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Abstract

In recent years, great strides have been made for causal structure learning in the high-dimensional 

setting and in the mixed data-type setting when there are both discrete and continuous variables. 

However, due to the complications involved with modeling continuous-discrete variable 

interactions, the intersection of these two settings has been relatively understudied. The current 

paper explores the problem of efficiently extending causal structure learning algorithms to high-

dimensional data with mixed data-types. First, we characterize a model over continuous and 

discrete variables. Second, we derive a degenerate Gaussian (DG) score for mixed data-types and 

discuss its asymptotic properties. Lastly, we demonstrate the practicality of the DG score on 

learning causal structures from simulated data sets.
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1. Introduction

Identifying the causal structure underlying a system of variables embodies a large portion of 

modern-day scientific research. Algorithms have been developed over the past few decades 

to learn causal structures from observational data (Spirtes et al., 2000). These algorithms 

output graphs that use vertices to represent random variables and edges to represent the 

various types of causal relationships occurring between those variables. The canonical 

vertex-edge graph used for causal modeling is a directed acyclic graph (DAG). In a causal 

DAG, directed edges express the existence and direction of direct causal relationships. More 

importantly, the edges of a causal DAG provide researchers with a means to calculate the 

effects of manipulating one or more variables within the graph (Pearl, 2009). These 

properties, among others, are at the root of a growing interest in learning causal graphs 
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under various assumptions and in different settings—such as in the high-dimensional and 

mixed data-type settings.

By and large, algorithms for learning causal graphs fall into one of two main categories: 

score-based or constraint-based. Score-based algorithms use a score function as a guide to 

the best causal graph by evaluating the “goodness” of each graph encountered during the 

search process. Constraint-based algorithms use tests of conditional independence to learn 

constraints that restrict the set of possible causal graphs. In this paper, we focus on the score-

based approach. Score-based algorithms have already been scaled to thousands of variables 

(Nandy et al., 2018; Ramsey et al., 2017) and scores for mixed data-types have also been 

successfully applied (Andrews et al., 2018; Raghu et al., 2018). However, if a score fails to 

scale with respect to sample size or the number of measured random variables, then an 

algorithm using that score will fail to scale as well. Since it is not uncommon for high-

dimensional data sets to contain a mixture of continuous and discrete variables—such as in 

biological and clinical data sets—it is important to develop highly scalable scores for mixed 

data-types.

1.1 Related Work

Recently, (Raghu et al., 2018) provided an in-depth overview comparing several state of the 

art algorithms for learning DAGs from data sets with mixed data-types. Their paper contains 

an extensive simulation study on methods that scale to hundreds of variables (Andrews et al., 

2018; Cui et al., 2016; Sedgewick et al., 2018). Unfortunately, these methods become 

impractical for one reason or another as the number of samples or measured random 

variables grows large.

The conditional Gaussian (CG) and mixed variable polynomial (MVP) scores were 

introduced for causal structure learning in the mixed data-type setting by (Andrews et al., 

2018). Both of these scores partition the instances of the data with respect to the values of 

the discrete variables and then analyze the continuous variables within each partition. Due to 

their need to repeatedly partition the data, as the number of samples or measured random 

variables grows large, both of these scores become inefficient.

Copula PC is a modification to the constraint-based PC algorithm (Spirtes et al., 2000) 

introduced by (Cui et al., 2016). The Copula PC algorithm extends the ideas of Rank PC 

(Harris and Drton, 2013) to include ordinal and binary data-types. The method has two main 

steps: estimate a correlation matrix, and run a causal search algorithm on the estimated 

correlation matrix. In their paper, they use Gibbs sampling to estimate the correlation matrix 

and run the result using the PC-Stable algorithm (Colombo and Maathuis, 2014). The 

scalability of their procedure largely depends on the method of estimation for the correlation 

matrix. Unfortunately, sampling procedures, such as Gibbs sampling, are known to suffer 

from slow convergence in high-dimensions (Bishop, 2006).

Mixed graphical models (MGM), originally introduced for learning undirected graphs (Lee 

and Hastie, 2013), was adapted by (Sedgewick et al., 2018) for the purpose of learning 

causal DAGs. Their approach involves post-processing the undirected output of MGM using 

a variant of the PC algorithm (Spirtes et al., 2000). The MGM procedure searches over 
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undirected graphs by maximizing a pseudo-likelihood function with gradient-based 

optimization. Afterwards, the PC variant removes and directs edges in the graph using tests 

of conditional independence. In their paper, tests based on multinomial logistic regression 

are used to determine conditional independence. Both the MGM procedure and logistic 

regression involve iteratively updating parameters which can be impractical in high-

dimensions.

Other works capable of learning causal structures from mixed data-types include (Bøttcher, 

2004) which does not allow discrete variables to have continuous parents and (Borboudakis 

and Tsamardinos, 2016; Hyttinen et al., 2014) which use answer set programming. The latter 

of these two approaches provides a powerful and flexible framework for learning causal 

structures, but often fails to scale past tens of random variables.

1.2 Outline

The remainder of this paper is organized as follows. In Section 2 we review several graphical 

preliminaries and basic concepts for scoring graphs. In Section 3 we derive the degenerate 

Gaussian (DG) score for mixed data-types. In Section 4 we demonstrate the practicality of 

the DG score in high-dimensions on simulated data. Section 5 states our conclusions.

2. Preliminaries

Throughout this paper, we use the following notation: An upper case letter denotes a random 

variable (e.g., Xj) and a lower case letter denotes the state or value of a random variable 

(e.g., Xj = xij). The subscript i distinguishes between different instances of the data and the 

subscript j distinguishes between different variables. Sets are denoted with bold-face letters. 

For a set of p random variables X = (X1,…,Xp) where Xj may be either continuous or 

discrete, we define an index set V := {1,…,p}. We further define V = C ∪ D where C ∩ D = 

∅ and the partitions C and D are index sets for the continuous and discrete variables, 

respectively.

2.1 Graphical Concepts and Notation

A directed acyclic graph (DAG) 𝒢 = (V, E) for the set of random variables X contains a set 

vertices V that index the members of X and a set of directed edges E that connect the 

members of V (at most one edge between any two vertices). For vertices j1, j2 ∈ V, we say 

that j1 is a parent of j2 and that j2 is a child of j1 if j1 → j2 ∈ E. We denote the set of parents 

of j2 as Pa j2
𝒢  and the set of children of j1 as Ch j1

𝒢 . If there is an edge in either orientation 

between j1 and j2, we say that j1 and j2 are adjacent.

A path is a sequence of distinct vertices j1,…,jm such there is an edge between ik and ik+1 for 

all k = 1,…,m – 1. Furthermore, that path is directed if every edge on the path is oriented ik 

→ ik+1. A directed cycle occurs when there is a path from j1 to j2 and j2 → j1. As suggested 

by the name, a DAG does not contain any directed cycles. A collider occurs on a path if jk–1 

→ jk ← jk+1 and the collider is unshielded if jk–1 and jk+1 are not adjacent.
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The connectivity of a DAG may be characterized using a graphical criterion called d-

separation; for in-depth details, see (Koller et al., 2009). At a high level, d-separation is of 

interest when learning causal DAGs because given a few assumptions d-separation in the 

true causal graph has a one-to-one correspondence with conditional independence in the 

data. Unfortunately, multiple DAGs often encode the same d-separations–this means the true 

causal DAG is only identifiable up to a (Markov) equivalence class. Fortunately, Markov 

equivalence may be completely characterized using two simple graphical concepts: two 

DAGs containing the same adjacencies and unshielded colliders are Markov equivalent 

(Pearl, 2009).

2.2 Scoring DAGs

Two fundamental assumptions of causal algorithms are the causal Markov condition and the 

causal faithfulness condition. The causal Markov condition states that d-separation in the 

data-generating graph implies conditional independence in the data. Conversely, the causal 

faithfulness condition states that conditional independence in the data implies d-separation 

in the data-generating graph. These conditions imply that the distribution over a set of 

random variables will factorize according to the true graph and that a more parsimonious 

factorization does not exist. By factorization, we mean that given a set of p random variables 

X = (X1,…,Xp) generated according to a DAG 𝒢, the joint distribution can be written as,

P(X) = ∏
j = 1

p
P(X j ∣ X

Pa j
𝒢), (1)

or equivalently

log P(X) = ∑
j = 1

p
log P(X j ∣ X

Pa j
𝒢) . (2)

Equation 2 leads to a useful property of scoring criteria, namely, decomposability. A score is 

decomposable if it decomposes according to the graph. That is, if a score S is decomposable, 

then

S(𝒢, X) = ∑
j = 1

p
s(X j, X

Pa j
𝒢) (3)

where s is a local evaluation of S. In a local search over causal graphs, a decomposable score 

may be efficiently updated after transitioning from one graph to another using only the local 

differences. A second useful property of scoring criteria is score equivalence. A score S is 

score equivalent if S gives the same score to any two Markov equivalent DAGs. Score 

equivalence is used in algorithms such as Greedy Equivalent Search (GES) (Chickering, 

2002) which searches over Markov equivalence classes directly. A third useful property of 
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scoring criteria is consistency. A score is consistent if it ranks a model whose parameter 

space contains the true distribution better than a model whose parameter space does not. 

Additionally, a consistent score will rank the simpler of two models whose parameter spaces 

both contain the true distribution. Consistency is usually required by algorithms for 

asymptotic proofs of correctness.

We score our proposed model using the Bayesian Information Criterion (BIC). BIC was first 

introduced by (Schwarz et al., 1978) as a approximation for the marginal likelihood

P(X ∣ 𝒢) ≈ ℓ(θmle ∣ X) − ∣ θ ∣
2 log(n) (4)

where θ are the parameters of the distribution, θmle is the maximum likelihood estimate of 

the parameters, and n is the number instances in the data. Later it was extended to a more 

general class of models (including linear Gaussian DAGs) by (Haughton, 1988). BIC is used 

by (Chickering, 2002) in GES because it is decomposable, score equivalent, and consistent.

3. Method

In this section, we introduce the DG score and showed that it is score equivalent and 

consistent. Additionally, we note that it is efficient to compute.

Let X = (X1,…,Xp) be a set of p random variables with n instances. Our method relies on a 

standard transformation of the variables:

Z j =
X j if j ∈ C

𝟙1(X j), …, 𝟙k − 1(X j) if j ∈ D
(5)

where 𝟙k(X j) is the indicator function such that 𝟙k(X j) = 1 if Xj = k and 𝟙k(X j) = 0 otherwise 

and ∣Xj∣ = k for Xj ∈ D. We use superscripts to index the indicator random variables for each 

discrete variable (i.e., Z j
k).

Equation 5 embeds the discrete variables into a continuous space using their one-hot vector 

representations. However, the naïve embedding results in a degenerate distribution1, 

depicted on the left of Figure 1. Thus, the last indicator variable of each one-hot vector is 

dropped; this may be thought of as a projection of each one-hot vector into a lower 

dimensional space, depicted on the right of Figure 1. Figure 2 illustrates an example of 

applying the transformation to a data set. After a data set has been transformed, the data are 

treated as jointly Gaussian. Consequently, we call our score the degenerate Gaussian (DG) 

score.

1.A degenerate distribution is a distribution with support only on a lower dimension space; on the left of Figure 1 we see that there is 
only support on the plane x + y + z = 1.
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Since BIC is decomposable, we write the DG score as the sum of local components

S(𝒢, Z) = ∑
j = 1

p
s(Z j, Z

Pa j
𝒢) (6)

where

s(Z j, Z
Pa j

𝒢) = ℓ(θmle ∣ Z
{ j} ∪ Pa j

𝒢) − ℓ(θmle ∣ Z
Pa j

𝒢) − c
2 ∣ Z j ∣ ∣ Z

Pa j
𝒢 ∣ log(n) (7)

and c is a penalty discount parameter used to tune the density of the resulting graph. The log 

likelihood for a subset Q of the variables in Equation 7 is computed with the Gaussian log 

likelihood function

ℓ(θmle ∣ ZQ) = − n
2 log ∣ 2πeΣQ ∣ . (8)

Since the only non-constant in Equation 8 is ΣQ, we may compute the full covariance matrix 

as a preprocessing step, then during search local scores may be calculated simply by 

retrieving the relative rows and columns of the full covariance matrix. Thus, score 

calculations will be constant time.

Interestingly, the embedded values of a discrete variable do not affect how the scores of 

different graphs compare relative to each other. This means that the actual values of the 

embedding are irrelevant to search and the transformation described in Equation 5 will give 

the same result as any other embedding. We show this by proving that the DG score is order 

invariant (the preferential ordering of graphs does not change) under an affine 

transformation of the embedded values of a discrete variable.

Lemma 1 The DG score is order invariant under an affine transformation of the embedded 

values of a discrete variable.

Proof Consider the affine transformation Z′ = AZ + b where

A =
I 0
0 A j

b =
0
b j

and Aj is any full rank linear transformation of Zj for j ∈ D. Using Z′ rather than Z in 

Equation 6 results in an additional term

S(𝒢, Z′) = S(𝒢, Z) − n log ∣ A j ∣ .
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But n log ∣Aj∣ is constant with respect to 𝒢. Accordingly, an affine transformation of the 
embedded values of a discrete variable amounts to adding a constant to the score. Thus, the 
embedded values of a discrete variable do not affect how the scores of different graphs 
compare relative to each other. ∎

The DG score is score equivalent due to the fact that BIC is score equivalent; however, it is 

not necessarily consistent. For consistency, we introduce two assumptions.

Assumption 1 The continuous random variables are Gaussian. Each k-category discrete 

random variable represents a latent (k – 1) dimensional Gaussian random variable.

Note that a latent Gaussian random variable with less than k – 1 dimension can be 

represented in k – 1 dimensions as a degenerate Gaussian. Define Øj : Lj → Zj as the 

mapping from the latent continuous variable Lj to the embedding of the measured discrete 

variable Zj. Then the maximum likelihood estimate of covariance for the true underlying 

Gaussian distribution is given by Σ = [σil
k ], where

σ jl
k = 1

n ∑
i = 1

n
(lij

k − l‒ j
k)(zil − z‒l)

= 1
n ∑

i = 1

n
(ϕ j(lij

k) − ϕ‒ j(l j
k))(zil − z‒l) + ∑

i = 1

n
δij

k(zil − z‒l)

= 1
n ∑

i = 1

n
(zij

k − z‒ j
k)(zil − z‒l) + ∑

i = 1

n
δij

k(zil − z‒l)

(9)

and δij
k = (lij

k − l‒ j
k) − (ϕ j(lij

k ) − ϕ‒ j(l j
k)) accounts for the variation in the data lost due to 

discretization.

Assumption 2 The discretization defined by the mapping Øj loses no information:

Σi δil
k (zil − z‒l) = 0 for all j, k, l .

If we interpret the unique values of Z j
k as cluster centers, then δij

k  will be the distance of 

L j
k = lij

k  to its corresponding cluster center–the cluster residuals. Accordingly, Assumption 2 

states that the cluster residuals are uncorrelated with the other random variables in the data. 

This assumption will often be violated, however, in practice most violations are subtle and 

performance is relatively unaffected. To support this statement, we refer to the simulation 

results in Section 4 and Appendix A.

Proposition 2 The DG score is consistent.

Proof Under Assumptions 1 and 2, the maximum likelihood estimate of covariance for the 

true underlying Gaussian distribution is given by Equation 9. Accordingly, since BIC is 

consistent for Gaussian DAG models (Haughton, 1988; Spirtes et al., 1997), the estimate 
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from Equation 9 is consistent. By Lemma 1, the choice of Øj does not affect how the scores 

of different graphs compare relative to each other. Therefore, any choice of Øj, including the 

transformation described in Equation 5 gives a consistent result. Thus, the DG score is 

consistent. ∎

4. Evaluation

In this section, we evaluate the practicality of the DG score in high-dimensions on simulated 

data. In the simulation study we compare our introduced method to several other state of the 

art methods.

4.1 Simulation Study

In order to evaluate the practicality of our method in comparison to other state of the art 

algorithms, we simulated data using two models: the conditional Gaussian model and the 

Lee and Hastie model; these are the models used for comparison in (Raghu et al., 2018), but 

were originally introduced as simulator in (Andrews et al., 2018) and (Sedgewick et al., 

2018), respectively. In our experiments, we varied the number of measured variables, the 

average vertex degree of the graphs, and the sample size.

Bayesian networks were randomly generated to simulate data. For each network, first a DAG 

over a set of continuous and discrete random variables was generated. The random variables 

were uniformly, randomly assigned to be either continuous or discrete with probability 0.5. 

Edges were added between the vertices in the graph according to a randomly defined causal 

ordering and added until the average vertex degree of the graph reached a pre-specified 

amount. In causal order, the distribution of each random variable given it’s parents was 

parameterized. For more details on the methods used for simulation, see Appendix B.

We compare the DG score against the same structure learning methods studied in (Raghu et 

al., 2018): the conditional Gaussian (CG) score, causal mixed graphical models (MGM), and 

copula PC (Copula). For the CG and DG scores, we used the fast Greedy Equivalent Search 

(fGES) (Ramsey et al., 2017), which is an optimized version of Greedy Equivalent Search 

(Chickering, 2002). We apply the structure prior introduced in (Ramsey et al., 2017; 

Andrews et al., 2018) to both scores and set it to 1.0 (as suggested in those papers). Finally, 

we use a penalty discount of 1.0, 2.0, 4.0, and 8.0. For causal MGM (Sedgewick et al., 

2018), we used a value of 0.2 for all three parameter penalties. In their paper, the authors use 

a data driven method to choose these parameters, so our naïve choice could result in weaker 

performance for MGM. That being said, we chose these values at the suggestion of the 

authors and did so to reduce search times. We used CPC-Stable (Ramsey et al., 2006; 

Colombo and Maathuis, 2014) as the second step with a logistic-regression-based test of 

conditional independence with alpha levels of 1e-2, 1e-3, 1e-4, and 1e-5. For copula PC (Cui 

et al., 2016), we used Gibbs sampling (1000 samples) to estimate the correlation matrix. We 

then used PC-Stable (Colombo and Maathuis, 2014) with alpha levels of 1e-2, 1e-3, 1e-4, 

and 1e-5. Note that copula PC is intended to be used on mixed data-types when the discrete 

variables are either binary or ordinal; however, in our simulations we used 2-4 category 

categorical data.
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The following performance measures were used to evaluate correctness and computational 

efficiency:

Adj Precision : # correctly predicted adjacencies
# predicted adjacencies

Adj Recall : # correctly predicted adjacencies
# true adjacencies

Arrhd Precision : # correctly predicted arrowheads
# predicted arrowheads

Arrhd Recall : # correctly predicted arrowheads
# true arrowheads

Time :wall clock run‐time in seconds

We varied the simulation parameters over the number of measured random variables (100, 

500, or 1000), the average vertex degree of the graph (2, 4, or 6), and the number of samples 

(200, 1000, or 5000) and report the mean statistics over 10 repetitions along with 95% 

confidence intervals. All simulations and comparisons took place within the Tetrad system’s 

algorithm comparison tool (Ramsey and Malinsky, 2016) on a laptop with an Intel(R) Core 

I5 @ 2.2 GHz with 8GB of RAM. For readability, the tables below report selected results; 

however, the full tables of all simulation results are in Appendix A.

First we performed a comparison using data generated from a conditional Gaussian model. 

Figure 3 illustrates how the various methods perform on the conditional Gaussian simulated 

data with 500 measured random variables, average vertex degree 4, and 1000 samples. 

Copula PC was excluded from this comparison because it failed to return a result in under 

two hours. CG performed the best (as to be expected on conditional Gaussian simulated 

data); however, both DG and MGM have good precision in adjacency and arrowhead 

statistics.

Table 1 tabulates how the various methods performed on the conditional Gaussian simulated 

data while varying the number of measured random variables, the average vertex degree of 

the graph, and the number of samples. The two score-based methods (CG and DG) 

performed the best on low samples (arrowhead statistic reported as “-” imply that no edges 

were oriented). However, as the sample size increases, DG and MGM perform similarly on 

adjacencies. In general, the score-based methods performed better on the arrowhead 

statistics. Copula PC never performed very well, but that is likely because it was not 

intended to run on 2-4 category categorical data. Overall, CG arguably performed the best 

on the reported statistics and DG performed the best on computation time.

Second we performed a comparison using the Lee and Hastie model. Figure 4 illustrates 

how the various method perform on the Lee and Hastie simulated data with 500 measured 

random variables, average vertex degree 4, and 1000 samples. Copula PC was excluded from 

this comparison because it failed to return a result in under two hours. DG perform the best, 

however, all methods have good adjacency statistics. MGM also has good arrowhead 

precision. CG performs poorly on the arrowhead statistics relative to the other methods.

Table 2 tabulates how the various methods performed on the Lee and Hastie simulated data 

while varying the number of measured random variables, the average vertex degree of the 
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graph, and the number of samples. The two score-based methods (CG and DG) performed 

the best on low samples (arrowhead statistic reported as “-” imply that no edges were 

oriented). However, as the sample size increases, CG, DG, and MGM perform similarly on 

adjacencies. CG performs poorly on the arrowhead statistics relative to the other methods, 

but this is likely because it is attempting to fit a far more complex model class. Copula PC 

never performed well, which may be because it was not intended to run on 2-4 category 

categorical data. Overall, DG arguably performed the best on the reported statistics and 

performed the best on computation time.

Table 3 tabulates how DG with a penalty discount of 1 performs on high-dimensional data 

from both the conditional Gaussian model and from the Lee and Hastie model. All other 

method were excluded from this table because they failed to return a result in under two 

hours. For DG, performance on high-dimensional data is similar to performance on low-

dimensional data and DG remains very efficient.

5. Conclusions

In this paper, we introduced the degenerate Gaussian (DG) score for learning directed 

acyclic graphs (DAGs) from high-dimensional data with mixed data-types. The DG score is 

score equivalent, consistent, and efficient to compute. It performs competitively when 

learning causal models generated outside of its assumed model class (conditional Gaussian 

model) when compared to methods assuming the correct model, but is orders of magnitude 

faster. Additionally, when DG is able to correctly model the underlying causal relationships 

(Lee and Hastie model), it has near perfect performance. Scaling up the DG score to high-

dimensions has little effect on overall performance and the score continues to be very 

efficient. The methods presented are available on GitHub2.
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Appendix

Appendix A.

In this appendix, we report the means for the full experiments. Omitted rows represent 

algorithms that failed to return a result in under two hours. Arrowhead statistic reported as 

“-” imply that no edges were oriented.

2.https://github.com/cmu-phil/tetrad
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Table 4:

Conditional Gaussian simulation.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

100 2 200

CG

1.0 0.94 0.41 0.74 0.11 1.52

2.0 0.99 0.29 0.97 0.05 1.32

4.0 1.00 0.16 0.94 0.02 1.27

8.0 1.00 0.08 1.00 0.01 1.26

DG

1.0 0.96 0.33 0.65 0.10 0.06

2.0 0.99 0.25 0.74 0.05 0.04

4.0 1.00 0.15 0.73 0.02 0.04

8.0 1.00 0.07 1.00 0.01 0.03

MGM
1e-4 0.98 0.25 - - 7.52

1e-5 0.99 0.19 - - 6.66

Copula
1e-4 0.53 0.09 - - 307.38

1e-5 0.70 0.07 - - 307.38

100 2 1000

CG

1.0 0.99 0.70 0.93 0.45 8.46

2.0 1.00 0.61 0.92 0.29 7.45

4.0 1.00 0.48 0.95 0.15 6.94

8.0 1.00 0.33 0.97 0.08 6.38

DG

1.0 0.99 0.56 0.74 0.30 0.05

2.0 1.00 0.47 0.81 0.21 0.05

4.0 1.00 0.37 0.85 0.13 0.05

8.0 1.00 0.26 0.93 0.07 0.05

MGM
1e-4 0.99 0.52 1.00 0.05 41.63

1e-5 1.00 0.47 1.00 0.04 41.44

Copula
1e-4 0.4 0.33 0.09 0.03 409.87

1e-5 0.45 0.29 0.06 0.01 390.63

100 4 1000

CG

1.0 0.97 0.54 0.86 0.41 16.50

2.0 0.99 0.43 0.83 0.28 12.47

4.0 0.99 0.31 0.88 0.14 8.15

8.0 0.99 0.19 0.95 0.05 6.33

DG

1.0 0.98 0.40 0.76 0.25 0.06

2.0 0.99 0.32 0.84 0.18 0.05

4.0 1.00 0.25 0.90 0.11 0.05

8.0 0.99 0.16 0.96 0.05 0.05

MGM
1e-4 0.99 0.36 0.95 0.04 35.67

1e-5 1.00 0.32 0.95 0.03 35.04

Copula
1e-4 0.54 0.21 0.16 0.02 436.74

1e-5 0.61 0.18 0.26 0.02 417.53
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Table 5:

Conditional Gaussian simulation continued.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

500 4 1000

CG

1.0 0.98 0.48 0.89 0.34 453.97

2.0 0.99 0.38 0.85 0.22 350.87

4.0 1.00 0.28 0.88 0.11 301.60

8.0 1.00 0.19 0.97 0.06 297.51

DG

1.0 0.99 0.38 0.78 0.23 0.81

2.0 0.99 0.31 0.83 0.16 0.56

4.0 1.00 0.23 0.91 0.10 0.56

8.0 1.00 0.16 0.96 0.06 0.53

MGM

1e-2 0.53 0.49 0.85 0.10 2326.04

1e-3 0.90 0.42 0.97 0.07 961.96

1e-4 0.98 0.36 0.99 0.05 941.90

1e-5 1.00 0.32 0.99 0.04 937.30

Table 6:

Lee and Hastie simulation.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

100 2 200

CG

1.0 0.98 0.80 0.67 0.45 3.23

2.0 1.00 0.70 0.76 0.26 2.35

4.0 1.00 0.53 0.93 0.13 1.55

8.0 1.00 0.32 1.00 0.07 1.35

DG

1.0 0.99 0.82 0.89 0.65 0.12

2.0 1.00 0.71 0.92 0.48 0.06

4.0 1.00 0.55 0.93 0.25 0.05

8.0 1.00 0.34 1.00 0.07 0.04

MGM

1e-2 0.94 0.80 0.96 0.27 5.15

1e-3 1.00 0.68 0.98 0.15 3.67

1e-4 1.00 0.59 0.98 0.08 3.47

1e-5 1.00 0.49 1.00 0.05 3.40

Copula

1e-2 0.63 0.43 0.17 0.01 307.86

1e-3 0.81 0.36 0.28 0.01 307.70

1e-4 0.86 0.30 - - 307.68

1e-5 0.90 0.28 - - 307.66

100 2 1000 CG

1.0 0.99 0.96 0.74 0.80 16.53

2.0 0.99 0.91 0.65 0.65 17.02

4.0 1.00 0.85 0.60 0.40 19.96
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Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

8.0 0.99 0.72 0.74 0.22 11.50

DG

1.0 0.99 0.98 0.96 0.96 0.08

2.0 1.00 0.96 0.96 0.91 0.07

4.0 1.00 0.89 0.96 0.79 0.06

8.0 1.00 0.76 0.96 0.58 0.06

MGM

1e-2 0.90 0.97 1.00 0.80 37.76

1e-3 0.99 0.96 1.00 0.70 32.98

1e-4 1.00 0.92 1.00 0.56 31.27

1e-5 1.00 0.89 1.00 0.44 29.77

Copula

1e-2 0.48 0.71 0.09 0.06 403.25

1e-3 0.66 0.68 0.10 0.04 396.65

1e-4 0.73 0.63 0.10 0.03 395.57

1e-5 0.77 0.61 0.08 0.02 395.25

100 4 1000

CG

1.0 0.95 0.86 0.79 0.76 51.91

2.0 0.96 0.78 0.76 0.65 43.66

4.0 0.96 0.69 0.72 0.52 38.67

8.0 0.97 0.59 0.73 0.41 32.60

DG

1.0 0.95 0.97 0.90 0.93 0.27

2.0 0.96 0.94 0.90 0.89 0.21

4.0 0.97 0.83 0.91 0.77 0.16

8.0 0.98 0.68 0.93 0.60 0.11

MGM

1e-2 0.98 0.88 0.97 0.67 176.07

1e-3 1.00 0.84 0.97 0.56 135.72

1e-4 1.00 0.79 0.96 0.45 106.78

1e-5 1.00 0.74 0.95 0.37 82.00

Copula

1e-2 0.55 0.50 0.10 0.05 531.39

1e-3 0.63 0.53 0.12 0.04 432.96

1e-4 0.68 0.50 0.15 0.03 417.76

1e-5 0.73 0.47 0.10 0.02 414.41

Table 7:

Lee and Hastie simulation continued.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

500 4 1000
CG

1.0 0.97 0.86 0.80 0.75 2082.13

2.0 0.98 0.79 0.76 0.65 1875.14

4.0 0.98 0.69 0.71 0.52 1638.23

8.0 0.98 0.58 0.70 0.41 1275.42

DG 1.0 0.97 0.96 0.94 0.93 1.94
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Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj 
Precision

Adj 
Recall

Arrhd 
Precision

Arrhd 
Recall Seconds

2.0 0.98 0.90 0.95 0.87 1.54

4.0 0.99 0.79 0.95 0.75 1.15

8.0 0.99 0.63 0.96 0.54 0.79

MGM

1e-2 0.95 0.89 0.99 0.70 1888.53

1e-3 0.99 0.83 0.99 0.56 1304.90

1e-4 1.00 0.78 0.99 0.46 1062.12

1e-5 1.00 0.74 1.00 0.37 968.14

Appendix B.

In this appendix, we detail the parameters used for simulation of the data. Each parameter 

will be followed by the values we used in simulation and a short description. We split the 

parameters into 3 groups: general parameters used across all simulations, parameters specific 

to the conditional Gaussian simulation, and parameters specific to the Lee and Hastie 

simulation.

General Parameters

numRuns: 10 - number of runs

numMeasures: 100, 500, 1000 - number of measured variables

avgDegree: 2, 4, 6 - average degree of graph

sampleSize: 200, 1000, 5000 - sample size

percentDiscrete: 50 - percentage of discrete variables (0 - 100) for mixed data

differentGraphs: true - true if a different graph should be used for each run

coefSymmetric: true - true if negative coefficient values should be considered

Conditional Gaussian Parameters

minCategories: 2 - minimum number of categories

maxCategories: 4 - maximum number of categories

varLow: 1.0 - low end of variance range

varHigh: 3.0 - high end of variance range

coefLow: 0.2 - low end of coefficient range

coefHigh: 0.7 - high end of coefficient range
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meanLow: 0.5 - low end of mean range

meanHigh: 1.5 - high end of mean range

Lee and Hastie Parameters

numCategories: 3 - maximum number of categories

varLow: 1.0 - low end of variance range

varHigh: 2.0 - high end of variance range

coefLow: 0.5 - low end of coefficient range

coefHigh: 1.5 - high end of coefficient range

References

Andrews Bryan, Ramsey Joseph, and Cooper Gregory F. Scoring Bayesian networks of mixed 
variables. International journal of data science and analytics, 6:3–18, 2018. [PubMed: 30140730] 

Bishop Christopher M. Pattern recognition and machine learning. springer, 2006.

Borboudakis Giorgos and Tsamardinos Ioannis. Towards robust and versatile causal discovery for 
business applications. In Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, pages 1435–1444. ACM, 2016.

Bøttcher Susanne Gammelgaard. Learning Bayesian Networks with Mixed Variables. PhD thesis, 
Aalborg University, 2004.

Chickering David Maxwell. Optimal structure identification with greedy search. Journal of machine 
learning research, 3:507–554, 2002.

Colombo Diego and Maathuis Marloes H. Order-independent constraint-based causal structure 
learning. The Journal of Machine Learning Research, 15:3741–3782, 2014.

Cui Ruifei, Groot Perry, and Heskes Tom. Copula PC algorithm for causal discovery from mixed data. 
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 
377–392. Springer, 2016.

Harris Naftali and Drton Mathias. PC algorithm for nonparanormal graphical models. The Journal of 
Machine Learning Research, 14(1):3365–3383, 2013.

Haughton Dominique. On the choice of a model to fit data from an exponential family. The Annals of 
Statistics, 16:342–355, 1988.

Hyttinen Antti, Eberhardt Frederick, and Järvisalo Matti. Constraint-based causal discovery: Conflict 
resolution with answer set programming. In UAI, pages 340–349, 2014.

Koller Daphne, Friedman Nir, and Bach Francis. Probabilistic graphical models: principles and 
techniques. MIT press, 2009.

Lee Jason and Hastie Trevor. Structure learning of mixed graphical models. In Artificial Intelligence 
and Statistics, pages 388–396, 2013.

Nandy Preetam, Hauser Alain, and Maathuis Marloes H. High-dimensional consistency in score-based 
and hybrid structure learning. The Annals of Statistics, 46:3151–3183, 2018.

Pearl Judea. Causality. Cambridge university press, 2009.

Raghu Vineet K, Poon Allen, and Benos Panayiotis V. Evaluation of causal structure learning methods 
on mixed data types. In Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery, 
pages 48–65, 2018.

Ramsey Joseph, Zhang Jiji, and Spirtes Peter. Adjacency-faithfulness and conservative causal 
inference. In Proceedings of the 22th Conference on Uncertainty in Artificial Intelligence, pages 
401–408, 2006.

Andrews et al. Page 15

Proc Mach Learn Res. Author manuscript; available in PMC 2019 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ramsey Joseph, Glymour Madelyn, Sanchez-Romero Ruben, and Glymour Clark. A million variables 
and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical 
causal models, with an application to functional magnetic resonance images. International journal 
of data science and analytics, 3:121–129, 2017. [PubMed: 28393106] 

Ramsey Joseph D and Malinsky Daniel. Comparing the performance of graphical structure learning 
algorithms with Tetrad. arXiv preprint arXiv:1607.08110, 2016.

Schwarz Gideon et al. Estimating the dimension of a model. The annals of statistics, 6: 461–464, 1978.

Sedgewick Andrew J, Buschur Kristina, Shi Ivy, Ramsey Joseph D, Raghu Vineet K, Manatakis 
Dimitris V, Zhang Yingze, Bon Jessica, Chandra Divay, Karoleski Chad, et al. Mixed graphical 
models for integrative causal analysis with application to chronic lung disease diagnosis and 
prognosis. Bioinformatics, 2018.

Spirtes Peter, Richardson Thomas, and Meek Chris. The dimensionality of mixed ancestral graphs 
Technical report, Technical Report CMU-PHIL-83, Philosophy Department, Carnegie Mellon 
University, 1997.

Spirtes Peter, Clark N Glymour Richard Scheines, Heckerman David, Meek Christopher, Cooper 
Gregory, and Richardson Thomas. Causation, prediction, and search. MIT press, 2000.

Andrews et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2019 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
An example embedding before and after removing the last indicator variable. The figure on 

the left illustrates an embedded random variable pre-removal of degeneracy (3-dimensions) 

and the figure on the right illustrates an embedded random variable post-removal of 

degeneracy (2-dimensions).
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Figure 2: 
An example data set with mixed data-types before and after embedding. The table on the left 

illustrates a data set with mixed data-types pre-embedding and the table on the right 

illustrates a data set with mixed data-types post-embedding; the redundant indicator column 

has been removed.
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Figure 3: 
Conditional Gaussian simulated data with 500 measured random variables, average vertex 

degree 4, and 1000 samples.
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Figure 4: 
Lee and Hastie simulated data with 500 measured random variables, average vertex degree 

4, and 1000 samples.
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Table 1:

Conditional Gaussian simulation.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj Precision Adj Recall Arrhd 
Precision

Arrhd 
Recall Seconds

100

2

200

CG 1.0 0.94 ± 0.03 0.41 ± 0.04 0.74 ± 0.15 0.11 ± 0.05 1.52

DG 1.0 0.96 ± 0.02 0.33 ± 0.04 0.65 ± 0.21 0.10 ± 0.06 0.06

MGM 1e-4 0.98 ± 0.02 0.25 ± 0.04 - - 7.52

Copula 1e-5 0.70 ± 0.12 0.07 ± 0.01 - - 307.38

1000

CG 1.0 0.99 ± 0.01 0.70 ± 0.05 0.93 ± 0.06 0.45 ± 0.08 8.46

DG 1.0 0.99 ± 0.01 0.56 ± 0.04 0.74 ± 0.13 0.30 ± 0.06 0.05

MGM 1e-4 0.99 ± 0.01 0.52 ± 0.05 1.00 ± 0.00 0.05 ± 0.04 41.63

Copula 1e-5 0.45 ± 0.06 0.29 ± 0.04 0.06 ± 0.03 0.01 ± 0.01 390.63

4 1000

CG 1.0 0.97 ± 0.01 0.54 ± 0.04 0.86 ± 0.05 0.41 ± 0.05 16.50

DG 1.0 0.98 ± 0.01 0.40 ± 0.02 0.76 ± 0.06 0.25 ± 0.04 0.06

MGM 1e-4 0.99 ± 0.01 0.36 ± 0.03 0.95 ± 0.11 0.04 ± 0.01 35.67

Copula 1e-5 0.61 ± 0.02 0.18 ± 0.03 0.26 ± 0.15 0.02 ± 0.01 417.53

500 4 1000

CG 1.0 0.98 ± 0.01 0.48 ± 0.03 0.89 ± 0.02 0.34 ± 0.03 453.97

DG 1.0 0.99 ± 0.01 0.38 ± 0.01 0.78 ± 0.01 0.23 ± 0.01 0.81

MGM 1e-4 0.98 ± 0.01 0.36 ± 0.01 0.99 ± 0.01 0.05 ± 0.01 941.90
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Table 2:

Lee and Hastie simulations.

Simulation Algorithm Statistics Time

Measured Degree Samples Method Parameter Adj Precision Adj Recall Arrhd 
Precision

Arrhd 
Recall Seconds

100

2

200

CG 1.0 0.98 ± 0.01 0.80 ± 0.01 0.67 ± 0.06 0.45 ± 0.06 3.23

DG 1.0 0.99 ± 0.01 0.82 ± 0.02 0.89 ± 0.05 0.65 ± 0.03 0.12

MGM 1e-2 0.94 ± 0.02 0.80 ± 0.02 0.96 ± 0.04 0.27 ± 0.03 5.15

Copula 1e-5 0.90 ± 0.05 0.28 ± 0.06 - - 307.66

1000

CG 1.0 0.99 ± 0.01 0.96 ± 0.01 0.74 ± 0.04 0.80 ± 0.04 16.53

DG 1.0 0.99 ± 0.01 0.98 ± 0.01 0.96 ± 0.04 0.96 ± 0.02 0.08

MGM 1e-2 0.90 ± 0.02 0.97 ± 0.01 1.00 ± 0.01 0.80 ± 0.04 37.76

Copula 1e-5 0.77 ± 0.03 0.61 ± 0.03 0.08 ± 0.06 0.02 ± 0.02 395.25

4 1000

CG 1.0 0.95 ± 0.01 0.86 ± 0.01 0.79 ± 0.03 0.76 ± 0.02 51.91

DG 1.0 0.95 ± 0.02 0.97 ± 0.01 0.90 ± 0.04 0.93 ± 0.01 0.27

MGM 1e-2 0.98 ± 0.01 0.88 ± 0.02 0.97 ± 0.02 0.67 ± 0.04 176.07

Copula 1e-5 0.73 ± 0.04 0.47 ± 0.01 0.10 ± 0.06 0.02 ± 0.01 414.41

500 4 1000

CG 1.0 0.97 ± 0.01 0.86 ± 0.01 0.80 ± 0.01 0.75 ± 0.01 2082.13

DG 1.0 0.97 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.93 ± 0.01 1.94

MGM 1e-2 0.95 ± 0.01 0.89 ± 0.01 0.99 ± 0.01 0.70 ± 0.02 1888.53
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Table 3:

DG with a penalty discount of 1 on high-dimensional data.

Simulation Statistics Time

Method Measured Degree Samples Adj Precision Adj Recall Arrhd Precision Arrhd Recall Seconds

CG

500 4 1000 0.99 ± 0.01 0.38 ± 0.01 0.78 ± 0.01 0.23 ± 0.01 0.24

500 4 5000 0.98 ± 0.01 0.61 ± 0.01 0.80 ± 0.02 0.48 ± 0.01 0.58

500 6 1000 0.99 ± 0.01 0.26 ± 0.01 0.78 ± 0.02 0.17 ± 0.01 0.30

1000 4 1000 0.99 ± 0.01 0.37 ± 0.01 0.82 ± 0.02 0.23 ± 0.01 0.44

LH

500 4 1000 0.97 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.93 ± 0.01 0.33

500 4 5000 0.96 ± 0.01 1.00 ± 0.01 0.94 ± 0.02 0.99 ± 0.01 0.74

500 6 1000 0.94 ± 0.01 0.94 ± 0.01 0.90 ± 0.02 0.91 ± 0.01 2.09

1000 4 1000 0.98 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.92 ± 0.01 1.25
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