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Abstract. Lung cancer is the most common cause of cancer-related
death in men worldwide and the second most common cause in women.
Accurate prediction of lung cancer outcomes can help guide patient care
and decision making. The amount and variety of available data on lung
cancer cases continues to increase, which provides an opportunity to
apply machine learning methods to predict lung cancer outcomes. Tradi-
tional population-wide machine learning methods for predicting clinical
outcomes involve constructing a single model from training data and
applying it to predict the outcomes for each future patient case. In con-
trast, instance-specific methods construct a model that is optimized to
predict well for a given patient case. In this paper, we first describe an
instance-specific method for learning Bayesian networks that we devel-
oped. We then use the Markov blanket of the outcome variable to predict
1-year survival in a cohort of 261 lung cancer patient cases contain-
ing clinical and omics variables. We report the results using AUROC
as the evaluation measure. In leave-one-out testing, the instance-specific
Bayesian network method achieved higher AUROC on average, compared
to the population-wide Bayesian network method.

Keywords: Lung cancer survival prediction · Instance-specific
modeling · Population-wide modeling · Bayesian network classifiers

1 Introduction

Lung cancer is the most frequent cause of cancer-related death in men worldwide
and the second most common cause in women [4], despite significant improve-
ments in diagnosis and treatment during the past decade. Lung cancer is typically
divided into two major subtypes: small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC), where the latter is more prevalent. The overall 5-year
survival rate for lung cancer is 19% but it can be increased to 57% if diagnosis
occurs at a localized stage of the disease [2], which is not often the case. Accurate
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prediction of lung cancer outcomes is important, because it can facilitate patient
care and clinical decision making. With rapid advancements in technology, large
amounts of lung cancer data with clinical and molecular information are being
collected and made available. This trend provides an opportunity for researchers
to apply machine learning techniques to predict outcomes of lung cancer.

Most machine learning methods for predicting clinical outcomes construct a
single model M from training data. M is then applied to predict outcomes in
future instances. We refer to such a model as a population-wide model because
it predicts outcomes for a future population of instances. It may be difficult
for population-wide models to perform well in domains in which instances are
highly heterogeneous. Studies have revealed that heterogeneity exists both within
individual lung cancer tumors and between patients [20]. In such domains, a
reasonable approach is to learn a model that is tailored to a particular instance
(e.g., a patient), which we refer to as an instance-specific model. An instance-
specific approach builds a model MT for a given instance T from the features
that we know about T (e.g., clinical and molecular features) and from a training
set of data on many other instances. It then uses MT to predict the outcome for
T . This procedure repeats for each instance that is to be predicted.

In this paper, we use Bayesian network (BN) classifiers to predict patient
survival in a cohort of 261 lung cancer patients with clinical and omics infor-
mation. More specifically, we apply a score-based instance-specific BN learning
method, called IGES, which we introduced in [14]. The IGES algorithm searches
the space of BNs to learn a model that is specific to an instance T by guiding the
search based on T ’s features (i.e., variable-value pairs). We also apply a state-
of-the-art score-based population-wide BN learning method, called GES [14], as
a control method. These methods are summarized in Sect. 4. The main goal
of this paper is to investigate the effectiveness of instance-specific modeling in
predicting survival outcomes for lung cancer patients.

2 Related Work

Various population-wide methods such as neural networks, support vector
machines, random forests, and Bayesian models have been applied in cancer
research to predict cancer survival and reported AUROCs of ∼0.80 [1,8,19]. A
review of such methods is provided in [16]. None of these methods learn instance-
specific models. Additionally, they use different sets of predictors and different
patient cohorts, so a direct comparison to the results in the current paper is not
possible.

Several machine learning methods have been developed to learn instance-
specific models. Zheng and Webb [22] introduced a lazy Bayesian rule learning
(LBR) method to construct a model that is specific to a test instance. In an LBR
rule, the antecedent is a conjunction of the variable-value pairs that are present in
the test instance and the consequent is a local näıve Bayes classifier in which the
target variable is the parent of the variables that do not appear in the antecedent.
Visweswaran and Cooper [21] developed an instance-specific Markov Blanket
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(ISMB) algorithm that searches over the space of Markov blankets (MBs) of the
target variable by utilizing the features of a given test instance. ISMB first uses
a greedy hill-climbing search to find a set of MBs that best fit the training data.
Then, it greedily adds single edges to the MB structures from the previous step,
if doing so improves the prediction of a given test instance. Ferreira et al. [10]
implemented two patient-specific decision path (PSDP) algorithms using two
variable selection criteria: balanced accuracy and information gain. A decision
path is a conjunction of features that are present in a given test instance and a
leaf node that contains the probability distribution of the target variable.

Recently, Lengerich et al. [17] introduced a personalized linear regression
model that learns a specific set of parameters for each test case based on the idea
that the similarity between personalized parameters is related to the similarity
between the features. Accordingly, a regularizer is learned to match the pairwise
distance between the features (i.e., variable-value pairs) and the personalized
regression parameters. In other related work, Cai et al. [5] developed a method
to learn tumor-specific BN models from data; this method uses bipartite BNs
and makes other assumptions that restrict its generality.

The IGES method [14] that we use in this paper is different from the methods
mentioned above. IGES differs from a population-wide method in a principled
way; it learns a model for each instance T that is optimized for T , while a
population-wide model is designed to learn a single model that is optimized for
a population of instances. Also, the IGES method learns a more general model
than does LBR [22], ISMB [21], PSDP [10], and tumor-specific BN models [5],
because it learns Bayesian network models, which can be used for both prediction
and causal discovery [13–15].

3 Preliminaries

A Bayesian network (BN) encodes probabilistic relationships among a set of
variables. A BN consists of a pair (G,Θ), where G is a directed acyclic graph
(DAG) and Θ is a set of parameters for G. A DAG G is given as a pair (X,E),
where X = {X1,X2, ...,Xn} denotes a set of nodes that correspond to domain
variables and E is a set of directed edges between variables. The presence of an
edge Xi → Xj (Xi is called the parent and Xj is called the child) denotes that
these variables are probabilistically dependent. The absence of an edge denotes
that Xi and Xj are conditionally probabilistically independent. A set of DAGs
that encode the same independence and dependence relationships are statisti-
cally indistinguishable from observational data; such DAGs are called Markov
equivalent. The second component, Θ, is a set of parameters that encodes the
joint probability distribution over X, which can be efficiently factored based on
the parent-child relationships in G.

As mentioned above, the edges present and absent in a DAG represent con-
ditional dependence and independence relationships between variables, respec-
tively. Any such relationship should hold for all combinations of values of the
variables in the BN. There is a more refined form of conditional independence
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that holds only in a specific context, which is known as context-specific inde-
pendence (CSI) [3]. Figure 1 shows a BN that includes two CSI relationships:
X4 ⊥⊥ {X2,X3}|X1 = 0 and X4 ⊥⊥ X3|{X1 = 1,X2 = 1}. The IGES method
models such local independence structures for each instance T , which results in
a more expressive BN structure and a more efficient BN parameterization.

Fig. 1. An example Bayesian network with two context-specific independencies (CSIs):
X4 ⊥⊥ {X2, X3}|X1 = 0 and X4 ⊥⊥ X3|{X1 = 1, X2 = 1}.

4 Methodology

4.1 Population-Wide Greedy Equivalence Search (GES)

Score-based methods are one of the main approaches to learn BN structure from
data that involve (1) a scoring function to measure how well the data (and
optional background knowledge) support a given DAG and (2) a search strategy
to explore the space of possible DAGs. Since recovering the data-generating BN
is an NP-hard problem [6], these methods often utilize a greedy search strategy.
GES [7] is a state-of-the-art score-based BN learning algorithm that searches
over the Markov equivalence classes of DAGs using two local graph operations:
single edge addition and single edge removal. First, it greedily adds single edges
to the current graph as long as doing so leads to score improvement. It then
greedily removes single edges as long as doing so results in a higher score. Under
reasonable assumptions, the GES algorithm converges to the data-generating
BN or one Markov equivalent to it [7].

The Bayesian Dirichlet (BD) scoring function [12] is used to score a BN with
discrete variables and is calculated as follows:

BD(G,D) = P (G) ·
n∏

i=1

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

, (1)

where P (G) is the prior structure probability of G. The first product term is
over all n variables, the second product is over the qi parent instantiations of
variable Xi, and the third product is over all ri values of variable Xi. The term
Nijk is the number of cases in the data in which variable Xi = k and its parents
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Pa(Xi) = j; also, Nij =
∑ri

k=1 Nijk. The term αijk is a Dirichlet prior parameter
that may be interpreted as representing “pseudo-counts” and αij =

∑ri
k=1 αijk.

The pseudo-counts can be defined to be evenly distributed, in which case Eq. (1)
represents the so-called BDeu score [11]:

αijk =
α

ri · qi
, (2)

where α is a positive constant called the prior equivalent sample size (PESS).

4.2 Instance-Specific Greedy Equivalence Search (IGES)

We introduced an instance-specific version of GES called IGES in [14]. Similar to
GES, IGES is a two-stage greedy BN learning algorithm that uses an instance-
specific score (IS-Score). First, it runs GES using the training data D and the
BDeu score to learn a population-wide BN model GPW; this is the population-
wide BN for all test instances. In the second stage, IGES uses the data D, the
population-wide model GPW, and a single test instance T to learn an instance-
specific model for T , which is denoted as GIS. To do so, IGES starts with GPW

and runs an adapted version of GES with a specialized IS-Score to maximize the
marginal likelihood of the data given both BN models GPW and GIS.

For each variable Xi, the IS-Score is calculated at the parent-child level and
is composed of two components: (1) the instance-specific structure that includes
Xi’s parents in GIS, which we denote by PaIS(Xi) and (2) the population-wide
structure that includes Xi’s parents in GPW, which we denote by PaPW(Xi).
In order to score the instance-specific structure PaIS(Xi) → Xi, we use the
instances in data that are similar to the current test instance T in terms of the
values of the variables in PaIS(Xi). These instances are selected based on the
values of PaIS(Xi) in T ; let DPaIS(Xi)=j be the instances that are similar to T
assuming PaIS(Xi) = j. Then the instance-specific score for PaIS(Xi) → Xi

given data DPaIS(Xi)=j is as follows:

P (DPaIS(Xi)=j |PaIS(Xi) → Xi) =
Γ(αij)

Γ(αij + Nij)
·

ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

, (3)

where ri denotes all values of Xi, Nijk is the number of instances in DPaIS(Xi)=j

in which Xi = k, and Nij =
∑ri

k=1 Nijk. The terms αijk and αij =
∑ri

k=1 αijk

are the corresponding Dirichlet priors.
Since the instances in DPaIS(Xi)=j are being used to score the instance-specific

structure, they should no longer be used to also score the population-wide struc-
ture; therefore, the score for PaPW(Xi) → Xi must be adjusted accordingly.
We re-score PaPW(Xi) → Xi using the remaining instances in DPaIS(Xi) �=j as
follows:

P (DPaIS(Xi) �=j |PaPW(Xi) → Xi) =
qi∏

j′=1

Γ(αij′)
Γ(αij′ + Nij′)

·
ri∏

k=1

Γ(αij′k + Nij′k)
Γ(αij′k)

,

(4)
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where ri and qi are the number of possible values of Xi and PaPW(Xi), respec-
tively. Nij′k is the number of instances in DPaIS(Xi) �=j for which Xi = k and
PaPW(Xi) = j′, and Nij′ =

∑ri
k=1 Nij′k. The terms αij′k and αij′ =

∑ri
k=1 αij′k

are the corresponding Dirichlet priors.
Finally, to obtain the overall score for variable Xi using all instances in D,

we multiply these two scores. In essence, this method searches for the most
probable context-specific BN in light of how well (1) the instance-specific model
predicts data for instances like the current test instance, and (2) the population-
wide model predicts data for the remaining instances. See [14] for a detailed
description of the IS-Score and the IGES method.

5 Experimental Results

This section describes a comparison of the performance of an instance-specific
machine learning method to its population-wide counterpart when predicting 1-
year survival in lung cancer patients, using clinical and molecular data, which are
described in Sect. 5.1. We used Bayesian network classifiers as machine learning
models to predict the target variable. More specifically, we applied IGES and
GES methods to learn instance-specific and population-wide BN classifiers.

To predict the target variable, we first ran the IGES and GES methods to
construct a BN structure over all variables (i.e., the predictors and target). Then,
we obtained the Markov blanket (MB) of the target variable that includes the
variable’s parents, children, and its children’s parents. Finally, we calculated the
probability distribution of the target variable given its MB and output the most
probable outcome as the prediction. We report evaluation criteria to measure the
effectiveness of the instance-specific BN model versus the population-wide BN
model. In particular, as a measure of discrimination, we report the area under
the ROC curve (AUROC) when predicting 1-year survival. We also report the
differences between the variables in the MB of the target variable found by the
instance-specific models compared to the population-wide model.

5.1 Data Description

This was a retrospective analysis of banked tumor specimens that were collected
from patients with lung cancer at the University of Pittsburgh Medical Center
(UPMC) in 2016. Baseline demographics, smoking history, staging, treatment,
and survival data were collected through the UPMC Network Cancer Registry.
We replaced the missing values of the predictor variables with a new category
called “missing” and removed the cases for which the value of the outcome
variable was not known. Demographic and clinical characteristics of the 261
patients are summarized in Table 1. DNA sequencing was performed using the
Ion AmpliSeqTM Cancer Panel (Ion Torrent, Life Technologies, Fisher Scien-
tific). Gene rearrangements of ALK, ROS1, and RET, and MET amplification
were detected using FISH. PD-L1 SP263 and PD-L1 22C2 assays were per-
formed on lung cancer samples to determine the PD-L1 tumor proportion score
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Table 1. One-year survival given demographic and clinical characteristics. A 95%
confidence interval is included for each sub-group of patients.

Variable
name

Variable value Greater than 1 year

# Patients
(Total)

% Patients (Confidence
Interval)

Age 22–62 54 (84) 64.29 (54.04, 74.54)

63–72 41 (88) 46.59 (36.17, 57.01)

73–88 45 (89) 50.56 (40.17, 60.95)

Sex Female 80 (135) 59.26 (50.97, 67.55)

Male 60 (126) 47.62 (38.9, 56.34)

Race White 119 (224) 53.13 (46.58, 59.66)

Black 16 (31) 51.61 ((34.02, 69.2)

Other 5 (6) 83.33 (53.33, 113.33)

Tobacco
history

Cigar/pipe smoker 0 (1) 0

Cigarette smoker 42 (85) 49.41 (38.78, 60.04)

Never used 22 (32) 68.75 (52.69, 84.81)

Previous tobacco use 76 (142) 53.52 (45.32, 61.72)

Snuff/chew/smokeless 0 (1) 0

Diagnosis Adenocarcinoma 53 (89) 59.55 (49.35, 69.75)

Squamous 3 (7) 42.86 (45.3, 62.06)

Other 11 (29) 37.93 (6.20, 79.52)

NA 73 (136) 53.68 (20.27, 55.59)

(TPS). Table 2 provides information about the type, name, and description of the
variables that are included in the lung cancer dataset. The outcome-prediction
research reported here was performed under the auspices of study protocol num-
ber PRO15070164 from the University of Pittsburgh Institutional Review Board
(IRB).

5.2 Results

We performed leave-one-out cross-validation on the lung cancer dataset. For
each instance T , we used T as a test instance and all the remaining instances
as the training set D. We applied IGES search using T , D, and the IS-Score
to learn an instance-specific BN model for T , which is called GT and is used to
predict the outcome for T . We also applied GES search using D and the BDeu
score to learn a population-wide BN model for T ; this BN model is denoted
by GPW and is used to predict the outcome for T . We repeated this procedure
for every instance in the dataset. Note that this leave-one-out cross-validation
does not involve any hyperparameter tuning; therefore, we do not expect it to
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Table 2. Type, name, and description of the variables of the lung cancer dataset.

Variable type Variable name Variable description

Demographics Sex, Race, Age, Tobacco
History

Clinical Site Location of tumor

Surgical Procedure Type of surgical resection or
biopsy

Diagnosis Lung cancer type
(Adenocarcinoma, Squamous,
Other, NA)

Mets at Dx-Brain, Mets at
Dx-Bone, Mets at Dx-Distant
Lymph Nodes, Mets at
Dx-Lung, Mets at Dx-Liver,
Mets at Dx-Other

Location of metastasis at
diagnosis (Dx), if any

Histo Behavior ICD-O-3 Histological classification

cT, cN, cM, cStage Group Clinical staging

pT, pN, pM, pStage Group,
Pathologic Stage Descriptor

Pathologic staging

Molecular PD-L1 IHC, PD-L1 Comment PD-L1 immunohistochemistry
measures the amount of PD-L1
staining on tumor cells

MET, KRAS, EGFR-summary,
EGFR-Exon-18,
EGFR-Exon-19,
EGFR-Exon-20,
EGFR-Exon-21, BRAF,
PIK3CA, ALK Mutation

Status of gene mutations

ALK IHC ALK gene
immunohistochemistry

ALK Trans ALK gene translocation

ROS Trans ROS gene translocation

RET Trans RET gene translocation

cMET Ratio Measurement of cMET gene
amplification

cause overfitting. We used an efficient implementation of GES, called FGES [18],
which is available in the Tetrad system1. We used prior equivalence sample sizes
of PESS = {0.1, 1.0, 10.0} for both IGES and GES methods. IGES also has a
parameter that penalizes the structural difference between the population-wide
and instance-specific BN models, called κ (0.0 < κ ≤ 1.0), where a lower value

1 https://github.com/cmu-phil/tetrad.

https://github.com/cmu-phil/tetrad
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indicates more penalty for differences (see [14] for details). We report the results
of using multiple values of κ.

Table 3 shows the AUROC results on the lung cancer dataset, using both GES
and IGES searches; boldface indicates that the results are statistically signifi-
cantly better, based on DeLong’s non-parametric test [9] at a 0.001 significance
level. The results indicate that with PESS = 1.0 and κ = 1.0, the instance-
specific search resulted in the highest AUROC; also, for almost all values of κ,
IGES performs better. Table 3 also suggests that it is important to define PESS
properly when applying a Bayesian method on a dataset with small to moderate
sample size, which is the case in this paper.

Table 3. AUROC of the GES and IGES methods on the lung cancer dataset. Boldface
indicates statistically significantly better results.

Method GES IGES

PESS – κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7 κ = 0.8 κ = 0.9 κ = 1.0

0.1 0.68 0.67 0.70 0.70 0.70 0.70 0.71 0.71 0.70 0.71 0.72

1.0 0.68 0.68 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.81

10.0 0.65 0.75 0.75 0.77 0.76 0.75 0.72 0.73 0.73 0.69 0.70

Table 4. Comparison of the target variable’s Markov blanket (MB) in the instance-
specific BNs vs. the population-wide BN for PESS = 1.0 and κ = 1.0.

(a) Structural differences of the variables in

the MBs in instance-specific BNs vs. the

population-wide BN.

# Added # Deleted # Reoriented % Patients

0 0 0 16.9

5 0 0 10.7

4 0 0 7.7

1 0 0 6.9

3 0 2 4.2

0 0 2 4.2

6 0 0 3.8

other other other 45.6

(b)Percentage of top-7 variables of the MBs

of instance-specific BNs. The MB of the

population-wide BN includes the first two

variables denoted by ∗.

Variable name % Occurrence in patients

EGFR-Exon-19∗ 98.1

Mets at Dx-Other∗ 92.8

Race 37.9

EGFR-Exon-18 35.6

EGFR-Exon-20 31.8

cM 26.8

cStage Group 24.5

Table 4a shows the results of comparing the target variable’s MB in the
instance-specific models versus the population-wide models with PESS = 1.0
and κ = 1.0. It indicates that in 16.9% of the patient cases, the MB of the
target variable was exactly the same in instance-specific and population-wide
BNs. Also, in 10.7% of the cases, the MB of the target variable had 5 additional
variables in instance-specific models compared to the population-wide model.
Table 4b also shows the percentage of the 7 variables that occurred the most
in the instance-specific MBs. Table 4 supports that instance-specific structures
exist for the lung cancer cases in the dataset we used.
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6 Discussion and Conclusions

In this paper, we evaluated the performance of an instance-specific BN classifier,
which uses the IGES algorithm, to predict 1-year survival for 261 lung cancer
patient cases. We compared IGES results to its population-wide counterpart,
GES. We compared IGES to GES method for two reasons. First, the goal of this
study was to evaluate the effectiveness of instance-specific modeling in predicting
lung-cancer survival; therefore, we wanted the only difference between the two
methods to be instance-specific versus population-wide modeling, while keep-
ing the type of machine learning classifier the same (i.e., Bayesian networks).
Since to date we have only implemented instance-specific and population-wide
algorithms for learning BNs, we compared these two methods. Additionally,
BNs continue to be an important machine learning method for clinical outcome
prediction because they generally perform well and provide interpretable mod-
els that clinicians can understand relatively well. We compared the predictive
performance using AUROC and the structural differences between the instance-
specific and population-wide BNs. The results provide support that the instance-
specific models are often different and have better predictive performance than
the population-wide ones. Future extensions include (1) tuning hyperparameters
of the methods such as PESS and κ, and (2) implementing instance-specific ver-
sions of other machine learning classification methods and comparing them to
their population-wide counterparts.
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