 it	 somewhat	more	 likely	 that	Ei	will	 be	normal	 (abnormal)	when	 its	 cause	Ah	 is	normal	

(abnormal).	 To	 make	 that	 pattern	 stronger,	 the	 values	 of	 2.0	 could	 be	 replaced	 with	 larger	

values,	such	as	2.5,	3.0,	or	even	higher.	
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Table	1.	Dirichlet	parameter	values	when	A0	is	the	parent	of	node	Ei.	

Prior	probability	being	specified	 Dirichlet	parameter	 Default	value	

	

P(Ei)	

ai10	 1.0	

ai11	 1.0	

	

Table	2.	Dirichlet	parameter	values	when	there	is	one	Ah	parent	of	node	Ei.	

Prior	probability	being	specified	 Dirichlet	parameter	 Default	value	

	

P(Ei	|	Ah	=	0)	

ai00	 2.0	

ai01	 1.0	

	

P(Ei	|	Ah	=	1)	

ai10	 1.0	

ai11	 2.0	

	

The	 computations	 in	 this	 paper	 have	 used	 standard	 arithmetic	 operations.	 However,	 model	

scores	can	become	extremely	small.	Therefore,	 it	 is	generally	necessary	to	use	 log	arithmetic.	

When	doing	so,	Equation	7,	for	example,	becomes	a	sum	of	log	terms,	rather	than	a	product	of	

terms.	
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