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Abstract 

We report a tumor-specific causal inference (TCI) framework, which discovers 

causative somatic genome alterations (SGAs) through inferring causal 

relationships between SGAs and molecular phenotypes (e.g., transcriptomic, 

proteomic, or metabolomic changes) within an individual tumor. We applied 5 

the TCI algorithm to tumors from The Cancer Genome Atlas (TCGA) and 

identified those SGAs that causally regulate the differentially expressed genes 

(DEGs) within each tumor. Overall, TCI identified 634 SGAs that cause cancer-

related DEGs in a significant number of tumors, including most of the 

previously known drivers and many novel candidate cancer drivers. The 10 

inferred causal relationships are statistically robust and biologically sensible, 

and multiple lines of experimental evidence support the predicted functional 

impact of both well-known and novel candidate drivers. By identifying major 

candidate drivers and revealing their functional impact in a tumor, TCI shed 

light on disease mechanisms of each tumor, providing useful information for 15 

advancing cancer biology and precision oncology. 

 

Keywords: Tumor-specific causal inference, Instance-based Bayesian causal 
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Significance statements 

Cancer is mainly caused by SGAs. Precision oncology involves identifying and 

targeting tumor-specific aberrations resulting from causative SGAs. TCI is a novel 

computational framework for discovering the causative SGAs and their impact on 

oncogenic processes, thus revealing tumor-specific disease mechanisms. This 5 

information can be used to guide precision oncology.  

 

Introduction 

Cancer is mainly caused by a variety of SGAs, including, but not limited to, 

somatic mutations (SMs)(1,2), somatic DNA copy number alterations (SCNAs)(3,4), 10 

chromosome structure variations (5-7), and epigenetic changes (8-10). Each tumor 

hosts a unique combination of SGAs ranging in number from hundreds to thousands, 

of which only a small fraction contributes to tumorigenesis (drivers), while the rest 

are non-consequential (passengers). Identifying causative SGAs that underlie 

different oncogenic processes (11), such as metastasis or immune evasion, in an 15 

individual tumor is of fundamental importance in cancer biology and precision 

oncology (12-14).  

Current methods for identifying cancer driver genes concentrate on finding 

those that have a higher than expected mutation rate in a cohort of tumor samples 

(15-17). Some methods focus on specific mutation sites (e.g., mutation hotspots at 20 

specific amino acids or within a 3D functional domain of a protein) that likely affect 

the function of those proteins encoded by the mutant genes (17-22). These 

mutation-centered, frequency-based models have successfully identified many 
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major oncogenes and tumor suppressors across cancer types. However, they are 

limited in terms of determining the functional impact of mutations, because 

mutation frequency of a gene (either at the gene or at the specific amino acid level) 

does not directly reflect which molecular or cellular processes will be affected by 

the mutant gene product. 5 

In addition to mutation-frequency-centered methods, researchers have also 

explored combining mutation data with transcriptomic data to detect candidate 

drivers. Bertrand et al. (23) and Hou et al. (24) reported methods to identify 

mutation events that are associated changed expression of neighboring genes in a 

biological network (e.g., a protein-protein interaction network), based on the 10 

assumption that such changed expression can be induced by a feedback loop in 

response to changed function of mutated gene, and as such, the mutation is likely 

functional. However, these methods cannot detect direct downstream effects (other 

than feedback) of a mutant gene.  

Besides mutations, other SGA events affecting driver genes also contribute to 15 

cancer development, such as SCNAs (3,4,25), chromosome structure variation (5-7), 

and epigenetic changes (8-10). Currently, analyses of SMs, SCNAs, structure 

variation, and epigenetic data are usually carried out separately, with distinct 

statistical models for different types of data (1,2,16,26,27). Such disconnection is 

largely due to the lack of a unifying statistical framework that is capable of 20 

integrating diverse data. The failure of integrating diverse SGA data foregoes the 

advantages in terms of both statistical power and biological insights that can be 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/329375doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/329375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

gained by pooling diverse information to assess the role of a driver gene in 

oncogenesis.  

In this study, we designed a general framework based on the principle of 

Bayesian causal inference (28-30), referred to as Tumor-specific Causal Inference 

(TCI), for estimating the causal relationships between SGAs and molecular 5 

phenotypes observed in an individual tumor (31). This causality-centered 

framework allows integration of different SGA events to determine whether any of 

them have a causal impact on molecular phenotypes. Identification of SGAs that 

have specific functional impact on molecular phenotypes in an individual tumor can 

help to differentiate candidate driver SGAs from passengers and shed light on the 10 

disease mechanism of an individual tumor. Pooling information across multiple 

tumors provides insights about general oncogenic processes across tumors. Finally, 

understanding disease mechanisms of an individual tumor can guide precision 

oncology.  

 15 

Results 

TCI is a unifying framework for discovering functional impact of SGAs in an 

individual tumor.  

We designed the TCI algorithm to discover the causal relationships between SGAs 

and DEGs observed in an individual tumor. Specifically, given a tumor t hosting a set 20 

of SGAs (SGA_SETt) and a set of DEGs (DEG_SETt), TCI estimates the causal 

relationships between SGAs and DEGs as a bipartite Bayesian causal network (28-30) 

(Figure 1) and searches for the causal model M with a maximal posterior probability 
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���|�� that is most likely given the data D (SGAs and DEGs), which consists of data 

about tumor t and about the tumors in a set of training cases.  

Specifically, we collectively evaluate the impact of different genomic 

alterations—in this study, we only consider SMs and/or SCNAs—affecting a gene as 

an SGA event, and we designate such an event using the gene name. The TCI model 5 

assumes that DEGs in an individual tumor are either caused by the SGAs in the 

tumor or by non-SGA factors related to tumor micro-environment (e.g., hypoxia). It 

further assumes that each DEG is likely regulated by one aberrant pathway in a 

tumor and such a pathway is likely perturbed by a single SGA, due to the well-

known mutual exclusivity among SGAs perturbing a common pathway (32-34). As 10 

such, the TCI model constrains each DEG to be caused by one SGA in an individual 

tumor.  

Given a collection of genomic data (denoted as D) from TCGA and the data 

from a new tumor t, in which an SGA event in a gene h is observed (denoted as Ah) 

and a gene i is differentially expressed (denoted as Ei), TCI evaluates the posterior 15 

probability of a model that the SGA event causes (drives) the DEG event, denoted as 

�� � 	� , in a Bayesian framework: ���� � 	�
|�� 
 ���� � 	�

����|�� � 	��. The 

TCI framework involves the calculation of two components: a prior probability that 

Ah cause Ei, i.e., ���� � 	�
�, and conditional probability (marginal likelihood) of data 

D given the model ���|�� � 	��. This setup allows us to integrate the assumptions 20 

of frequency-based framework and function-oriented framework.  

Using an informative prior that express the possible biological impact of 

different genome alterations can help identify a correct model(35). We assessed the 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/329375doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/329375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

prior probability that ��  is likely a driver in a specific cancer type by adopting the 

assumption and approach of contemporary frequency-based driver framework (16), 

i.e., the more the SGAs in a gene is enriched in a cohort, the more likely it is a driver 

gene in an individual tumor. This allowed us to directly transform the results of the 

statistical test on the significance of mutations in a gene to a prior probability that 5 

Ah is a driver event in a tumor (see Methods).  

We then evaluated the functional impact of an SGA ��  on expression of ith 

gene 	� , denoted as �� � 	� , using a tumor-specific marginal likelihood ���|�� �

	��. The posterior probability ���� � 	�
|�� is derived and normalized by 

considering all SGA events in the tumor, so that the same edge �� � 	�  would have 10 

different posterior probabilities in different tumors because each tumor has a 

distinct SGA_SETt(Supplementary Method). In sum, TCI combines frequency-based 

approach and function-oriented framework to detect functions of candidate drivers 

in a tumor-specific fashion. 

We applied TCI to analyze data from 5,097 tumors across 16 cancer types in 15 

TCGA (https://cancergenome.nih.gov/, Supplementary Table S1) to derive 5,097 

tumor-specific models (a causal network model per tumor). We defined an SGA 

event in a tumor as an SGA with functional impact (SGA-FI) if it was predicted by TCI 

to causally regulate 5 or more DEGs in the tumor with an expected false discovery 

rate ~ 10-7, which is determined based a series of random simulation experiments. 20 

(Methods and Supplementary Figure S1).  
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We have identified a total of 634 genes that were called as SGA-FIs in more 

than 30 tumors with SGA-FI call rate1 of 25% or greater in our pan-cancer analysis 

(Methods and Supplementary Table S2). These SGA-FIs include the majority (87%) 

of the previously published drivers (1,2), as well as many novel candidate drivers. In 

addition to protein-coding genes, TCI also identified SGA events affecting 5 

microRNAs and intergenic non-protein-coding RNAs (e.g., MIR31HG(36,37), 

MIR30B(38), and PVT1(39)) as SGA-FIs, (Supplementary Table S2).  

We further identified target DEGs for 634 significant SGA-FIs. To minimize 

false discovery, we required that a target DEG of an SGA-FI be regulated by the 

corresponding SGA-FI in at least 50 tumors or 20% of all tumors in which the SGA 10 

was called as an SGA-FI. Since it is statistically difficult to evaluate whether the 

causal relationship between an SGA-FI and its predicted target DEG within an 

individual tumor is valid, we adopted a “pan-cancer” analysis approach to determine 

whether each predicted SGA�DEG causal relationship is conserved across tumors 

in different cancer types. To minimize the confounding effect produced by tissue-15 

specific SGAs and tumor-specific DEGs during pan-cancer analysis, we also 

performed TCI analysis on tumors from each cancer type separately, and we only 

retain SGA-FIs detected in at least two cancer types in tissue-specific analysis 

(Supplementary Table S2). We then set out to assess whether the inferred causal 

relationships are supported by existing knowledge and experimental studies. 20 

Finally, we performed preliminary laboratory experiments on selected SGA-FIs to 

                                                       
1 The call rate for an SGA Ah is the ratio of number of tumors in which Ah is designated an SGA-FI over 

the number of tumors in which Ah occurs. 
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evaluate the causal relationships between novel candidate drivers and their target 

DEGs predicted by TCI.  

 

The landscape of causative SGAs identified by TCI  

We compared the distribution of the number of SGAs and SGA-FIs per tumor 5 

across cancer types (Figure 2a – 2b). The average number of SGAs per tumor across 

cancer types was 268, whereas the average number of SGA-FIs identified by TCI was 

approximately 34 per tumor. Interestingly, TCI designated all SGAs with very high 

alteration frequency (perturbed in more than 500 tumors, or > 10%) as SGA-FIs 

(Figure 2c). One immediate concern for TCI is that it could call certain long genes, 10 

such as TTN and MUC16, as SGA-FIs solely due to their high genomic alteration rate. 

This concern was addressed by adopting statistical test results from MutSigCV 

analysis, which specifically addressed the biased mutation rate introduced by 

lengths and chromosome locations of genes. We transformed such knowledge as the 

prior probability ���� � 	�� in our analysis, and as such the prior probabilities for 15 

certain long genes, e.g., TTN and MUC16, were several orders of magnitude lower 

than other frequently altered well-known drivers (Figure 2d). This indicates that the 

strength of statistical relationships between SGAs in these genes and their target 

DEGs, reflected as the marginal likelihood ���|�� � 	��, must be sufficiently high to 

overcome the low prior probabilities of these genes to be designated as regulators 20 

for DEGs. Many SGA-FIs with an alteration frequency ranging from 30 to 500 tumors 

(0.5 – 10%) are dispersed among other SGAs with similar protein lengths and 

alteration rates (Figure 2c). Since genes with similar protein length and alteration 
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rate usually have similar prior probabilities of being drivers, TCI differentiated SGA-

FIs from others based mainly on the difference in marginal ���|�� � 	�� associated 

with an SGA and its target DEGs. These results indicate that the function-oriented 

nature of TCI plays a significant role in detecting SGA-FIs.  

We illustrated the landscape of common SGA events (Figure 2e) using a 5 

Circos plot (http://circos.ca/), and highlighted 44 SGA-FIs identified by TCI in more 

than 300 tumors (> 6% of the tumors) with a call rate (fraction of SGA instances 

affecting a gene being called as an SGA-FI event) greater than 0.8. The plot 

illustrates the integrative approach of TCI, which combines different types of SGA 

events in a gene and detects their function impact. For example, TCI combined 10 

mutation and deletion events in LRP1B (at 1 to 2 o’clock position on the plot) to 

detect common functional impact of these SGA events (see later section), whereas 

calling SGA-FI events for ERBB2 (Her2) is mostly associated with amplification of 

the gene. TCI also designated many relatively low-frequency SGAs as SGA-FIs (in ~ 

30 tumors or ~ 0.5%) with high call rates (> 0.9) (Figure 2f). Of interest, besides 15 

identifying well-known cancer drivers, e.g., TP53, PIK3CA, PTEN, KRAS, and CDKN2A) 

as SGA-FIs, TCI also designated as SGA-FIs some very frequently altered genes, e.g., 

TTN, CSMD3, MUC16, LRP1B, and ZFHX4, whose roles in cancer development remain 

controversial. These genes are excluded from driver gene lists when assessed by 

mutation-centered and frequency-based methods (2,16), but other computational 20 

and experimental studies (40-42) suggest that some of them are likely cancer 

drivers.  
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Combining SM and SCNA enhances detection of the functional impact of genes 

affected by SGAs  

A cancer driver gene is often perturbed by different types of SGA events that 

exert common functional impact. For example, an oncogene, e.g., PIK3CA, is usually 

affected by activating mutations or copy number amplifications, whereas a tumor 5 

suppressor, e.g., PTEN, is usually affected by inactivating mutations or copy number 

deletions. An SCNA event (amplification or deletion of a chromosome fragment) in a 

tumor often encloses many genes, making it a challenge to distinguish the functional 

impact of genes within a SCNA fragment.  

TCI addresses this problem by integrating both SM and SCNA data, which can 10 

create variances in overall SGA events among genes within a SCNA fragment. When 

combined with SM data, PIK3CA clearly has a higher combined alteration rate than 

its neighbor genes in the same DNA region with very similar amplification rate, i.e. 

cytoband 3q26. While its neighbor genes share almost identical copy number 

amplification profile across all tumors, the alteration profile of PIK3CA are 15 

significantly different if both SM and SCNA data are considered (Figure 3a). When 

calculating whether amplification of PIK3CA is causally responsible for a DEG 

observed in a tumor, TCI uses the statistics collected from all tumors with PIK3CA 

alterations, including both CN amplification and SM, to compute the marginal 

likelihood and evaluate whether the causal relationship between PIK3CA 20 

amplification and the DEG is preserved in the tumor. As such, the algorithm is able 

to differentiate the functional impact of PIK3CA amplification from that of other co-

amplified genes. We noted that many genes were affected by both SMs and SCNAs 
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patterns, including CSMD3 and ZFHX4 (Figure 3a), enabling TCI to detect the 

functional impact of these SCNA events.  

By combining both SM and SCNA data, TCI is able to identify common 

functional impact of distinct types of SGA events affecting the same gene across 

different tumors and cancer types. For example, PIK3CA is often perturbed by either 5 

SMs or CN amplifications (Figure 3b) although prevalence of each type is different in 

different cancer types. In breast cancers, PIK3CA is commonly altered by SMs; in 

ovarian cancers, it is more often affected by CN amplification; in head and neck 

squamous carcinoma, it is almost equally altered by SMs and CN amplification. As a 

well-known cancer driver in many cancer types, it is expected that amplification and 10 

mutations of PIK3CA should share a common functional impact, i.e., causally 

regulating a common set of DEGs.  

Taking advantage of the tumor-specific inference capability of TCI analysis, 

we identified the target DEGs regulated by each SGA event affecting PIK3CA (either 

SM or SCNA) in individual tumors. DEGs predicted to be caused by either PIK3CA SM 15 

or CN amplification have very similar positive predictive values (PPV) with respect 

to SGA events in PIK3CA. PPV is calculated as the ratio of number of tumors in which 

a DEG is designated as target of an SGA-FI such as PIK3CA over all tumors in which 

PIK3CA is called as an SGA-FI (Figure 3f and Methods). The results indicate that 

perturbation of PIK3CA by both SM and CN amplification have very similar 20 

functional impact on gene expression changes. We then examined whether target 

DEGs caused by PIK3CA SM overlap with those caused by CN amplification, and 

indeed the DEG members of the two list significantly overlapped (Figures 3j). Thus, 
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TCI detected the shared functional impact of distinct types of SGAs perturbing 

PIK3CA across different cancer types. Similar results were obtained for other 249 

SGA-FIs (Supplementary Table S3) that were commonly perturbed by both SMs and 

SCNAs (with each type accounting for > 20% of instances for each SGA-FI), including 

CDKN2A, CSMD3 and ZFHX4 (Figures 3).  5 

 

Causal relationships inferred by TCI are statistically robust  

To evaluate validity of the results by TCI, we first examined whether the causal 

relationships reported by TCI reflect true statistical relationships between SGA and 

DEG events rather than random noise in data. We generated a series of random 10 

datasets using the TCGA data, in which the DEG status of each gene expression 

variable was permuted among the tumors, while the SGA status in each tumor 

remained as reported by TCGA. After permutation, the statistical relationships 

between SGAs and DEGs are expected to be random. We then applied TCI to these 

random datasets and compared the posterior probabilities of the most probable 15 

causal edges for each DEG derived using real and permuted data. The results (Figure 

4a) show TCI were able to differentiate true statistical relationships between SGAs 

and DEGs from random ones in that it assigned higher posterior probabilities to 

candidate edges obtained from real data (red lines) than those obtained from 

random data (blue lines). As expected, a large number of derived causal edges from 20 

well-known cancer drivers (e.g., TP53 and PIK3CA) were assigned high posterior 

probabilities. Interestingly, the results also show many causal edges from other 

common SGA-FIs (TTN, CSMD3, MUC16, and ZFHX4) to DEGs were also assigned 
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higher posterior probabilities than would be expected by random chance, indicating 

that perturbing these genes had significant impact on transcriptomics of the tumors 

(Figure 4a and Supplementary Figure S2a). The function-oriented nature of TCI is 

reflected by observations that there are certain SGAs with a high alteration 

frequency (occurring in close to 10% of tumors) were not designated as SGA-FIs by 5 

TCI. For example, WASHC5 has SGA events in 457 tumors but few of these SGA 

events were assigned with high posterior probabilities, similar results were 

observed for TBC1D31 (424 tumors) and ADGRB1 (420 tumors) (Supplementary 

Figure S2b).  

To further exclude the possibility that TCI-reported causal relationships from 10 

a high-frequency SGA to DEGs were random associations due to their high alteration 

frequencies, we conducted another series of single-SGA-permutation experiments, 

in which the SGA events of a gene, e.g., TTN, were randomly permuted across all 

tumors to disrupt the statistical relationships between SGAs of this gene and DEGs, 

while the overall frequency of the SGAs of the gene remains the same. We performed 15 

such single-SGA-permutation experiments for the 6 most commonly altered genes: 

TP53, TTN, PIK3CA, CSMD3, MUC16, and ZFHX4. The results (Figure 4a and 

Supplementary Figure S2b) also shows that when TCI analysis was applied to these 

permuted data (green lines), none of these 6 genes were designated as an SGA-FI 

according to our criteria. Taken together, these results indicate that TCI captures the 20 

true statistical relationships between SGA and DEG events in real data.  
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Causal relationships inferred by TCI are biologically sensible 

We further evaluated whether the TCI-inferred causal relationships between 

SGAs and DEGs agree with existing knowledge and experimental results. We 

compared the predicted causal relationships between PIK3CA and DEGs with 5 

experimental results from an independent study. Recently, Hart et al. (43) studied 

the functional impact of single mutation, H1047R, of PIK3CA, by knocking in the 

mutation into the MCF10 cell line and comparing transcriptomic profile between the 

wild type and the PIK3CAH1047R isogenic cell lines. They identified 1,434 DEGs caused 

by introduction of the mutation. We compared the TCI-predicted PIK3CA target 10 

DEGs with that from their study, and 12 out of 92 TCI-predicted PIK3CA SM driving 

DEGs overlaps with the experiment-derived DEG set (hypergeometric test p = 0.01).  

Since RB1 protein regulates the function of transcription factor E2F1(44), it 

is expected that E2F1-regulated genes should be enriched among the RB1-targeted 

DEGs predicted by TCI. We used the PASTAA program(45) 15 

(trap.molgen.mpg.de/PASTAA.htm) to search for motif binding sites in the 

promoters of the 237 DEGs that TCI predicted to be regulated by RB1, and it found 

that E2F1, E2F2, and DP-1 were the three top transcription factors for these genes (p 

< 10-6).  

 In addition to verifying experimental evidence for individual SGA-FIs and 20 

their target DEGs, we took advantage of large-scale perturbation experiments 

carried by the Library of Integrated Network-Based Cellular Signatures (LINCS) 

project (46) to systematically evaluate predicted causal relationships between SGA-
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FIs and their predicted target DEGs. The LINCS project performed systematic gene-

manipulation (knockdown and overexpression) experiments using small interfering 

RNAs targeting over 4,000 genes in multiple cell lines, and cellular responses were 

measured as expression changes in 978 landmark genes (using a technology 

referred to as L1000 assay). We selected 8 most frequent SGA-FIs that were 5 

experimentally manipulated in LINCS project and performed t-test on the 

expression values of all L1000 genes, contrasting perturbation experiments and 

control condition in each cell line. We then examined the statistical significance of 

these genes and assess the false discovery (q-values) associated with the predicted 

target DEGs of each SGA. For each of the 8 SGA-FIs, the majority of predicted target 10 

DEGs were differentially expressed in multiple cell lines after experimental 

manipulation of SGA-FI gene (Figure 4b). We noted that certain target DEGs of an 

SGA have tissue-specific expression patterns, and we organized targeted DEGs 

according to tissue of origins and examined the percent of DEGs responding to 

manipulation of corresponding SGAs (Supplementary Table S4). Interestingly, we 15 

also found that TTN was perturbed in one cell line (VCAP), and 5 out of 7 predicted 

target DEGs responded to manipulation of TTN. Among them, 4 genes (SPP1, STAT1, 

C5 and GPER1) are known to be functionally associated with development and/or 

progression of cancer (47-50). To sum, the causal relationships between SGAs and 

DEGs predicted by TCI can be validated from multiple perspectives, including 20 

existing knowledge regarding genes, targeted or systematic experiment results.  

Finally, we experimentally examined whether experimental manipulations of 

CSMD3 and ZFHX4 expression affect oncogenic phenotypes. We identified two 
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cancer cell lines, HGC27 and PC3, with CSMD3 and ZFHX4 amplification respectively, 

and we knocked down the expression of the two genes using siRNAs, followed by 

monitoring cellular phenotypes. Our results showed that knocking down CSMD3 and 

ZFHX4 in the respective cell lines significantly attenuated cell proliferation 

(viability) and migration (Figure 5a – d). In addition, knockdown of ZFHX4 induced 5 

apoptosis (Figure 5e). These results indicate that these genes are involved in 

maintaining the cancer-related cellular phenotypes in these cell lines.  

 

SGA-FIs regulate genes involved in well-known oncogenic processes 

To gain a better view of functional impacts of SGA-FIs in cancer development, 10 

we further examined their impact on 1,855 genes from 17 cancer-related “hallmark” 

gene sets from the MSigDB 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). On average, 374 

cancer hallmark genes are found to be differentially expressed in a tumor. TCI found 

96 SGA-FIs that are predicted to regulate members of these 1,855 hallmark genes, in 15 

other words, these results illustrate the impact of an SGA on cancer hallmark 

process. We listed the relationships between 96 SGA-FIs with respect to the 17 

cancer hallmark processes to identify the target DEGs for each of 96 SGA-FIs 

(Supplementary Table S5). The relationships between top 45 SGA-FIs with largest 

number of target DEGs with respect to the hallmark processes are shown in (Figure 20 

6a). For example, CTNNB1 is known as the top regulator of WNT pathway and it is 

predicted to cause 14% DEGs in HALLMARK_WNT_BETA_CATENIN_SIGNALING 

pathway (51); RB1 regulates 15% of the genes in HALLMARK_E2F_TARGETS (52); 
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TP53 regulates genes involved in apoptosis and in a broad assortment of functions 

across many other oncogenic pathways (53,54); Our analysis also suggests that 

CDKN2A plays an important role in the epithelial-mesenchymal transition (EMT) 

process, which agrees with previous studies (55).  

 5 

TCI analyses reveal functional connections among SGA-FIs 

The causal relationships between SGAs and DEGs revealed by TCI enable us 

to explore whether distinct SGAs in different tumors are in fact perturb a common 

signal, by examining if they share overlapping target DEGs. To this end, we 

evaluated all pair-wise intersections between target DEG sets of SGA-FIs to identify 10 

SGA pairs sharing significantly overlapping target DEGs (p < 0.05 Fisher’s exact test, 

and q < 0.05), and found 2669 such SGA-FI pairs (Supplementary Table S6). We then 

organized SGA-FIs that perturb common signals into a graph, in which an edge 

connecting a pair of SGA-FI nodes indicates significant overlap of their target DEGs. 

For example, the top 15 SGA-FIs (ranked according to the FDR p values of 15 

overlapping DEG sets) that share DEGs with PIK3CA include PTEN, CDH1, ERBB2, 

and GATA3, which are known cancer drivers, and their connections agree with 

existing knowledge (Figure 6b) (56-58).  

The capability of revealing functional connections among SGAs provides a 

means to evaluate whether a novel candidate driver shares functional impact with 20 

well-known drivers, which not only indicates whether the candidate driver is 

involved in oncogenic processes (and thus a candidate cancer driver gene) but also 

sheds light on which pathway it may be involved in. The top 15 SGA-FIs sharing 
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common target DEGs with TTN include some well-known drivers including APC, 

KRAS, STK11 and SYNE1 (Figure 6c). Therefore, TTN might share similar functional 

impact with these known drivers. The top 15 SGA-FIs connected with CSMD3 and 

ZFHX4 (Figure 6d and Figure 6e) also form densely connected networks that include 

well-known cancer drivers, such as KRAS, GATA3, KEAP1, ERBB2 and STK11, 5 

suggesting that alteration of CSMD3 and ZFHX4 perturb some of the same signaling 

pathways as these known drivers do. We found similar results for other common 

SGA-FIs, including CDKN2A, PTEN, MUC16, and LRP1B (Supplementary Figure S3).  

Transcription of a gene is often regulated by a pathway, and it is expected 

that major driver SGAs of a DEG should include members of such a regulatory 10 

pathway. As an example, Figure 6f shows the SGA events that TCI designated as the 

cause of differential expression of RUNDC3B in different tumors, for which TCI 

analysis indicates that PIK3CA is the most common cause. Besides SGAs in PIK3CA, 

TCI inferred that SGAs in CDKN2A, and PTEN are two other major drivers of 

RUNDC3B DEG events. The results suggest that aberrations in PI3K pathway (as a 15 

result of SGAs perturbing PIK3CA and PTEN) is the main cause of these DEG events, 

and CDKN2A may act as a downstream regulator. It is also interesting to note that, in 

certain tumors, when both SGAs affecting PIK3CA and PTEN were present, TCI 

assigned PTEN as the most likely driver of RUNDC3B, instead of PIK3CA, even though 

the SGAs in the latter is more frequent. The results indicate that, although PIK3CA 20 

SGA events explains the overall DEG variance of RUNDC3B better than PTEN, the 

strength of statistical association between PTEN and some DEGs in certain tumors 
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may be stronger than that of PIK3CA, and TCI can detect such statistical 

relationships. 

 

Tumor-specific causal inference reveals tumor-specific disease mechanisms  

TCI analysis enables us to identify major SGAs that causally regulate 5 

molecular phenotypic changes (in our case, DEGs) in an individual tumor. In this 

way, TCI not only discovers potential drivers of an individual tumor but also 

suggests which oncogenic processes they may affect. In other words, TCI can reveal 

tumor-specific disease mechanisms, particularly when more oncogenic phenotypic 

data types become available.  10 

TCI results enabled us to examine each tumor profiled by TCGA to identify 

the major candidate driver SGAs and their target DEGs. Further examining the DEGs 

involved in hallmark biological processes allows us to study which biological 

processes an SGA affects. As an example, Figure 7a shows the SGA-FIs and their 

target cancer processes for a tumor (TCGA-B1-A657) of Kidney Renal Papillary cell 15 

carcinoma (KIRP), where genes in 9 oncogenic hallmark process from MSigDB are 

significantly enriched among the DEGs, including the following pathways that are 

strongly regulated by one of more SGA-FIs: the Epithelial Mesenchymal Transition 

pathway, the KRAS signaling pathway, the TNFA signaling via NFKB pathway, and 

the IL2 STAT5 signaling. We also identified major SGA-FIs (according the number of 20 

DEGs regulated by them in the tumor) that affect these processes (Figure 7a). In this 

figure, a green arrow indicates that an SGA-FI regulates at least 10% of the genes in 

the corresponding signaling pathway. TCI identified 6 such SGA-FIs, including some 
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well-known cancer drivers, such as PTEN and NEFH, and potential cancer drivers 

mentioned in recent studies, such as TLK2(59), USP13(60), and PIM3(61). 

SGAs cause cancer by perturbing cellular signaling pathways, and a pathway 

usually consists of multiple signaling proteins. Thus, it is possible that tumors 

having very distinct SGA profiles may in fact share very similar patterns of pathway 5 

perturbation, thus sharing similar gene expression profiles. We further identified 

another KIRP tumor (TCGA-HE-A5NL), which shares a similar overall DEG profile as 

does TCGA-B1-A657 (Figure 7b). These two tumors shared 281 DEGs related to the 

aforementioned oncogenic processes, and many DEGs in each oncogenic process 

were shared by the two tumors. However, each of these two tumors also had its 10 

unique SGA set, such as 57 SGAs in TCGA-B1-A657, 65 in TCGA-HE-A5NL, and only 2 

common SGAs (CADM3 and NEFH). TCI discovered similar target DEGs for NEFH in 

both tumors. Although many DEG members in each oncogenic process were shared, 

different SGA-FIs were designated as their candidate drivers. The above results 

illustrate that TCI is able to suggest disease mechanisms of individual tumors, and 15 

such information can be further analyzed to suggest tumors sharing common 

disease mechanisms.  

   

Discussion 

In this report, we present the TCI algorithm, which concentrates on 20 

addressing a fundamental question in discovering cancer-driving genes: whether 

perturbation of a gene (considering different perturbation mechanisms) is causally 

responsible for certain molecular/cellular phenotypes (considering different 
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phenotypic measurements) relevant to cancer development in a tumor. Thus, TCI 

provides a principled statistical framework for identifying causative SGAs and 

understanding their functional impact on oncogenic processes of an individual 

tumor.  

TCI is also a unifying framework for combining the statistics of all types of 5 

SGA events affecting a gene to assess whether perturbation of the gene causally lead 

to one or more molecular/cellular phenotypes. This causality-centered framework 

circumvents the need of separately assessing whether mutations, or SCNAs, or other 

SGA events in a gene are over-enriched in a cancer population by conventional 

approaches, which would require dealing with unconformable measurements and 10 

baseline models associated with each type of SGA. Integrating diverse types of SGA 

events is statistically sensible which increases the statistical power for assessing the 

functional impact of perturbing a candidate driver gene. It is also biologically 

sensible that a driver gene is often perturbed by different types of SGA events 

leading to common functional impact. The fact that a gene is often perturbed by 15 

different types of SGAs leading to common phenotypic changes provides strong 

evidence support that the gene is a candidate driver because its functional impact is 

positively selected in cancer.  

Our analyses of TCGA data revealed the functional impact of many well-

known as well as a large number of novel SGA-FIs with a wide range of prevalence 20 

in tumors ranging from 1% to more than 10%. These results serve as a catalogue of 

major SGA events that potentially contribute to cancer development. Discovery of 

novel candidate drivers also provide potential targets for developing new anti-
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cancer drugs. By revealing the functional impact of candidate drivers (e.g., a 

signature of DEGs), TCI results can be utilized to identify SGAs sharing similar 

functional impact and to discover cancer pathways de novo or to map novel 

candidate drivers to known pathways.  

Interestingly, TCI revealed functional impact of certain SGAs with very high 5 

alteration frequencies, such as TTN, CSMD3, MUC16, RYR2, LRP1B, and ZFHX4, whose 

roles in cancer development remains controversial. There are studies indicating that 

their high mutation rates are likely due to heterogeneous mutation rates at different 

chromosome locations (2,16). TCI analysis provides a new perspective to examine 

the role of these genes: assessing whether perturbations (considering all SGA 10 

events) in these genes are causally responsible for molecular and cellular phenotype 

changes. Instead of concentrating on assessing whether its frequency is above 

random chance, TCI evaluate the functional impact of an altered gene that 

determines whether it contributes to (drives) cancer development. Our results 

suggest that perturbing these genes, either by genome alterations, such as SM 15 

and/or SCNA, or by experimental manipulations, bears significant impact on 

molecular and cellular changes in both tumors and cell lines. Therefore, our results 

motivate further investigation of an alternative hypothesis for high overall 

alteration rates of these genes in cancer: perturbation of these genes, despite of 

different ways, leads to functional changes that provide oncogenic advantages. The 20 

results suggests that utilizing diverse types of SGA events in these genes is in fact a 

result of positive selection.  
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TCI is a special case of the general instance-based causal inference 

framework (62,63) that can be broadly used to delineate causal relationships 

between genomic variance and phenotype changes at the level of individuals which 

can be a single cell or an individual patient. By studying tumors in TCGA dataset, TCI 

analysis sheds light on the disease mechanisms of each individual. Further exploring 5 

the commonality and differences in disease mechanisms for individual tumors in the 

population will significantly help us better understand cancer biology in general. 

More importantly, understanding the disease mechanism of each tumor lays a solid 

foundation for guiding personalized therapies and advancing precision oncology.  

 10 
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Methods 

SGA data collection and preprocessing 

 We obtained SM data for 16 cancer types directly from the TCGA portal 

(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) (accessed in October 

2014). We considered all the non-synonymous mutation events of all genes and 5 

considered the mutation events at the gene level, where a mutated gene is defined 

as one that contains one or more non-synonymous mutations or indels.  

SCNA data were obtained from the Firehose browser of the Broad Institute 

(http://gdac.broadinstitute.org/). TCGA network employed GISTIC 2.0(27) to 

process SCNA data, which discretized the gene SCNA into 5 different levels: 10 

homozygous deletion, single copy deletion, diploid normal copy, low copy number 

amplification, and high copy number amplification. We only included genes with 

homozygous deletion or high copy number amplification for further analysis. We 

further screened out the genes with inconsistent copy number alteration across 

tumors in a given cancer type (i.e., gene was perturbed by both copy number 15 

amplification and deletion events in the same cancer type and both types of events 

occurred > 25% of tumors).  

 We combined preprocessed SM data and SCNA data as SGA data, such that a 

gene in a given tumor was designated as altered if it was affected by either an SM 

event and/or an SCNA event. 20 

 

DEG data collection and preprocessing 
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 Gene expression data were preprocessed and obtained from the Firehose 

browser of the Broad Institute. We used RNASeqV2 for cancer types with expression 

measurements in normal tissues. For cancer types without RNASeqV2 

measurements in normal cells (i.e., glioblastoma multiforme and ovarian cancer), 

we used microarray data to identify DEGs. We determined whether a gene is 5 

differentially expressed by comparing the gene expression in the tumor cell against 

that in the corresponding tissue-specific normal cells. For a given cancer type, 

assuming the expression of each gene (log 2 based) follows Gaussian distribution in 

normal cells, we calculated the p values of each gene in a tumor, which estimated 

how significantly different the gene expression in tumor was from that in normal 10 

cells. If the p value was equal or smaller than 0.005 to either side, the gene was 

considered as differentially expressed in the corresponding tumor. Furthermore, if a 

DEG was associated with the SCNA event affecting it, we removed it from the DEG 

list of the tumor. We also removed tissue-specific DEGs if they were highly 

correlated with cancer types or tissue origin (i.e., Pearson correlation coefficient 15 

larger than 0.9). We thus identified the DEGs for each tumor and created a tumor-

gene binary matrix where 1 represents expression change, and 0 represents no 

expression change.  

 

                    20 

Identification of SGA-FIs  

Causal edges from different SGAs have different posterior probabilities, as 

expected. To standardize how to interpret the significance of a posterior probability 
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for a causal edge Pe, we designed a statistical test based random permutation 

experiments. We generated a series of permuted datasets using the TCGA data, in 

which the DEG values were permuted among the tumors of a common tissue of 

origin, while the SGA status in each tumor remained as reported by TCGA. This 

permutation operation disrupts the statistical relationships between SGAs and DEGs 5 

while retaining the tissue-specific patterns of SGAs and DEGs. We applied TCI 

algorithm to permuted data to calculate posterior probabilities of edges emitting 

from each SGA in random data. We then determined the probability that an edge 

from an SGA could be assigned with a given Pe or higher in data from permutation 

experiments (i.e., the p value to the edge with a given Pe).  10 

 The p value in this setting is also the expected rate of false discovery of an 

SGA as the cause of a DEG by random chance. We utilize this property to control the 

false discovery rate when identifying SGA-FIs in a tumor. We designated an SGA 

event in a tumor as an SGA-FI if it has 5 or more causal edges to DEGs that are each 

assigned a p-value < 0.05. The overall false discovery rate of the joint causal 15 

relationships between an SGA to 5 or more target DEGs is smaller than 10-7. The 

Supplementary Figure S1 shows that at this threshold, none of SGA was assigned as 

SGA-FI by random chance. 

 

Cell culture and siRNA transfection 20 

HGC27 (Sigma-Aldrich) and PC-3 (ATCC) cells were cultured according to the 

manufacturer’s recommendations. The non-targeting and the CSMD3 and ZFHX4 

siRNAs were obtained from OriGene (Rockville, MD). The siRNA sequences are as 
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follow: si-CSMD3-1, GGUAUAUUACGAAGAAUUGCAGAGT; si-CSMD3-2, 

ACAAAUGGAGGAAUACUAACAACAG; si-ZFHX4-1, 

CGAUGCUUCAGAAACAAAGGAAGAC; si-ZFHX4-2, 

GGAACGACAGAGAAAUAAAGAUUCA. The siRNAs were transfected into cells using 

DharmaFECT transfection reagents for 48 hrs according to the manufacturer’s 5 

instructions. 

 

Cell proliferation and viability assays 

Cell proliferation/viability was assayed by CCK-8 assay (Dojindo Laboratories, 

Kumamoto, Japan). Briefly, HGC27 and PC3 cells were plated at a density of 3 x 103 10 

cells/well in 96-well plates. After siRNA transfection for 3 or 6 days, CCK-8 solution 

containing a highly water-soluble tetrazolium salt WST-8 [2-(2-methoxy-4-

nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium 

salt] was added to cells in each well, followed by incubation for 1-4 h. Cell viability 

was determined by measuring the O.D. at 450 nm. Percent over control was 15 

calculated as a measure of cell viability. 

 

Transwell migration assay 

Cell migration was measured using 24-well transwell chambers with 8 μm pore 

polycarbonate membranes (Corning, Corning, NY). SiRNA-transfected cells were 20 

seeded at a density of 7.5 x 104 cells/ml to the upper chamber of the transwell 

chambers in 0.5 ml growth media with 0.1% FBS. The lower chamber contained 0.9 

ml of growth medium with 20% FBS as chemoattractant media. After 20 hrs of 
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culture, the cells in the upper chamber that did not migrate were gently wiped away 

with a cotton swab, the cells that had moved to the lower surface of the membrane 

were stained with crystal violet and counted from five random fields under a light 

microscope. 

 5 

Apoptotic assay 

Apoptosis was assessed by flow cytometry analysis of annexin V and propidium iodide 

(PI) double stained cells using Vybrant Apoptosis Assay Kit (Thermo Fisher Scientific, 

Carlsbad, CA). Briefly, the cells after washing with PBS were incubated in annexin V/PI 

labeling solution at room temperature for 10 min, then analyzed in the BD FACSCalibur 10 

flow cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ). 
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Figure legends 

 

Figure 1. Workflow of TCI analysis. a. A compendium of cancer omics data is used 

as the training dataset. Three types of data from the 5,097 pan-cancer tumors were 

used in this study, including SM data (774,483 mutation events in 22,580 genes), 5 

SCNA data (1,612,667 copy number alteration events in 25,038 genes), and gene 

expression data (13,563,530 DEG events in 20,411 genes). SM and SCNA data were 

integrated as SGA data. Expression of each gene in each tumor was compared to a 

distribution of the same gene in the “normal control” samples, and , if a gene’s 

expression value was outside the significance boundary, it was designated as a DEG 10 

in the tumor. The final dataset included 5,097 tumors with 1,364,207 SGA events 

and 13,549,660 DEG events. b. A set of SGAs and a set of DEGs from an individual 

tumor as input for TCI modeling. c. The TCI algorithm infers the causal relationships 

between SGAs and DEGs for a given tumor t and output a tumor-specific causal 

model. d. A hypothetic model illustrates the results of TCI analysis. In this tumor, 15 

SGA_SETt has three SGAs plus the non-specific factor A0, and DEG_SETt has six DEG 

variables. Each Ei must have exactly one arc into it, which represents having one 

cause among the variables in SGA_SETt. In this model, E1 is caused by A0; E2, E3, E4 

are caused by A1; E5, E6 are caused by A3; A2 does not have any regulatory impact. 

 20 

Figure 2. The landscape of SGAs and SGA-FIs. a & b. The distributions of SGAs per 

tumor and SGA-FIs per tumor of different cancer types. Beneath the bar box plots, 

the distributions of different types of SGAs (SM, copy number amplification, and 
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deletion) are shown. c. Identification of SGA-FIs is independent of the alteration 

frequency or protein length. Pink dots indicate SGA-FIs, and green dots represent 

SGAs that were not designated as SGA-FIs. A few commonly altered genes are 

indicated by their gene names, where genes labeled with blue font are well-known 

drivers, and those labeled with orange font are novel candidate driver. d. Tumor 5 

specific Bayesian prior distributions for top 15 most frequent SGAs. The number 

above each box represents number of tumors that the corresponding SGA appears in. 

e. A Circos plot shows SGA events and SGA-FI calls along the chromosomes. 

Different types of SGA evetns (SM, copy number amplification, deletion) were 

shown in the track 2, 3, and 4 respective. The track 1 shows the frequency of an SGA 10 

be called as SGA-FIs. The genes names denote the top 62 SGA-FIs (some are SGA 

units) that were called in over 300 tumors with a call rate > 0.8. Genes labeled with 

blue font are known drivers from two TCGA reports, and orange ones are novel 

candidate drivers. f. SGA-FIs that were called in less than 300 tumors and with a call 

rate > 0.9 are shown in this frequency-vs-call rate plot. Similarly, genes labeled with 15 

blue font are known drivers from TCGA studies, and orange ones are novel 

candidate drivers.  

 

Figure 3. SM and SCNA perturbing a gene exert common functional impact. a. 

Combining SM and SCNA data drisrupts the correlation structure among genes 20 

enclosed in a common SCNA fragments. The chromosome cytobands enclosing three 

example genes (PIK3CA, CSMD3, and ZFHX4) are shown. The bar charts show the 

frequency of SCNA (red, standing for amplificaton) and SM (green). The 
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disequilibrium plots beneath the bar charts depict the correlationship among genes 

within a cytoband. b-e. The SGA patterns, i.e. SM and CN amplification/deletion, 

across different cancer types for PIK3CA, CDKN2A, CSMD3 and ZFHX4, f-i. SGA-FI 

target DEGs call rate in SM tumors and CN amplification/deletion for PIK3CA, 

CDKN2A, CSMD3 and ZFHX4. j-m. Venn diagrams illustring the relationships of DEGs 5 

caused by CN amplication/deletion and SM for PIK3CA, CDKN2A, CSMD3 and ZFHX4.  

 

Figure 4.  Statistical and experimental Evaluation of TCI predictions. a. The 

causal relationship inferred by TCI is statistically sound. Plots in this panel show the 

probability density distribution of the highest posterior probabilities assigned to 10 

each DEG in TCGA dataset, when the TCI algorithms was applied to real data (red) 

and two random datasets, in which DEGs permutated across all tumors (blue) and 

the corresponding SGA permutated across all tumors (green). The panel on the left 

shows the results for the posterior probabilities for all most probable candidate 

edges in whole dataset; rest of the plots show the distributions of posterior 15 

probaiblities of most probable edges pointing from 3 specific SGAs to predicted 

target DEGs. b. Boxplots of q-values associated with predicted target DEGs for 8 

SGA-FIs in different LINCS cell line after perturbation experiments. Each black dot 

represent a q-value associated with a target DEG of an SGA-FI, when expression 

value was assessed with t-test contrasting before and after genetic manipulation of 20 

the corresponding SGA-FI gene.  
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Figure 5. Cell biology evaluation of oncogenic properties of CSMD3 and ZHFX4. 

a-b. The impact of knocking down CSMD3 and ZFHX4 on cell proliferation. c-d. The 

impact of knocking down CSMD3 and ZFHX4 on cell migration. e. Impact of ZFHX4 

knockdown on apoptosis in PC3 cell line measured by Annexin V and propidium 

iodide (PI) staining.  5 

 

Figure 6. Detection of functional impact of SGA-FIs reveals functional 

connections among SGA-FIs. a. Top 45 SGAs-FIs (regulating the largest number of 

DEGs) and their relationships with 17 cancer hallmark gene sets. The value 

represents the percentage of genes in a gene set that is covered by the target DEGs 10 

of each SGA-FI. b-e. Top 15 SGA-FIs that share the most significant overlapping 

target DEGswith PIK3CA, TTN, CSMD3, and ZFHX4. An edge between a pair of SGA-FI 

indicate that they share significantly overlapping target DEG sets, and the thickness 

of the line is proportional to negative log of the p-values of overlapping target DEG 

sets. e. The “oncoprint” illustrating the causal relationships between a DEG, 15 

RUNDC3B, and its 3 main drivers, PIK3CA, CDKN2A, and PTEN.  Each column 

corresponds to a tumor; green bars show SGA events that cause RUNDC3B DEG in 3 

SGA-FIs; the causal relationship is color-coded, which illustrate which SGA-FI is 

responsible for a DEG event in RUNDC3B; blue bar indicates that DEG events that 

were assigned to SGA-FIs other than the above 3 SGA-FIs; gray bars indicate a wild 20 

type genomic and transcriptomic status.    
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Figure 7. TCI reveals the SGA-FIs and their functional impacts at the individual 

tumor level. a. The bipartite graph illustrating major SGA-FIs and their regulated 

cancer processes for the tumor TCGA-B1-A657.  Blue node represent SGA-FIs and 

red nodes (square) represent  oncogenic processes. An green directed link indicates 

an SGA-FI regulates 10% or more DEGs in the cancer process. b. Same DEGs 5 

regulated by distinct SGA-FIs in different tumors.  DEGs in cancer processes shared 

between tumor TCGA-B1-A657 and tumor TCGA- HE-A5NL are shown as pie-charts. 

Blue nodes denote SGA-FIs in tumor TCGA-B1-A657. Red nodes denote SGA-FIs in 

tumor TCGA- HE-A5NL. Yellow nodes, (i.e., NEFH), is shared by both tumors. Each 

large node in the middle represents an oncogenic process. The number in the blue 10 

area denotes the number of DEGs specific to TCGA-B1-A657. The number in the red 

area denotes the number of DEGs specific to TCGA- HE-A5NL. The number in the 

yellow area denotes the number of DEGs shared by both tumors. An green directed 

link indicates an SGA-FI regulates 10% or more DEGs in the cancer process. 

  15 
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Figures 

Figure 1. Workflow of TCI analysis. 
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Figure 2. The landscape of SGAs and SGA-FIs. 
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Figure 3. SM and SCNA perturbing a gene exert common functional impact. 
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Figure 4.  Statistical and experimental validation of TCI predictions.  
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Figure 5. Cell biology evaluation of oncogenic properties of CSMD3 and ZHFX4. 
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Figure 6. Detection of functional impact of SGA-FIs reveals functional 

connections among SGA-FIs. 
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Figure 7. TCI reveals the SGA-FIs and their functional impacts at the individual 

tumor level. 
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Supplementary figure legends  

 

Supplementary Figure S1. Controlling false discovery. a. The plot shows the 

relationship of total number of SGAs being designated as SGA-FIs with respect to the 

threshold of calling an SGA-FI in random and real data. The x-axis shows the 5 

different thresholds, i.e., the number of DEGs predicted to be regulated by an SGA-FI, 

and the y-axis shows the number of significant SGA-FIs across all tumors. b. The plot 

shows the relationship of average number of SGAs being designated as SGA-FIs in a 

tumor with respect to the threshold of calling an SGA-FI in random and real data. 

The x-axis shows the different thresholds, i.e., the number of DEGs predicted to be 10 

regulated by an SGA-FI, and the y-axis shows the average number of significant SGA-

FIs in a single tumor. 

 

Supplementary Figure S2. Comparison of causal analysis results from real data 

and random data. a. Comparison of distributions of the posterior probabilities of 15 

the highest candidate causal edges point from 3 most frequent SGAs to DEGs. b.  

Examples of 3 genes with high SGA frequency but without any high posterior 

probability causal edges emitting from them.  c. Comparison of number of tumors 

called as SGA-FIs from the real dataset, randomly permutated DEG dataset and 

single SGA permutated dataset for the 6 most frequency SGAs. 20 
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Supplementary Figure S3. Networks of SGA-FIs share significant overlapping 

DEGs. a. SGA-FIs interacting network containing 536 SGA-FIs and 2669 edges. Blue 

nodes represent known cancer drivers and red nodes represent novel SGA-FIs. Node 

size indicates the number of its affected DEGs and edge width indicates the number 

of overlapped DEGs between two nodes. b-e. Top 15 SGA-FIs that share the most 5 

significant overlapping target DEGs with CDKN2A, PTEN, LRP1B, and MUC16. An 

edge between a pair of SGA-FI indicates that they share significantly overlapping 

target DEG sets, and the thickness of the line is proportional to negative log of the p-

values of overlapping target DEG sets. 
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Supplementary Figure S1. Controlling false discovery. 
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Supplementary Figure S2. Comparison of causal analysis results from real data 

and random data. 
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Supplementary Figure S3. Networks of SGA-FIs share significant overlapping 

DEGs.
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Supplementary table legends 

 

Supplementary Table S1. Number of tumors per cancer type 

Supplementary Table S2.1. TCI predicted 634 Candidate SGA-Fis and their target 

DEGs 5 

Supplementary Table S2.2. Cancer type distribution of 634 Candidate SGA-FIs 

Supplementary Table S3. SGA-FIs that are commonly altered by both SM and SCNA 

Supplementary Table S4. Number of target L1000 genes for 8 most frequent SGA-FIs 

that are differentially expressed in different tissue types  

Supplementary Table S5. Percentage of genes involved in the cancer Hallmark 10 

processes regulated by SGA-FIs 

Supplementary Table S6. SGA-FI pairs sharing common target genes 
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