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Abstract

Cancer is mainly caused by somatic genome alterations (SGAs). Precision oncology involves

identifying and targeting tumor-specific aberrations resulting from causative SGAs. We devel-

oped a novel tumor-specific computational framework that finds the likely causative SGAs in

an individual tumor and estimates their impact on oncogenic processes, which suggests the

disease mechanisms that are acting in that tumor. This information can be used to guide preci-

sion oncology. We report a tumor-specific causal inference (TCI) framework, which estimates

causative SGAs by modeling causal relationships between SGAs and molecular phenotypes

(e.g., transcriptomic, proteomic, or metabolomic changes) within an individual tumor. We

applied the TCI algorithm to tumors from The Cancer Genome Atlas (TCGA) and estimated for

each tumor the SGAs that causally regulate the differentially expressed genes (DEGs) in that

tumor. Overall, TCI identified 634 SGAs that are predicted to cause cancer-related DEGs in a

significant number of tumors, including most of the previously known drivers and many novel

candidate cancer drivers. The inferred causal relationships are statistically robust and biologi-

cally sensible, and multiple lines of experimental evidence support the predicted functional

impact of both the well-known and the novel candidate drivers that are predicted by TCI. TCI

provides a unified framework that integrates multiple types of SGAs and molecular phenotypes

to estimate which genome perturbations are causally influencing one or more molecular/cellu-

lar phenotypes in an individual tumor. By identifying major candidate drivers and revealing their

functional impact in an individual tumor, TCI sheds light on the disease mechanisms of that

tumor, which can serve to advance our basic knowledge of cancer biology and to support preci-

sion oncology that provides tailored treatment of individual tumors.
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Author summary

Precision oncology relies on the capability of identifying and targeting tumor-specific aberra-

tions resulting from causative genomic alterations in each tumor. Conventional cancer driver

identification methods identify candidate cancer driver genes as those exhibit an alteration fre-

quency significantly above the expected frequency that would occur by random chance in a

population of tumor samples. This population-based nature prevents them from performing

instance-specific discovery, and alteration frequency does not contain information regarding

the functional impact of candidate driver genes identified in this approach. Here, we report a

novel Bayesian causal discovery framework, referred to as tumor-specific causal inference

(TCI), which identifies candidate driver genes as the ones that bear significant functional

impact on cancer-related molecular phenotypes at the individual tumor level. By discovering

candidate drivers and their function impact in each individual tumor, TCI analysis reveals

information that is of value for both general cancer biology research and precision oncology.

Introduction

Cancer is mainly caused by a variety of SGAs, including, but not limited to, somatic mutations

(SMs) [1, 2], somatic DNA copy number alterations (SCNAs) [3, 4], chromosome structure

variations [5–7], and epigenetic changes [8–10]. Each tumor hosts a unique combination of

SGAs ranging in number from hundreds to thousands, of which only a small fraction contrib-

utes to tumorigenesis (drivers), while the rest are non-consequential (passengers). Identifying

causative SGAs that underlie different oncogenic processes [11], such as metastasis or immune

evasion, in an individual tumor is of fundamental importance in cancer biology and precision

oncology [12–14].

Current methods for identifying cancer driver genes concentrate on finding those that have

a higher than expected mutation rate in a cohort of tumor samples [15–17]. Some methods

focus on specific mutation sites (e.g., mutation hotspots at specific amino acids or within the

3D functional domain of a protein) that likely affect the function of those proteins encoded by

the mutant genes [17–22]. These mutation-centric, frequency-based models have successfully

identified many major oncogenes and tumor suppressors across cancer types. However, they

do not directly determine the functional impact of mutations, because mutation frequency of a

gene (either at the gene or at the specific amino acid level) does not directly reflect which

molecular or cellular processes will be affected by the altered gene product.

Besides mutations, other SGA events affecting driver genes also contribute to cancer devel-

opment, such as SCNAs [3, 4, 23], chromosome structure variation [5–7], and epigenetic

changes [8–10]. Currently, analyses of SMs, SCNAs, structure variation, and epigenetic data

are usually carried out separately, with distinct statistical models for different types of data [1,

2, 16, 24, 25]. Such disconnection is largely due to the lack of a unifying statistical framework

that is able to integrate diverse data. Integrating diverse data can provide increased statistical

power to detect biological function and to gain biological insights by pooling diverse informa-

tion to assess the role of a driver gene in oncogenesis. A Bayesian approach has the potential to

provide such a unifying framework.

Some recent studies have started to employ a Bayesian framework to infer relationships

between cancer driver mutations and other omics changes, such as transcriptomic changes.

Razi et al. proposed a hybrid Bayesian method to capture the non-linear regulatory effects on

the gene expression levels based on a predefined signaling network [26]. The iDriver is another

non-parametric Bayesian framework developed by Yang et al. which models the joint distribu-

tion of multiomics data and identified 45 novel driver genes that showed significant deviations

from the background in at least one omics data [27]. The above methods employ a Bayesian
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approach to estimate model parameters, rather than searching for causal networks, which is

the focus of the current paper. More recently, Wang et al. developed a Bayesian (regularized)

regression model, referred to as rDriver, to model the relationships between mutations and

gene expression changes [28]. However, it is a population-based regression method, which

does not take into account the tumor-specific changes.

In this study, we designed a general framework based on Bayesian causal modeling and dis-

covery [29–31] that estimates the causal relationships between SGAs and molecular pheno-

types observed in an individual tumor [32]. We call it the Tumor-specific Causal Inference

(TCI) method. By being Bayesian in design, TCI is flexible in the types of data that define both

the SGAs and the molecular phenotypes. By being tumor-specific, TCI is able to model the

functional causal relationships between the SGAs and the molecular phenotypes in a given
tumor. The tumor-specific nature of the TCI differentiates it from previous methods that aim

to detect the association between genomic variations and quantitative traits, in particular, the

expression quantitative trait loci (eQTL) analysis, which is a population-based method that

requires a large number of cases to estimate associations between SGAs and molecular pheno-

types across a population of tumors [33, 34]. However, eQTL does not predict the causal influ-

ence of SGAs on molecular phenotypes in a given tumor. Identification of SGAs that have a

specific functional impact on molecular phenotypes in an individual tumor can help to differ-

entiate candidate driver SGAs from passengers and shed light on the disease mechanism of

that tumor, which could guide precision treatment of the tumor.

Results

TCI is an integrative framework for discovering the functional impact of

SGAs in an individual tumor

We designed the TCI algorithm to discover the causal relationships between SGAs and

DEGs observed in an individual tumor. Specifically, given a tumor t hosting a set of SGAs

(SGA_SETt) and a set of DEGs (DEG_SETt), TCI estimates the causal relationships between

SGAs and DEGs using a bipartite causal Bayesian network [29–31] (Fig 1). It searches for the

tumor-specific causal model Mt with a maximal posterior probability P(Mt|D) given the data-

set D (containing SGAs and DEGs). The tumor-specific nature of the TCI model is reflected

by the assumption that a molecular phenotype change (e.g., a DEG) observed in a specific

tumor should be attributed with a high probability to one of the SGAs observed in the tumor

that explains the phenotype well in the dataset D, or alternatively, to a non-specific cause

denoted as A0 that collectively represents unmeasured genomic events or non-SGA causes,

such as the tumor microenvironment (Detailed description of TCI method is included in S1

Text).

Although the indices of the SGAs and DEGs for the patient case shown are sequential, but

in general they would indicate different SGAs and DEGs in different tumors.

TCI achieves tumor-specific causal discovery through several innovative approaches. Con-

sider a collection of genomic data (denoted as D) from TCGA, and the data from a new tumor

t hosting a set of SGAs (SGA_SETt) and a set of DEGs (DEG_SETt). For a DEG event Ei among

the DEG_SETt, TCI aims to identify an SGA Ah among the SGA_SETt that most likely caused

Ei, or alternatively, TCI may assign the factor A0 as a non-specific cause. TCI evaluates the pos-

terior probability that Ah causes Ei, which we denote as Ah!Ei, using a Bayesian framework as

follows:

P Ah ! EijDð Þ ¼
1

Z
P Ah ! Eið ÞP DjAh ! Eið Þ; ð1Þ

Tumor-specific causal inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007088 July 5, 2019 3 / 29

https://doi.org/10.1371/journal.pcbi.1007088


where

Z ¼
PjSGASETt j

j¼0
PðAj ! EiÞPðDjAj ! EiÞ ð2Þ

is a normalization term. From the above equations, one can see that a potential causal SGA Ah

only competes with other SGAs observed in the same tumor to explain a molecular phenotype

Ei. This allows a less frequent SGA (Ah) to be assigned with high posterior probability as the

cause for a changed phenotype (Ei) in a specific tumor, as long as Ah is the most plausible

cause when compared with the other SGAs in the same tumor. TCI involves the two terms on

the right of the Eq 1: the prior probability that Ah causes Ei, namely, P(Ah!Ei), which can be

evaluated at a population-level prior to observing current tumor t, and the conditional proba-

bility (aka the marginal likelihood) of data D, P(D|Ah!Ei), given that Ah!Ei, which assesses

the functional impact of the causal edges (Supplementary method in S1 Text). This approach

allows TCI to integrate useful aspects of a frequency-oriented framework (via the prior proba-

bility) and a cellular-function-oriented framework (via the marginal likelihood). An important

innovation of TCI is the procedure for evaluating P(D|Ah!Ei), which consist of assessing how

well Ah explains the variance of Ei in tumors hosting Ah (aka, “tumors like me”), as well as how

well the variance of Ei is explained in tumors do not host Ah. Finally, depending on the compo-

sition of SGA_SETt, the tumor-specific prior probability P(Ah!Ei) for the same causal edge

between Ah and Ei can be different in different tumors, and therefore tumor-specific (see the

Materials and methods section for details).

We applied TCI to analyze data from 5,097 tumors across 16 cancer types in TCGA

(https://cancergenome.nih.gov/, S1 Table) to derive 5,097 tumor-specific models (one causal

network model per tumor). As a concrete example to illustrate the characteristics of the TCI

Fig 1. Workflow of TCI analysis. A. A compendium of cancer omics data is used as the training dataset. Three types of data from the 5,097 pan-cancer tumors were

used in this study, including SM data (774,483 mutation events in 22,580 genes), SCNA data (1,612,667 copy number alteration events in 25,038 genes), and gene

expression data (13,563,530 DEG events in 20,411 genes). SM and SCNA data were integrated as SGA data. Expression of each gene in each tumor was compared to a

distribution of the same gene in the “normal control” samples, and, if a gene’s expression value was outside the significance boundary, it was designated as a DEG in the

tumor. The final dataset included 5,097 tumors with 1,364,207 SGA events and 13,549,660 DEG events. B. A set of SGAs and a set of DEGs from an individual tumor as

input for TCI modeling. C. The TCI algorithm infers the causal relationships between SGAs and DEGs for a given tumor t and output a tumor-specific causal model. D.

A hypothetic model illustrates the results of TCI analysis. In this tumor, SGA_SETt has three SGAs plus the non-specific factor A0, and DEG_SETt has six DEG variables.

Each Ei must have exactly one arc into it, which represents having one cause among the variables in SGA_SETt. In this model, E1 is caused by A0; E2, E3, E4 are caused by

A1; E5, E6 are caused by A3; A2 does not have any regulatory impact.

https://doi.org/10.1371/journal.pcbi.1007088.g001
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framework, we present the TCI results of discovering the tumor-specific causes of differential

expression of the proto-onco-gene MPL that is commonly observed in tumors. Thrombopoie-

tin receptor MPL (TPO-R), a major regulator of megakaryocytopoiesis and platelet formation,

is a proto-oncogene whose ligand (TPO) has been recently identified as a novel candidate

marker for ovarian cancer diagnosis and is associated with a poor survival [35, 36]. In recent

work, Ismail el al. developed a breast cancer mouse model and found MPL is linked to cell

death induction and tumor growth suppression [37]. There is evidence to indicate that the

expression of MPL is regulated by the PI3K/AKT signaling pathway [38], which includes as

members PIK3CA, PTEN, PIK3R1, AKT1 (Fig 2A), and other gene products. The uniqueness

of TCI lies at the fact that it seeks to learn the causal relationships between SGAs and DEGs at

the individual tumor level. Our assumption is that a DEG is likely to be regulated by one aber-

rant pathway in a tumor, and such a pathway usually is perturbed by an SGA that affects one

member of the pathway. This assumption is based on the observation that SGAs perturbing

members of a common pathway rarely co-occur in an individual tumor, which is a phenome-

non referred to as mutual exclusivity [39–41]. Thus, tumors with an aberrant PI3K/AKT path-

way usually host an SGA in one of these members, although they likely share target genes, e.g.,

the DEG MPL. A causal discovery algorithm should attribute an MPL DEG event in a tumor

to a member SGA of the PI3K/AKT pathway with high probability if one of those SGAs

appears in the tumor. Indeed, in the tumors exhibiting differentially expressed MPL, TCI

assigns the highest probability to a member of PI3K/AKT pathway if it is altered in the same

tumor. TCI identified PIK3CA as the most frequent cause for DEG of MPL (in 200 tumors),

while PTEN is ranked the second most common cause (in 140 tumors). Interestingly, AKT1
and PIK3R1 are also among the top 10 most frequent causes of an MPL DEG (in 11 tumors

and 10 tumors, respectively) (Fig 2B).

As a comparison, we also performed eQTL analyses [33, 34] to identify the SGAs that are

associated with DEG events in MPL. eQTL assesses the strength of association of genomic varia-

tions on a quantitative trait (e.g., expression of a gene) at the population level, which is often

used to study functional consequence of genomic variations. To perform eQTL analysis, we

used the R package MatrixEQTL [42] which is a widely used tool specifically designed for ultra-

fast eQTL analysis of large datasets (589 citations since 2012). It is also an official tool of the

GTEx project (https://gtexportal.org/home/) and is used in the seeQTL browser (https://seeqtl.

org/). We evaluated the association of all SGAs observed in TCGA with respect to expression

change of MPL, and the p values for the association of four members of the PI3K/AKT pathway

were ranked as 3rd (PIK3CA), 5,690th (PTEN), 7,661th (AKT1) and 14,563th (PIK3R1) among all

other SGA events (Fig 2C) observed in the TCGA PANCAN cohort. For each tumor, we identi-

fied the SGA that had the strongest association with MPL DEG, according to the eQTL-derived

p-values. The results showed that PIK3CA was ranked 1st, PTEN was ranked 113rd, PIK3R1 was

ranked 128th, and AKT1 was ranked 165th as possible causes for MPL DEG in individual

tumors. Thus, while eQTL analysis can identify PIK3CA as an important regulator of MPL
expression, unlike TCI it does not attribute SGAs in other members of PI3K/AKT pathway as

major causes for the changed expression of MPL at the population level.

TCI predicts the most probable tumor-specific causative SGA for each

DEG

We defined an SGA event in a tumor as an SGA with functional impact (SGA-FI) if it was pre-

dicted by TCI to causally regulate 5 or more DEGs in the tumor with an expected false discov-

ery rate ~ 10−7 for discovering SGA-FIs from randomized in silico experiments, which is

determined based a series of random simulation experiments. (Methods and S1 Fig).
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Fig 2. Estimation of the most probable causative SGAs for MPL by TCI and eQTL. A. A diagram of PI3K/AKT pathway, with

PIK3CA, PTEN, PIK3R1 and AKT1 as key signaling proteins in the pathway. B. Results of TCI analysis of the most probable

causes of the DEG MPL. There are ~300 SGAs and ~3,000 DEGs in each tumor on average, which are organized as a bipartite

Tumor-specific causal inference
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We identified a total of 634 genes that were called as SGA-FIs in more than 30 tumors with

an SGA-FI call rate of 25% or greater in our pan-cancer analysis (Methods and S2 Table). The

call rate for an SGA Ah is the ratio of number of tumors in which Ah is designated an SGA-FI

over the number of tumors in which Ah occurs. These SGA-FIs include the majority of the pre-

viously published drivers [1, 2], as well as many novel candidate drivers. For 302 well known

drivers from literature [1, 2], we found 93 were called as significant SGA-FIs and 262 were

called as SGA-FIs in at least one tumor. Note that if SGAs in a well-known driver do not affect

gene expression, e.g., mutation or deletion of BRCA1, TCI would not be able to detect its func-

tional impact. In addition to protein-coding genes, TCI also identified SGA events affecting

microRNAs and intergenic non-protein-coding RNAs (e.g., MIR31HG [43, 44], MIR30B [45],

and PVT1 [46]) as SGA-FIs, (S2 Table).

We further identified target DEGs for the 634 significant SGA-FIs. To minimize false dis-

covery, we required that a target DEG of an SGA-FI be regulated by the corresponding SGA-FI

in at least 50 tumors or in 20% or more of all tumors in which the SGA was called as an SGA-FI.

Since it is statistically difficult to evaluate whether the causal relationship between an SGA-FI

and its predicted target DEG within an individual tumor is valid, we adopted a “pan-cancer”

analysis approach to determine whether each predicted SGA!DEG causal relationship is con-

served across tumors in different cancer types. We appreciate that there are cancer-type-specific

effects, and we did applied the TCI algorithm to tumors of each tissue of origin or cell type to

infer the causal relationships, although our presentation did not concentrate on such results.

We addressed this issue in two major ways. First, when performing pan-cancer analysis, the

goal is to identify the causal relationships that are shared among different cancer types, and con-

servation of causal relationships across different cancer types is a strong indication that the dis-

covered causal relationship is more likely to be true. Therefore, we required that a causal edge is

conserved in at least two types of cancers when TCI is applied to tissue-specific data. Second,

since tissue-specific prevalence of certain SGAs and DEGs can create a confounding effect, in

that they may appear to have correlations in a subset of tumors at the pan-cancer level. To miti-

gate such confounding effects, we specifically identified tissue-specific DEGs and removed

them from pan-cancer analysis. We determine a DEG is a tissue-type-specific DEG if it exists in

more than 90% of the tumors in one cancer type or tissue type while it appears in less than 1%

of the tumors in other cancer types. We found and removed 44 such DEGs from further analysis

(Materials and methods). We then set out to assess whether the inferred causal relationships are

supported by existing knowledge and experimental studies. Finally, we performed preliminary

laboratory experiments on selected SGA-FIs to evaluate the causal relationships between novel

candidate drivers and their target DEGs predicted by TCI.

The landscape of causative SGAs identified by TCI

We compared the distribution of the number of SGAs and SGA-FIs per tumor across cancer

types (Fig 3A and 3B). The average number of SGAs per tumor across cancer types was 268,

graph respectively. Solid green squares represent SGAs present in the current tumor; empty green square represent SGAs not

present in the current tumor. For a DEG observed in a tumor, e.g., MPL, TCI aims to search for the most probable cause among

SGAs observed in the tumor. An arrow represents a causal link between an SGA and a DEG, while the weight of an arrow

represents the posterior probability that the SGA causes the DEG in the current tumor. PIK3CA is predicted to be the most

probable cause for DEG MPL in 200 tumors; thus, we rank PIK3CA as 1st. PTEN is the most probable cause for DEG MPL in 140

tumors, ranking it as the 2nd most probable cause of DEG MPL. AKT1 is the most probable cause for DEG MPL in 11 tumors,

and PIK3R1 is the most probable cause for DEG MPL in 10 tumors. C. eQTL analysis of the possible causes of DEG MPL. eQTL

considers all SGAs (i.e., ~17,600 SGAs) as possible causes for DEG MPL. The p values of PIK3CA, PTEN, PIK3R1 and AKT1 were

ranked as having the 3rd, 5,690th, 7,661th and 14,563th strongest association with DEG MPL, respectively.

https://doi.org/10.1371/journal.pcbi.1007088.g002
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Fig 3. The landscape of SGAs and SGA-FIs. A & B. The distributions of SGAs per tumor and SGA-FIs per tumor of different cancer types. Beneath the bar box plots,

the distributions of different types of SGAs (SM, copy number amplification, and deletion) are shown. C. Distribution of SGA-FIs against the alteration frequency and

protein length. Pink dots indicate SGA-FIs, and green dots represent SGAs that were not designated as SGA-FIs. A few commonly altered genes are indicated by their

gene names, where genes labeled with blue font are well-known drivers, and those labeled with orange font are novel candidate driver. D. Tumor-specific Bayesian

prior distributions for top 15 most frequent SGAs. The number above each box represents number of tumors that the corresponding SGA appears in. E. A Circos plot

shows SGA events and SGA-FI calls along the chromosomes. Different types of SGA events (SM, copy number amplification, deletion) are shown in tracks 2, 3, and 4,

respectively. Track 1 shows the number of times that an SGA is labeled by TCI as an SGA-FI. The gene names denote the top 62 SGA-FIs (some are SGA units) that

were called in over 300 tumors with a call rate> 0.8. Genes labeled with blue font are known drivers from two TCGA reports, and orange ones are novel candidate

drivers. F. SGA-FIs that were called in less than 300 tumors and with a call rate> 0.9 are shown in this frequency-vs-call rate plot. As before, genes labeled with blue

font are known drivers from TCGA studies, and orange ones are novel candidate drivers.

https://doi.org/10.1371/journal.pcbi.1007088.g003
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whereas the average number of SGA-FIs identified by TCI was approximately 34 per tumor.

Interestingly, TCI designated all SGAs with very high alteration frequency (perturbed in more

than 500 tumors, or> 10%) as SGA-FIs (Fig 3C). One immediate concern for TCI is that it

might call certain long genes, such as TTN and MUC16, as SGA-FIs solely due to their high

genomic alteration rate. This concern was addressed by adopting statistical test results from

MutSigCV analysis, which specifically addressed the biased mutation rate introduced by

lengths and chromosome locations of genes. In our analysis, we represented the predicted

effect of gene length and location by way of the prior probability term P(Ah!Ei), and as such,

the prior probabilities for certain long genes, such as TTN and MUC16, were several orders

of magnitude lower than other frequently altered well-known drivers (Fig 3D). Thus, the

strength of statistical relationships between SGAs in these genes and their target DEGs, as con-

veyed by the marginal likelihood term P(D|Ah!Ei), must be sufficiently high to overcome the

low prior probabilities of these genes being regulators of DEGs. Many SGA-FIs with an alter-

ation frequency ranging from 30 to 500 tumors (0.5–10%) appear among other SGAs with

similar protein lengths and alteration rates (Fig 3C). Since genes with similar protein length

and alteration rate usually have similar prior probabilities of being drivers, TCI differentiated

SGA-FIs from others based mainly on the difference in marginal probability P(D|Ah!Ei) asso-

ciated with an SGA and candidate target DEGs. These results indicate that the function-ori-

ented nature of TCI plays a significant role in detecting SGA-FIs.

We illustrated the landscape of common SGA events (Fig 3E) using a Circos plot (http://

circos.ca/), and highlighted 44 SGA-FIs identified by TCI in more than 300 tumors (> 6% of

the tumors) with a call rate (fraction of SGA instances affecting a gene being called as an

SGA-FI event) greater than 0.8. The plot illustrates the integrative approach of TCI, which

combines different types of SGA events in a gene and detects their function impact. For exam-

ple, TCI combined mutation and deletion events in LRP1B (at 1 to 2 o’clock position on the

plot) to detect common functional impact of these SGA events (see later section), whereas call-

ing SGA-FI events for ERBB2 (Her2) is mostly associated with amplification of the gene. TCI

also designated many relatively low-frequency SGAs as SGA-FIs (in ~ 30 tumors or ~ 0.5%)

with high call rates (> 0.9) (Fig 3F). Of interest, besides identifying well-known cancer drivers,

e.g., TP53, PIK3CA, PTEN, KRAS, and CDKN2A) as SGA-FIs, TCI also designated as SGA-FIs

some very frequently altered genes, e.g., TTN, CSMD3, MUC16, LRP1B, and ZFHX4, whose

roles in cancer development remain controversial. These genes are excluded from driver gene

lists when assessed by mutation-centered and frequency-based methods [2, 16], but other

computational and experimental studies [47–49] suggest that some of them are likely cancer

drivers.

Combining SM and SCNA enhances detection of the functional impact of

genes affected by SGAs

A cancer driver gene is often perturbed by multiple types of SGA events that exert common

functional impact. For example, an oncogene, such as PIK3CA, is usually affected by activating

mutations or copy number amplifications, whereas a tumor suppressor, such PTEN, is usually

affected by inactivating mutations or copy number deletions. An SCNA event (amplification

or deletion of a chromosome fragment) in a tumor often encloses many genes, making it a

challenge to distinguish the functional impact of genes within a SCNA fragment.

TCI addresses this problem by integrating both SM and SCNA data, which can create vari-

ances in overall SGA events among genes within a SCNA fragment. When combined with SM

data, PIK3CA clearly has a higher combined alteration rate than its neighbor genes in the same

DNA region with very similar amplification rate in cytoband 3q26. While its neighbor genes
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share almost identical copy number amplification profile across all tumors, the alteration pro-

file of PIK3CA is significantly different when both SM and SCNA data are considered (Fig

4A). When calculating whether amplification of PIK3CA is causally responsible for a DEG

observed in a tumor, TCI uses the statistics collected from all tumors with PIK3CA alterations,

including both CN amplification and SM, to compute the marginal likelihood and predict

whether a causal relationship between PIK3CA amplification and the DEG exists in the tumor.

As such, the algorithm is able to differentiate the functional impact of PIK3CA amplification

from that of other co-amplified genes. We noted that many genes were affected by both SMs

and SCNAs patterns, including CSMD3 and ZFHX4 (Fig 4A), enabling TCI to detect the func-

tional impact of these SCNA events.

By combining both SM and SCNA data, TCI is able to identify common functional impact

of distinct types of SGA events affecting the same gene across different tumors and cancer

types. For example, PIK3CA is often perturbed by either SMs or CN amplifications (Fig 4B)

although prevalence of each type is different in different cancer types. In breast cancers

(BRCA), PIK3CA is commonly altered by SMs; in ovarian cancers (OV), it is more often

affected by CN amplification; in head and neck squamous carcinoma (HNSC), it is almost

equally altered by SMs and CN amplification. As a well-known cancer driver in many cancer

types, it is expected that amplification and mutations of PIK3CA should share a common func-

tional impact in causally regulating a common set of DEGs.

Taking advantage of the tumor-specific inference capability of TCI analysis, we identified

the target DEGs regulated by each SGA event affecting PIK3CA (either SM or SCNA) in indi-

vidual tumors. DEGs predicted to be caused by either PIK3CA SM or CN amplification have

very similar positive predictive values (PPV) with respect to SGA events in PIK3CA. The PPV

is calculated as the ratio of number of tumors in which a DEG is designated as target of an

SGA-FI such as PIK3CA over all tumors in which PIK3CA is called as an SGA-FI (Fig 4F and

Methods), which reflect the strength of causal relationships between an SGA and its target

DEG. The results indicate that perturbation of PIK3CA by both SM and CN amplification

have very similar functional impact on gene expression changes. We then examined whether

target DEGs caused by PIK3CA SM overlap with those caused by CN amplification, and

indeed the DEG members of the two list significantly overlapped (Fig 4J). Thus, TCI detected

the shared functional impact of distinct types of SGAs perturbing PIK3CA across different can-

cer types. Similar results were obtained for other 249 SGA-FIs (S3 Table) that were commonly

perturbed by both SMs and SCNAs (with each type accounting for > 20% of instances for each

SGA-FI), including CDKN2A, CSMD3 and ZFHX4 (Fig 4).

Causal relationships inferred by TCI are statistically robust

To evaluate validity of the results by TCI, we first examined whether the causal relationships

reported by TCI reflect true statistical relationships between SGA and DEG events rather than

random noise in the data. We generated a series of random datasets using the TCGA data, in

which the DEG status of each gene expression variable was permuted among the tumors, while

the SGA status in each tumor remained as reported by TCGA. After permutation, the statisti-

cal relationships between SGAs and DEGs are expected to be random. We then applied TCI to

these random datasets and compared the posterior probabilities of the most probable causal

edges for each DEG derived using real and permuted data. The results (Fig 5A) show TCI was

able to differentiate true statistical relationships between SGAs and DEGs from random ones

in that it assigned higher posterior probabilities to candidate edges obtained from real data

(red lines) than those obtained from random data (blue lines). As expected, a large number of

derived causal edges from well-known cancer drivers (e.g., TP53 and PIK3CA) were assigned
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Fig 4. SM and SCNA perturbing a gene exert common functional impact. A. Combining SM and SCNA data drisrupts the correlation structure among genes

enclosed in common SCNA fragments. The chromosome cytobands enclosing three example genes (PIK3CA, CSMD3, and ZFHX4) are shown. The bar charts show

the frequency of SCNA (red, standing for amplificaton) and SM (green). The disequilibrium plots beneath the bar charts depict the correlationship among genes

within a cytoband. B-E. The SGA patterns, i.e. SM and CN amplification/deletion, across different cancer types for PIK3CA, CDKN2A, CSMD3 and ZFHX4, F-I.

SGA-FI target DEG call rates in SM tumors and CN amplification/deletion for PIK3CA, CDKN2A, CSMD3 and ZFHX4. J-M. Venn diagrams illustring the

relationships of DEGs caused by CN amplication/deletion and SM for PIK3CA, CDKN2A, CSMD3 and ZFHX4.

https://doi.org/10.1371/journal.pcbi.1007088.g004
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high posterior probabilities. Interestingly, the results also show many causal edges from other

common SGA-FIs (TTN, CSMD3, MUC16, and ZFHX4) to DEGs were also assigned higher

posterior probabilities than would be expected by random chance, indicating that perturbing

these genes had significant impact on transcriptomics of the tumors (Fig 5A and S2A Fig). The

function-oriented nature of TCI is reflected by observations that there are certain SGAs with a

high alteration frequency (occurring in close to 10% of tumors) that were not designated as

SGA-FIs by TCI. For example, WASHC5 has SGA events in 457 tumors but few of these SGA

events were assigned with high posterior probabilities of being SGA-FIs by TCI; similar results

were observed for TBC1D31 (424 tumors) and ADGRB1 (420 tumors) (S2B Fig).

To further exclude the possibility that TCI-reported causal relationships from a high-fre-

quency SGA to DEGs were random associations due to their high alteration frequencies, we

Fig 5. Statistical and experimental evaluation of TCI predictions. A. The causal relationship inferred by TCI is statistically sound. Plots in this panel show the

probability density distribution of the highest posterior probabilities assigned to each DEG in TCGA dataset, when the TCI algorithms was applied to real data

(red) and two random datasets, in which DEGs permutated across all tumors (blue) and the corresponding SGA permutated across all tumors (green). The panel

on the left shows the results for the posterior probabilities for all most probable candidate edges in whole dataset; rest of the plots show the distributions of

posterior probaiblities of most probable edges pointing from 3 specific SGAs to predicted target DEGs. B. Boxplots of q-values of t-test associated with predicted

target DEGs for 8 SGA-FIs in different LINCS cell lines that were experimentally perturbed. Each box represent one SGA perturbed in one cell line. For example,

APC-HA1E denotes that APC perturbed in HA1E cell line. Each black dot represents a q-value associated with a target DEG of an SGA-FI, when the expression

value was assessed with a t-test of the before and after genetic manipulation of a given SGA-FI gene.

https://doi.org/10.1371/journal.pcbi.1007088.g005
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conducted another series of single-SGA-permutation experiments, in which the SGA events of

a gene (e.g., TTN) were randomly permuted across all tumors to disrupt the statistical relation-

ships between SGAs of this gene and DEGs, while the overall frequency of the SGAs of the

gene remains the same. We performed such single-SGA-permutation experiments for the 6

most commonly altered genes: TP53, TTN, PIK3CA, CSMD3, MUC16, and ZFHX4. The results

(Fig 5A and S2B Fig) also show that when TCI analysis was applied to these permuted data

(green lines), none of these 6 genes were designated as an SGA-FI according to our criteria.

Taken together, these results support that TCI is detecting valid (non-spurious) statistical rela-

tionships between SGA and DEG events in real data.

Causal relationships inferred by TCI are biologically sensible

We further evaluated whether the TCI-inferred causal relationships between SGAs and DEGs

agree with existing knowledge and experimental results. We compared the predicted causal

relationships between PIK3CA and DEGs with experimental results from an independent

study. Recently, Hart et al. [50] studied the functional impact of a single mutation, H1047R, of

PIK3CA by knocking in the mutation into the breast epithelial cell line MCF-10A and compar-

ing the transcriptomic profile between the wild type and the PIK3CAH1047R isogenic cell lines,

which is the only transcriptomic study that is associated with the PIK3CA hotspot mutation so

far. They identified 1,434 DEGs caused by the introduction of the mutation. We note that

there exist differences among different cell lines and also between cell lines and tumor samples.

In order to bridge the gap between cell lines and Pan-cancer tumor samples, we extracted the

BRCA samples and compared the TCI-predicted PIK3CA target DEGs in breast cancer tumors

with that from Hart’s study. We found that 12 out of 92 TCI-predicted PIK3CA SM driving

DEGs overlap with the experimentally-derived DEG set (hypergeometric test p = 0.01).

Since RB1 protein regulates the function of transcription factor E2F1[51], it is expected that

E2F1-regulated genes should be enriched among the RB1-targeted DEGs predicted by TCI.

We used the PASTAA program[52] (trap.molgen.mpg.de/PASTAA.htm) to search for motif

binding sites in the promoters of the 237 DEGs that TCI predicted to be regulated by RB1, and

it found that E2F1, E2F2, and DP-1 were the three top transcription factors for these genes

(p< 10−6).

We also used the large-scale perturbation experiments carried by the Library of Integrated

Network-Based Cellular Signatures (LINCS) project [53] to evaluate predicted causal relation-

ships between SGA-FIs and their predicted target DEGs. The LINCS project performed sys-

tematic gene-manipulation (knockdown and overexpression) experiments using small

interfering RNAs targeting over 4,000 genes in multiple cell lines, and cellular responses were

measured as expression changes in 978 landmark genes (using a technology referred to as the

L1000 assay). We selected the 8 most frequent SGA-FIs that were also experimentally manipu-

lated in the LINCS project and performed t-tests on the expression values of all L1000 genes

and analyzed the results of the perturbation experiments relative to the control condition in

each cell line. We then examined the statistical significance of these differences and assessed

the false discovery rate (q values) associated with the predicted target DEGs of each SGA. For

each of the 8 SGA-FIs, the majority of predicted target DEGs were differentially expressed in

multiple cell lines after experimental manipulation of the SGA-FI genes (Fig 5B). We note that

certain target DEGs of an SGA have tissue-specific expression patterns, and we organized tar-

geted DEGs according to tissue of origins and examined the percent of DEGs responding to

manipulation of corresponding SGAs (S4 Table). Interestingly, we also found that TTN was

perturbed in one cell line (VCAP), and 5 out of 7 predicted target DEGs responded to manipu-

lation of TTN. Among them, 4 genes (SPP1, STAT1, C5 and GPER1) are known to be
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associated with development and/or progression of cancer [54–57]. In summary, the causal

relationships between SGAs and DEGs predicted by TCI were supported by multiple lines of

examination, including the use of existing knowledge of these relationships as well as targeted

and systematic experimental results.

TCI indicated that CSMD3 and ZFHX4 are 4th and 12th most frequent SGA-FIs, and yet,

they are designated as cancer drivers (S2 Table) in previous studies [17–22]. We examined

whether experimental manipulations of CSMD3 and ZFHX4 expression affect oncogenic phe-

notypes. We identified two cancer cell lines, HGC27 and PC3, with CSMD3 and ZFHX4 ampli-

fication respectively, and we knocked down the expression of the two genes using siRNAs,

followed by monitoring cellular phenotypes (see Methods for details). Our results showed that

knocking down CSMD3 and ZFHX4 in the respective cell lines significantly attenuated cell

proliferation (viability) and migration (Fig 6A–6D). In addition, knockdown of ZFHX4
induced apoptosis (Fig 6E). These results provide support that these genes are involved in

maintaining the cancer-related cellular phenotypes in these cell lines.

SGA-FIs regulate genes involved in well-known oncogenic processes

To gain a better view of functional impacts of SGA-FIs in cancer development, we further

examined their impact on 1,855 genes from 17 cancer-related “hallmark” gene sets from the

MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp). On average, 374 cancer

hallmark genes are found to be differentially expressed in a tumor. TCI found 96 SGA-FIs that

are predicted to regulate members of these 1,855 hallmark genes. These results illustrate the

impact of an SGA on cancer hallmark processes. We listed the relationships between the 96

SGA-FIs with respect to the 17 cancer hallmark processes to identify the target DEGs for each

of 96 SGA-FIs (S5 Table). The relationships between top 45 SGA-FIs with largest number of

target DEGs with respect to the hallmark processes are shown in (Fig 7A). For example,

CTNNB1 is known as the top regulator of WNT pathway and it is predicted by TCI to cause

14% DEGs in HALLMARK_WNT_BETA_CATENIN_SIGNALING pathway [58]; RB1 regu-

lates 15% of the genes in HALLMARK_E2F_TARGETS [59]; TP53 regulates genes involved in

apoptosis and in a broad assortment of functions across many other oncogenic pathways [60,

61]; Our analysis also suggests that CDKN2A plays an important role in the epithelial-mesen-

chymal transition (EMT) process, which agrees with previous studies [62].

TCI analyses reveal functional connections among SGA-FIs

The causal relationships between SGAs and DEGs revealed by TCI enable us to explore

whether distinct SGAs in different tumors do in fact perturb a common signal, by examining if

they share overlapping target DEGs. To this end, we evaluated all pair-wise intersections

between target DEG sets of SGA-FIs to identify SGA pairs sharing significantly overlapping

target DEGs (p< 0.05 Fisher’s exact test, and q< 0.05), and found 2669 such SGA-FI pairs (S6

Table). We then organized SGA-FIs that perturb common signals into a graph, in which an

edge connecting a pair of SGA-FI nodes indicates significant overlap of their target DEGs. For

example, the top 15 SGA-FIs (ranked according to the FDR p values of overlapping DEG sets)

that share DEGs with PIK3CA include PTEN, CDH1, ERBB2, and GATA3, which are known

cancer drivers, and their connections agree with existing knowledge (Fig 7B) [63–65].

The capability of revealing functional connections among SGAs provides a means of evalu-

ating whether a novel candidate driver shares functional impact with well-known drivers,

which not only provides an indication of whether the candidate driver is involved in oncogenic

processes (and thus a candidate cancer driver gene) but also sheds light on which pathway it

may be involved in. The top 15 SGA-FIs sharing common target DEGs with TTN include
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Fig 6. Cell biology evaluation of oncogenic properties of CSMD3 and ZHFX4. A-B. The impact of knocking down CSMD3 and ZFHX4 on cell

proliferation. C-D. The impact of knocking down CSMD3 and ZFHX4 on cell migration. E. Impact of ZFHX4 knockdown on apoptosis in PC3 cell line

measured by Annexin V and propidium iodide (PI) staining.

https://doi.org/10.1371/journal.pcbi.1007088.g006
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some well-known drivers including APC, KRAS, and STK11 (Fig 7C). Therefore, TTN may

share similar functional impact with these known drivers. The top 15 SGA-FIs connected with

CSMD3 and ZFHX4 (Fig 7D and Fig 7E) also form densely connected networks that include

well-known cancer drivers, such as KRAS, GATA3, KEAP1, ERBB2 and STK11, suggesting that

alteration of CSMD3 and ZFHX4 may perturb some of the same signaling pathways as do

Fig 7. Detection of functional impact of SGA-FIs reveals functional connections among SGA-FIs. A. Top 45 SGAs-FIs (regulating the largest number of DEGs) and

their relationships with 17 cancer hallmark gene sets. The value in a cell represents the fraction of genes in a hallmark gene set that is covered by the target DEGs of each

SGA-FI. B-E. Top 15 SGA-FIs that share the most significant overlapping target DEGswith PIK3CA, TTN, CSMD3, and ZFHX4. An edge between a pair of SGA-FI

indicate that they share significantly overlapping target DEG sets, and the thickness of the line is proportional to negative log of the p-values of overlapping target DEG

sets. F. An “oncoprint” illustrating the causal relationships between the DEG RUNDC3B and its 3 main drivers according to TCI, namely, PIK3CA, CDKN2A, and

PTEN. Each column corresponds to a tumor; green bars indicate tumors in which TCI designated each of the three SGA genes as a driver, regardless of what DEGs it

was driving in a given tumor. The causal relationship is color-coded, which illustrates which SGA-FI is predicted by TCI to cause the RUNDC3B DEG event; the blue bar

indicates the DEG events that were assigned to SGA-FIs other than the above 3 SGA-FIs; gray bars indicate a wild type genomic and transcriptomic status.

https://doi.org/10.1371/journal.pcbi.1007088.g007
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these known drivers. We found similar results for other common SGA-FIs, including

CDKN2A, PTEN, MUC16, and LRP1B (S3 Fig).

Transcription of a gene is often regulated by a pathway, and it is expected that major driver

SGAs of a DEG should include members of such a regulatory pathway. As an example, Fig 7F

shows the SGA events that TCI designated as the cause of differential expression of RUNDC3B
in different tumors. The TCI analysis indicates that PIK3CA is the most common cause.

Besides SGAs in PIK3CA, TCI inferred that SGAs in CDKN2A and PTEN are two other major

drivers of RUNDC3B DEG events. The results suggest that aberrations in PI3K pathway (as a

result of SGAs perturbing PIK3CA and PTEN) is the main cause of these DEG events, and

CDKN2A may act as an alternative regulator. It is also interesting to note that in certain tumors

when both SGAs affecting CDKN2A and PTEN were present, TCI assigned PTEN as the most

likely driver of RUNDC3B, instead of CDKN2A, even though the SGAs in the latter are more

frequent. The results indicate that although CDKN2A SGA events explain the overall DEG var-

iance of RUNDC3B better than PTEN, the strength of statistical association between PTEN and

some DEGs in certain tumors may be stronger than that of CDKN2A, and TCI can detect such

statistical relationships.

Tumor-specific causal inference reveals tumor-specific disease mechanisms

TCI analysis enables us to identify major SGAs that causally regulate molecular phenotypic

changes (in the current case, DEGs) in an individual tumor. In this way, TCI not only discov-

ers potential drivers of an individual tumor but also suggests which oncogenic processes they

may affect. Thus, TCI can provide insights about tumor-specific disease mechanisms, particu-

larly when more oncogenic phenotypic data types become available, such metabolomic data

and protein expression data.

TCI results enabled us to examine each tumor profiled by TCGA to identify the major can-

didate driver SGAs and their target DEGs. Further examining the DEGs involved in hallmark

biological processes allows us to study which biological processes an SGA affects. As an exam-

ple, Fig 8A shows the SGA-FIs and their target cancer processes for a tumor (TCGA-B1-A657)

of Kidney Renal Papillary cell carcinoma (KIRP), where genes in 9 oncogenic hallmark process

from MSigDB are significantly enriched among the DEGs, including the following pathways

that are strongly regulated by one of more SGA-FIs: the Epithelial Mesenchymal Transition

pathway, the KRAS signaling pathway, the TNFA signaling via NFKB pathway, and the IL2

STAT5 signaling. We also identified major SGA-FIs (according to the number of DEGs regu-

lated by them in the tumor) that affect these processes (Fig 8A). In this figure, a green arrow

indicates that an SGA-FI regulates at least 10% of the genes in the corresponding signaling

pathway. TCI identified 6 such SGA-FIs, including some well-known cancer drivers, such as

PTEN and NEFH, and potential cancer drivers mentioned in recent studies, such as TLK2[66],

USP13[67], and PIM3[68].

SGAs cause cancer by perturbing cellular signaling pathways, and a pathway usually con-

sists of multiple signaling proteins. Thus, it is possible that tumors having very distinct SGA

profiles may in fact share very similar patterns of pathway perturbation, thus sharing similar

gene expression profiles. We further identified another KIRP tumor (TCGA-HE-A5NL),

which shares a similar overall DEG profile to that of TCGA-B1-A657 (Fig 8B). These two

tumors shared 281 DEGs related to the aforementioned oncogenic processes, and many DEGs

in each oncogenic process were shared by the two tumors. However, each of these two tumors

also had its unique SGA set, such as 57 SGAs in TCGA-B1-A657, 65 in TCGA-HE-A5NL, and

only 2 common SGAs (CADM3 and NEFH). TCI discovered similar target DEGs for NEFH in

both tumors. Although many DEG members in each oncogenic process were shared, different
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SGA-FIs were designated as their candidate drivers. The above results illustrate that TCI is

able to suggest disease mechanisms of individual tumors, and such information can be further

analyzed to suggest tumors sharing common disease mechanisms.

Discussion

TCI is novel computational framework to assess whether a genomic alteration event causally

influences one or more molecular/cellular phenotypes at the level of individual tumor. This

tumor-specific and causality-center framework provides a new perspective to study cancer

driver genes and disease mechanisms of individual tumors. The tumor-specific nature of TCI

enables discovering causal relationships and shedding light on disease mechanism of an indi-

vidual tumor. Further exploring the commonality and differences in disease mechanisms of a

large number of tumors in the population will significantly help us better understand cancer

biology in general. More importantly, understanding the disease mechanism of each tumor

lays a solid foundation for guiding personalized therapies and advancing precision oncology.

The causality-centered nature of the TCI provides a unifying framework to combining data

(statistics) of different types of SGAs, eliminating the need of separately assessing whether

mutations, or SCNAs, or other SGA events in a gene are over-enriched in a cancer population

by conventional approaches, which would require reconciling measurements and baseline

models associated with each type of SGA. Integrating diverse types of SGA events is statistically

sensible which increases the statistical power for assessing the functional impact of perturbing

a candidate driver gene. It is also biologically sensible that a driver gene is often perturbed by

different types of SGA events leading to common functional impact. The fact that a gene is

often perturbed by different types of SGAs leading to common phenotypic changes provides

strong support that the gene is a candidate driver because its functional impact is positively

selected in cancer.

Our analyses of TCGA data revealed the functional impact of many well-known, as well as

a large number of novel SGA-FIs, with a wide range of prevalence in tumors ranging from 1%

to more than 10%. These results serve as a catalogue of major SGA events that potentially con-

tribute to cancer development. Discovery of novel candidate drivers also provides potential

targets for developing new anti-cancer drugs. By revealing the functional impact of candidate

drivers (e.g., a signature of DEGs), TCI results can be utilized to identify SGAs sharing similar

functional impact and to discover cancer pathways de novo or to map novel candidate drivers

to known pathways.

Interestingly, TCI revealed functional impact of certain SGAs with very high alteration fre-

quencies, such as TTN, CSMD3, MUC16, RYR2, LRP1B, and ZFHX4, whose roles in cancer

development remain controversial. There are studies indicating that their high mutation rates

are likely due to heterogeneous mutation rates at different chromosome locations [2, 16]. TCI

analysis provides a new perspective to examine the role of these genes: assessing whether

Fig 8. TCI predicts the SGA-FIs and their functional impact at the individual tumor level. A. A graph produced by TCI for

tumor TCGA-B1-A657 that predicts major SGA-FIs and their regulated cancer processes. Blue nodes represent SGA-FIs and

red nodes (squares) represent oncogenic processes. An green directed link indicates that TCI predicts that the SGA-FI at the

tail of tha arrow regulates 10% or more of the DEGs in the cancer process at the head of the arrow. B. Same DEGs regulated by

distinct SGA-FIs in different tumors. DEGs in cancer processes shared between tumor TCGA-B1-A657 and tumor TCGA-

HE-A5NL are shown as pie-charts. Blue nodes denote SGA-FIs in tumor TCGA-B1-A657. Red nodes denote SGA-FIs in

tumor TCGA- HE-A5NL. Yellow nodes, (i.e., NEFH), are shared by both tumors. Each large node in the middle represents an

oncogenic process. Within the circular nodes in the middle of the figure, the number in the purple area denotes the number of

DEGs specific to TCGA-B1-A657. The number in the red area denotes the number of DEGs specific to TCGA- HE-A5NL. The

number in the yellow area denotes the number of DEGs shared by both tumors. An green directed link indicates an SGA-FI

regulates 10% or more DEGs in the cancer process.

https://doi.org/10.1371/journal.pcbi.1007088.g008
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perturbations (considering all SGA events) in these genes are supported as causally influencing

molecular and cellular phenotype changes. Instead of concentrating on assessing whether its

frequency is above random chance, TCI evaluates the functional impact of an altered gene that

determines whether it contributes to (drives) cancer development. Our results suggest that per-

turbing these genes, either by genome alterations, such as SM and/or SCNA, or by experimental

manipulations, has significant impact on molecular and cellular changes in both tumors and

cell lines. Therefore, these results motivate further investigation of an alternative hypothesis for

high overall alteration rates of these genes in cancer: perturbation of these genes leads in a vari-

ety of ways to functional changes that provide oncogenic advantages. The results suggest that

utilizing diverse types of SGA events in these genes is in fact a result of positive selection.

The TCI model can be extended in several ways. First, with its capability of integrating het-

erogeneous data types, TCI can be further extended to include additional SGA types (e.g.,

DNA methylation) and molecular phenotypes (e.g., protein expression and metabolomics

data) in order to provide a more comprehensive model of the causal relationships within

tumor cells. Such extensions can be readily achieved by representing such events in the SGA

data matrix, with minimum change in the TCI algorithm. Second, the functional impact of

each SGA (i.e., either activating or repressing the gene expression) should be further studied to

determine the SGA-FI as an oncogene or a tumor suppressor. Third, the TCI search algorithm

can be relaxed to allow synergistic interactions between SGAs in regulating a single DEG

which can be crucial to induce complex changes in gene expression pattern [69]. Last but not

the least, the recent emergence of single cell multi-omics sequencing technology has enabled

researchers to analyze gene mutations, copy number variants, methylations and gene expres-

sion changes simultaneously at the individual cell level [70–72]. When large, multi-omics,

tumor single-cell cohort datasets become available, they will provide us the opportunity to per-

form TCI on tumor multi-omics data at the single cell level and advance our understanding of

cell-to-cell variability and thus cancer progression.

Conclusion

This paper presented the TCI algorithm, which concentrates on addressing a fundamental ques-

tion in discovering cancer-driving genes: whether perturbation of a gene (considering different

types of perturbations) is causally responsible for certain molecular/cellular phenotypes (consid-

ering different phenotypic measurements) relevant to cancer development in a tumor. We com-

bined multiple heterogeneous genome data types and applied the TCI algorithm to 5,097

tumors across 16 cancer types from TCGA. TCI identified over 600 significant SGA-FIs, includ-

ing many known drivers, which were further supported by our computational analysis and

experimental evaluations. We illustrated that these SGA-FIs regulated expression changes of

genes involved in well-known oncogenic processes. We showed that two tumor samples with

very similar DEG expression profiles may nonetheless have significantly different SGA-FIs that

account for those profiles. Thus, TCI provides a new statistical framework for predicting causal

SGAs and understanding their functional impact on oncogenic processes of an individual

tumor. Finally, TCI is a special case of a general instance-based causal inference framework [73,

74] that can be broadly used to delineate causal relationships between genomic variance and

phenotype changes at the level of individuals which can be a single cell or an individual patient.

Materials and methods

SGA data collection and preprocessing

We obtained SM data for 16 cancer types directly from the TCGA portal (https://tcga-data.nci.

nih.gov/tcga/dataAccessMatrix.htm) (accessed in October 2014). We considered all the non-
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synonymous mutation events of all genes and considered the mutation events at the gene level,

where a mutated gene is defined as one that contains one or more non-synonymous mutations

or indels.

SCNA data were obtained from the Firehose browser of the Broad Institute (http://gdac.

broadinstitute.org/). TCGA network employed GISTIC 2.0[25] to process SCNA data, which

discretized the gene SCNA into 5 different levels: homozygous deletion, single copy deletion,

diploid normal copy, low copy number amplification, and high copy number amplification. We

only included genes with homozygous deletion or high copy number amplification for further

analysis. We further screened out the genes with inconsistent copy number alteration across

tumors in a given cancer type (i.e., gene was perturbed by both copy number amplification and

deletion events in the same cancer type and both types of events occurred> 25% of tumors).

We combined preprocessed SM data and SCNA data as SGA data, such that a gene in a

given tumor was designated as altered if it was affected by either an SM event and/or an SCNA

event.

DEG data collection and preprocessing

Gene expression data were preprocessed and obtained from the Firehose browser of the Broad

Institute. We used RNASeqV2 for cancer types with expression measurements in normal tis-

sues. For cancer types without RNASeqV2 measurements in normal cells (i.e., glioblastoma

multiforme and ovarian cancer), we used microarray data to identify DEGs. We determined

whether a gene is differentially expressed by comparing the gene expression in the tumor cell

against that in the corresponding tissue-specific normal cells. For a given cancer type, assum-

ing the expression of each gene (log 2 based) follows Gaussian distribution in normal cells, we

calculated the p values of each gene in a tumor, which estimated how significantly different the

gene expression in tumor was from that in normal cells. If the p value was equal or smaller

than 0.005 to either side, the gene was considered as differentially expressed in the correspond-

ing tumor. Furthermore, if a DEG was associated with the SCNA event affecting it, we

removed it from the DEG list of the tumor. We also removed tissue-specific DEGs if they were

highly correlated with cancer types or tissue origin (i.e., Pearson correlation coefficient larger

than 0.9). We thus identified the DEGs for each tumor and created a tumor-gene binary matrix

where 1 represents expression change, and 0 represents no expression change.

Tumor-specific model priors

Defining an informative prior that can represent the biological foundations of different genome

alterations in tumor cells can help us effectively correct model bias and thus make accurate pre-

dictions [30, 75]. Therefore, we need to specify the model prior P(Ah!Ei) for each SGA Ah in

each tumor t by comparing its alteration frequency in the tumor cohort against normal cells. In

our paper, we used additional genomic information for both SM and SCNA to derive the prior

probability of each edge Ah!Ei using existing prior knowledge. We calculated and collected the

following SGA information for each gene h: (1) the MutSigCV p value for h among the tumors

in D from TCGA, and (2) the copy number amplification and deletion of h in a normal popula-

tion without cancer from 1000 genome project (http://www.internationalgenome.org/) [76, 77].

Such information can be applied to help account for mutation and copy number alterations

that are due to differences in gene lengths and chromosome locations which doesn’t depend on

SGA frequency.

For a tumor t and an arbitrary DEG Ei, we defined the prior probability of Ah being a parent

of Ei using a multinomial distribution with a parameter vector θ = (θ0,θ1,θ2,. . .,θh,. . .,θm)T,

where
Pm

h¼0
yh ¼ 1. Here, θ0 is a user-defined parameter representing the prior belief that the
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non-SGA factor A0 being the cause of Ei, and θh represents the prior probability of Ah being

the cause of Ei. In this study, we set θ0 = 0.1. We assumed that θt~Dir(θt|μt), where mt ¼

ðm0; m1; . . . ; mh; . . . ; mmt
Þ
T

is a tumor-specific Dirichlet parameter vector governing the distri-

bution of θt. For a tumor t, we calculated the prior probability θh as follows:

yh ¼ 1 � y0ð Þ
mhPm

h0 ¼1
m0h

ð3Þ

where h’ indexes over the m variables in SGA_SETt; ph is MutSigCV p value for Ah and μh = 1

−ph is a Dirichlet parameter.

We also analyzed three different ways of calculating θh. First, as a simple default, we assume

there are no informative priors. We distribute the residual probability mass evenly for all SGAs

in tumor t as yh ¼ 1 � y0ð Þ 1

m. Second, we infer informative priors by incorporating SGA fre-

quency as yh ¼ 1 � y0ð Þ
fhPm

h0¼1
f 0h

, where fh is the alteration frequency of SGA h. The idea is that

the driver genes should be positively selected to drive cancer progression, and therefore more

likely are enriched in the tumor population. Third, we consider both SGA frequency and num-

ber of SGAs in each tumor so that the prior is calculated as yh ¼ 1 � y0ð Þ
whPm

h0¼1
w0h

, where

wh ¼
P

t2Uh
1

mt
, mt is the number of SGAs in tumor t and Uh denotes the tumor set in which

SGA h has a genome alteration.

Different ways of calculating priors correspond to different biological assumptions, and

thus, have distinct values, as shown in S7 Table. However, as illustrated in S8 and S9 Tables, a

significant portion of the SGA regulators for DEGs and SGA-FIs called in each tumor remain

the same for different priors. Thus, the strength of statistical relationships between SGAs and

their target DEGs, as influenced by the marginal likelihood term P(D|Ah!Ei), are sufficiently

high to overcome the differences in prior probabilities of some SGAs being regulators of DEGs

even if the priors are calculated differently.

Sensitivity analysis of A0 prior effect

We performed sensitivity analysis to examine the effect of the A0 prior. We used TCI to pre-

dict the SGA regulators for DEGs in each tumor using different A0 priors, i.e., 0.001, 0.005,

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. We compared the top SGA changes for DEGs in each tumor.

As shown in S4 Fig, the top SGA changes are not significant, i.e.<0.08%, even though there is

a 500-fold change for the A0 priors. We found TDI results are quite stable when the A0 prior

is in the range of 0.05 to 0.3. We then set 0.1 as the prior probability for A0.

Identification of SGA-FIs

Causal edges from different SGAs have different posterior probabilities, as expected. To stan-

dardize how to interpret the significance of a posterior probability for a causal edge Pe, we

designed a statistical test based random permutation experiments. We generated a series of

permuted datasets using the TCGA data, in which the DEG values were permuted among the

tumors of a common tissue of origin, while the SGA status in each tumor remained as reported

by TCGA. This permutation operation disrupts the statistical relationships between SGAs and

DEGs while retaining the tissue-specific patterns of SGAs and DEGs. We applied TCI algo-

rithm to permuted data to calculate posterior probabilities of edges emitting from each SGA in

random data. We then determined the probability that an edge from an SGA could be assigned

with a given Pe or higher in data from permutation experiments (i.e., the p value to the edge

with a given Pe).
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The p value in this setting is also the expected rate of false discovery of an SGA as the cause

of a DEG by random chance. We utilize this property to control the false discovery rate when

identifying SGA-FIs in a tumor. We designated an SGA event in a tumor as an SGA-FI if it has

5 or more causal edges to DEGs that are each assigned a p-value < 0.05. The overall false dis-

covery rate of the joint causal relationships between an SGA to 5 or more target DEGs is

smaller than 10−7. The S1 Fig shows that at this threshold, none of SGA was assigned as

SGA-FI by random chance.

Cell culture and siRNA transfection

HGC27 (Sigma-Aldrich) and PC-3 (ATCC) cells were cultured according to the manufactur-

er’s recommendations. The non-targeting and the CSMD3 and ZFHX4 siRNAs were obtained

from OriGene (Rockville, MD). The siRNA sequences are as follow: si-CSMD3-1, GGUAUA

UUACGAAGAAUUGCAGAGT; si-CSMD3-2, ACAAAUGGAGGAAUACUAACAACAG;

si-ZFHX4-1, CGAUGCUUCAGAAACAAAGGAAGAC; si-ZFHX4-2, GGAACGACAGAGA

AAUAAAGAUUCA. The siRNAs were transfected into cells using DharmaFECT transfection

reagents for 48 hrs according to the manufacturer’s instructions.

Cell proliferation and viability assays

Cell proliferation/viability was assayed by CCK-8 assay (Dojindo Laboratories, Kumamoto,

Japan). Briefly, HGC27 and PC3 cells were plated at a density of 3 x 103 cells/well in 96-well

plates. After siRNA transfection for 3 or 6 days, CCK-8 solution containing a highly water-sol-

uble tetrazolium salt WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-

phenyl)-2H-tetrazolium, monosodium salt] was added to cells in each well, followed by

incubation for 1–4 h. Cell viability was determined by measuring the O.D. at 450 nm. Percent

over control was calculated as a measure of cell viability.

Transwell migration assay

Cell migration was measured using 24-well transwell chambers with 8 μm pore polycarbonate

membranes (Corning, Corning, NY). SiRNA-transfected cells were seeded at a density of 7.5 x

104 cells/ml to the upper chamber of the transwell chambers in 0.5 ml growth media with 0.1%

FBS. The lower chamber contained 0.9 ml of growth medium with 20% FBS as chemoattrac-

tant media. After 20 hrs of culture, the cells in the upper chamber that did not migrate were

gently wiped away with a cotton swab, the cells that had moved to the lower surface of the

membrane were stained with crystal violet and counted from five random fields under a light

microscope.

Apoptotic assay

Apoptosis was assessed by flow cytometry analysis of annexin V and propidium iodide (PI)

double stained cells using Vybrant Apoptosis Assay Kit (Thermo Fisher Scientific, Carlsbad,

CA). Briefly, the cells after washing with PBS were incubated in annexin V/PI labeling solution

at room temperature for 10 min, then analyzed in the BD FACSCalibur flow cytometer (Bec-

ton, Dickinson and Company, Franklin Lakes, NJ).

Supporting information

S1 Text. Supporting information containing a detailed description of tumor-specific

causal inference model.

(DOCX)
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S1 Table. Number of tumors per cancer type collected from TCGA.

(XLSX)

S2 Table. S2.1. TCI predicted 634 Candidate SGA-Fis and their target DEGs; S2.2. Cancer

type distribution of 634 Candidate SGA-FIs.

(XLSX)

S3 Table. SGA-FIs that are commonly altered by both SM and SCNA.

(XLSX)

S4 Table. Number of target L1000 genes for 8 most frequent SGA-FIs that are differentially

expressed in different tissue types.

(XLSX)

S5 Table. Percentage of genes involved in the cancer Hallmark processes regulated by

SGA-FIs.

(XLSX)

S6 Table. SGA-FI pairs sharing common target genes.

(XLSX)

S7 Table. Euclidean distance of log10 fold changes between different ways of calculating

priors.

(XLSX)

S8 Table. Overlap ratio of top SGA regulator for DEGs in each tumor between different

ways of calculating priors.

(XLSX)

S9 Table. Overlap ratio of SGA-FI calls in each tumor between different ways of calculat-

ing priors.

(XLSX)

S1 Fig. Controlling false discovery. A. The plot shows the relationship of total number of

SGAs being designated as SGA-FIs with respect to the threshold of calling an SGA-FI in ran-

dom and real data. The x-axis shows the different thresholds, i.e., the number of DEGs pre-

dicted to be regulated by an SGA-FI, and the y-axis shows the number of significant SGA-FIs

across all tumors. B. The plot shows the relationship of average number of SGAs being desig-

nated as SGA-FIs in a tumor with respect to the threshold of calling an SGA-FI in random and

real data. The x-axis shows the different thresholds, i.e., the number of DEGs predicted to be

regulated by an SGA-FI, and the y-axis shows the average number of significant SGA-FIs in a

single tumor.

(TIF)

S2 Fig. Comparison of causal analysis results from real data and random data. A. Compari-

son of distributions of the posterior probabilities of the highest candidate causal edges point

from 3 most frequent SGAs to DEGs. B. Examples of 3 genes with high SGA frequency but

without any high posterior probability causal edges emitting from them. C. Comparison of

number of tumors called as SGA-FIs from the real dataset, randomly permutated DEG dataset

and single SGA permutated dataset for the 6 most frequency SGAs.

(TIF)

S3 Fig. Networks of SGA-FIs share significant overlapping DEGs. A. SGA-FIs interacting

network containing 536 SGA-FIs and 2669 edges. Blue nodes represent known cancer drivers
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and red nodes represent novel SGA-FIs. Node size indicates the number of its affected DEGs

and edge width indicates the number of overlapped DEGs between two nodes. B-E. Top 15

SGA-FIs that share the most significant overlapping target DEGs with CDKN2A, PTEN,

LRP1B, and MUC16. An edge between a pair of SGA-FI indicates that they share significantly

overlapping target DEG sets, and the thickness of the line is proportional to negative log of the

p-values of overlapping target DEG sets.

(TIF)

S4 Fig. Top SGA change rate with respect to different A0 priors.

(TIF)
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