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Abstract

Estimating causal effects from observational
data is not always possible due to confound-
ing. Identifying a set of appropriate covariates
(adjustment set) and adjusting for their influ-
ence can remove confounding bias; however,
such a set is typically not identifiable from ob-
servational data alone. Experimental data do
not have confounding bias, but are typically
limited in sample size and can therefore yield
imprecise estimates. Furthermore, experimen-
tal data often include a limited set of covari-
ates, and therefore provide limited insight into
the causal structure of the underlying system.
In this work we introduce a method that com-
bines large observational and limited experi-
mental data to identify adjustment sets and im-
prove the estimation of causal effects. The
method identifies an adjustment set (if possi-
ble) by calculating the marginal likelihood for
the experimental data given observationally-
derived prior probabilities of potential adjust-
men sets. In this way, the method can make
inferences that are not possible using only the
conditional dependencies and independencies
in all the observational and experimental data.
We show that the method successfully identi-
fies adjustment sets and improves causal effect
estimation in simulated data, and it can some-
times make additional inferences when com-
pared to state-of-the-art methods for combin-
ing experimental and observational data.

1 Introduction

Covariate adjustment is the main method for estimating
causal effects from observational data. There is a lot

of work on identifying the correct sets for covariate ad-
justment in the fields of potential outcomes and causal
Bayesian networks. For the latter, sound and complete
graphical criteria have recently been proven [van der
Zander et al., 2014, Shpitser et al., 2012, Perkovic et al.,
2017]. These criteria allow the identification of all the
variable sets that lead to unbiased estimates of post-
interventional probabilities through covariate adjustment
when the causal graph is known. Typically,however, the
true causal graph is unknown. Several causal discovery
methods try to identify the causal graph for a set of vari-
ables based on the causal Markov and faithfulness as-
sumption [Pearl, 2000]. Typically, multiple graphs fit
the data equally well and are called Markov equivalent
(ME). Thus, the correct sets for covariate adjustment are
often not identifiable from observational data alone. In
contrast, experimental data are the gold standard for es-
timating unbiased causal effects, but are often limited in
terms of sample size and measured covariates. This sit-
uation can lead to wide confidence intervals of the esti-
mated parameters, and provides limited insight into the
causal structure of the system under study.

This paper introduces a method for identifying adjust-
ment sets by combining large observational and limited
experimental data. We are motivated by the following
common scenario: Assume that a researcher is inter-
ested in quantifying the magnitude of an adverse effect
(AE) of a drug (D) on a population and has access to
a large collection of electronic health records of patients
who take the drug or not, along with a large set of co-
variates. The researcher also has the published results
of a randomized control trial (RCT) conducted in a ran-
dom sample of the same population, which reports the
estimated causal effect P̂ (AE|do(D)) and deems it sig-
nificant; thus, D causes AE. The researcher suspects
that this causal relationship is also confounded by an-
other condition (C), not included in the RCT, that is
highly correlated with both D and AE in the observa-
tional data (pairwisely and conditional on the remaining
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Figure 1: Markov equivalent graphs imply differ-
ent post-intervention distributions In G1 C is an ad-
justment set for D,AE and P (AE|do(D = d)) =∑
c P (AE|d, c) for d =0, 1. In G2, ∅ is an adjustment

set for X,Y and P (AE|do(D = d)) = P (AE|d) for
all d. Notice that even though the two graphs are indis-
tinguishable based on the conditional (in) dependencies
in observational data over {D,AE,C} and experimen-
tal data over {D,AE}, they entail a different distribution
for AE under do(D).

variable). She wants to know if C is an adjustment set
for AE and D, and if so, use C to improve the estimate
of P (AE|do(D)) through covariate adjustment.

Figure 1 shows two different graphs that are both con-
sistent with this scenario. The graphs cannot be distin-
guished based on the conditional dependencies and inde-
pendencies in the observational and experimental data.
However, the two graphs imply a different Interventional
Distribution (ID) P (AE|do(D)). These two distribu-
tions can be computed from the observational data based
on the appropriate covariate adjustment, which differs for
the two graphs.

In this work, we present a method for using predictions
of these ID estimates (from observational data) as priors
in deriving the marginal likelihood of the experimental
data in order to score adjustment sets and find the most
probable one. By using the observational and experimen-
tal data in this way, our method can make inferences that
are not possible based on conditional (in) dependence
constraints alone, like identifying thatC is an adjustment
set for D,AE in Fig. 1, even though C is not measured
in the experimental data. To our knowledge, this method
is the first one described in the literature that can make
this inference.

2 PRELIMINARIES

We use the framework of Semi-Markov Causal Mod-
els (SMCMs). The causal structure of SMCMs is de-
scribed with mixed graphs. Mixed graphs include two
types of edges: A directed edge, which denotes a direct
causal relationship among the measured variables, and
a bi-directed edge, which denotes the presence of a la-
tent confounder. Each pair of variables is joined by at
most two edges, one directed and one bidirected. No

self-loops are allowed. Moreover, SMCMs are acyclic
graphs. An SMCM with no bidirected edges is a directed
acyclic graph (DAG).

We use the terms node and variable interchangeably. We
use bold to denote variable sets, uppercase letters to de-
note single variables, and lowercase letters to denote
variable values. We use standard graph-theoretic ter-
minology. A mixed graph G is a triple 〈V,ED,EB〉,
where V is the set of nodes, and ED,EB are the sets of
directed and bidirected edges, respectively. A path be-
tween X and Y consists of an ordered sequence of dis-
tinct nodes 〈X = V1, . . . , Y = Vn〉 and a sequence of
edges 〈E1, . . . , En−1〉 such that for 1 ≤ i ≤ n, Ei is an
edge between Vi and Vi+1. If every Ei is directed, the
path is a directed or causal path. If there is a directed
path from X to Y , then X is an ancestor of Y . We use
the set PaG(X), AnG(X), DeG(X) to denote the set of
parents, ancestors, and descendants of X in graph G, re-
spectively.

A SMCM graph is connected to the joint probability
distribution (JPD) of the variables through the Causal
Markov and the Causal Faithfulness Conditions [CMC,
CFC Pearl, 2000]. CMC states that every variable is in-
dependent of its non-effects given its direct causes. The
CMC entails a set of conditional independencies that
hold in the joint probability distribution of variables in
the graph. CFC states that only conditional independen-
cies that stem from the CMC hold in the JPD. Under
these two assumptions, all conditional independencies
that hold in the JPD can be read off of the graph using
the criterion of m-separation.

If we know the causal structure G, a hard intervention of
where a treatment X is set to x can be represented with
the do-operator, do(X = x). The post intervention dis-
tribution of an outcome Y given do(X = x) is denoted
P (Y |do(X = x). In the corresponding SMCM, this is
equivalent to removing all incoming edges into X , while
keeping all other mechanisms intact. We use GX to de-
note the graph stemming from G after removing edges
into X . We use GX to denote the graph stemming from
G after removing edges out of X .

To estimate P (Y |do(X)) from observational data, we
need to control for confounding bias and make sure we
do not introduce additional bias (e.g., m-bias [Greenland,
2003]). This process is called covariate adjustment,
which involves selecting a proper set of variables Z and
“adjusting” for their effect to obtain the post-intervention
distribution:

P (y|do(X = x)) =
∑
z

P (y|x, z)P (z) ∀x (1)

Eq. 1 is called the adjustment formula, and set Z is an



adjustment set for X and Y . Pearl [2000] showed that
sets of variables that satisfy a graphical criterion known
as the backdoor criterion are valid adjustment sets. For
DAGs, the set of parents (direct causes) of X or the set
of all confounders of X and Y are examples of sets that
satisfy the backdoor criterion. The criterion is sound, but
not complete. Subsequent research proved that all valid
adjustment sets satisfy a graphical criterion known as the
adjustment criterion [Shpitser et al., 2012]:

Definition 1. Z satisfies the adjustment criterion relative
to (X,Y ) in G if

• No element in Z is a descendant in G of any node
that lies on a proper1 causal path from X to Y .

• All non-causal paths in G from X to Y are blocked
by Z.

The criterion is sound, meaning that any set Z that satis-
fies the adjustment criterion for (X,Y ) is an adjustment
set for (X,Y ) in all distributions that induce G. It is also
complete, meaning that, for any Z that does not satisfy
the adjustment criterion, there exists a distribution P in-
ducing G where Z is not an adjustment set for (X,Y ).

3 SCORING ADJUSTMENT SETS

The adjustment criterion allows us to identify all the ad-
justment sets for X and Y in an SMCM G, if they exist.
If we find an adjustment set, we can use it to estimate
the post-intervention distribution P (Y |do(X)) from the
pre-intervention distribution P (V), for any treatment X
and outcome Y . In this paper, we are interested in re-
verse engineering the adjustment sets for (X , Y ) using
the empirical observational JPD P̂ (V) and an estimate
of P (Y |do(X)) from limited experimental data.

Specifically, we assume that we have the following set-
ting: There exists a SMCM over a set of variables V and
a JPD P over the same variables such that G and P are
faithful to each other. The variables include a treatment
X and outcome Y caused by X .2 We present our results
for discrete variables following a multinomial distribu-
tion, although the results can be extended to other distri-
butions in which marginal likelihoods can be computed
in closed form exactly or approximated. We assume that
we have the following data:

1 A causal path from X to Y is called proper if it does not
intersect X except at the endpoint. The notation applies to sets
of exposures. For singletons (which we consider in this work),
it is identical to a directed path. However, we keep the term
proper for consistency.

2The assumption that X is causally influencing Y is not
necessary, but identifying adjustment sets for non cause-effect
pairs is a simple task.

• Observational data Dobs measuring all variables in
V on N samples.

• Experimental data Dexp that consist of an estimate
P̂exp(Y |do(X = c)) over Ndo(c) for each possible
value c of X .

Notice that no other variables in V are measured in
Dexp; therefore the only (in) dependence statement that
holds (asymptotically) in Dexp is the pairwise depen-
dence of X and Y . Also notice that P̂exp(Y |do(X =
c)), c = 1, . . . , C-1 and Nexp are typically included and
can be extracted from the publication that presents an
RCT (without the raw data). We argue that this is a very
common scenario in biology and medicine.

Intuitively, our method is based on the following obser-
vation: Different causal graphs, consistent with the con-
ditional (in) dependence constraints in the data, may en-
tail different adjustment sets for (X,Y ), which in turn
may lead to different predicted post-intervention distri-
butions P̄ (Y |do(X)). In addition, there may be cases
where no adjustment set exists among the set of ob-
served variables, and therefore the observational data
cannot be used to identify the post intervention distri-
bution. By (implicitly) comparing P̄ (Y |do(X)) and
P̂exp(Y |do(X)), we can identify sets that are more prob-
able to be adjustment sets for (X,Y ), and use them to
improve the estimate for P (Y |do(X)).

To do so, we need something similar to faithfulness for
the adjustment criterion. Specifically, we will assume
that the adjustment sets for (X , Y ) are exactly those for
which the adjustment criterion holds. We call this as-
sumption adjustment faithfulness:

Definition 2. Let G be a causal SMCM and P a distribu-
tion faithful to G. Then for all disjoint sets of variables
X , Y , Z, Z is an adjustment set for (X , Y ) in P (ac-
cording to Equation 1) only if Z satisfies the adjustment
criterion for (X , Y ) in G.

This assumption rules out distributions where Z is an ad-
justment set for (X , Y ) without satisfying the adjustment
criterion. In the rest of this paper, we use the following
notation: Let Hz be a binary variable that is true if Z is
an adjustment set for (X,Y ), and let G ` Hz denote
that Z satisfies the adjustment criterion for (X,Y ) in G.
If adjustment faithfulness holds, the two are equivalent:
Hz is true if and only if G ` Hz .

We are interested in identifying the most likely adjust-
ment set for X , Y . Unless otherwise mentioned, when
we say that Z is an adjustment set, we mean it is so for
X , Y . Thus, we want to find the set that maximizes the



Algorithm 1: ScoreExp
input : X,Y,Z, Dobs, Ddo(c), nS

output: P (Ddo(c)|Dobs,Hz ), P̂ (Y |do(X))
if Z == @ then

P (Ddo(c)|Dobs,H6∃) =
∏
e

∏
i Γ(Ne

do(c))

Γ(Ndo(c)+E) ;

P̂ (Y |do(X)) = NA;

else
〈G, f(φi|pai |G, Dobs)〉 ← LearnBN(Dobs);
foreach iS = 1, . . . , nS do

Sample φ̃i|pai ∼ f(φi|pai |G, Dobs);
θ̃y|c,k, θ̃k ← BayesInf(G, φ̃i|pai);
p̃(iS)←

∑
k θ̃y|c,kθ̃k

p̃Z(iS) =
∏
e(
∑
k θ̃y|c,kθ̃k)N

e
do(c) ;

P (Ddo(c)|Dobs,Hz ) = pZ;
P̂ (Y |do(X)) = p;

the posterior

P (Hz |Dexp, Dobs) =
P (Dexp, Dobs|Hz )P (Hz )

P (Dexp, Dobs)
=

P (Dexp|Dobs,Hz )P (Hz |Dobs)

P (Dexp|Dobs)
(2)

The score decomposes into (a) the probability of the ex-
perimental data given the observational data and given
that Z is an adjustment set (orHz is true), (b) the proba-
bility of the observational data given that Z is an adjust-
ment set, and (c) a normalizing constant P (Dexp|Dobs).

3.1 Estimating P (Dexp|Dobs,Hz )

Dexp includes data for each independent atomic inter-
vention P (Y |do(X = c)), therefore P (Dexp|Dobs,Hz )
estimates P (Dexp|Dobs,G) as

P (Dexp|Dobs,Hz ) =
∏
c

P (Ddo(c)|Dobs,Hz ) (3)

For each c, we can derive P (Ddo(c)|Dobs,Hz ) on the
basis of the adjustment formula: Under Hz , the adjust-
ment formula connects the post-interventional to the ob-
servational distribution. Let θy|do(c) = {θe|do(c)}E−1

e=0

be set the parameters representing the probabilities
P (y=e|do(x=c)) for a given value c of X . Clearly,
P (Ddo(c)|θy|do(c), Dobs,Hz ) = P (Ddo(c)|θy|do(c)). In-
tegrating over θy|do(c), we have that

P (Ddo(c)|Dobs,Hz ) =∫
θy|do(c)

P (Ddo(c)|θy|do(c))f(θy|do(c)|Dobs,Hz )dθy|do(c)

(4)

f(θy|do(c)|Dobs,Hz ) represents the prior of the param-
eters of the post-intervention distribution P (Y |do(x=c))
from the observational data, if Z satisfies the adjust-
ment criterion. Let Z have k unique configurations,
k ∈ {1, . . . ,K}. For simplicity, we use z = k to denote
that z takes its k-th configuration. We use θk to denote
the parameter for P (z=k).

Given space limitations, in the remainder of this section
we will assume that y is a binary variable which has a
Beta distribution. Extension to a multinomial distribu-
tion is straightforward and can be seen in Algorithm 1.

Let θ0|c,k, be the k parameters for P (y=0|x=c, z=k).
UnderHz , P (y|do(x=c))=

∑
k P (y|x=c, z=k)P (z=k),

or equivalently, θy|do(c) =
∑
k θ0|c,kθk for y = 0, 1. Let

Ne
do(c) be the counts where Y =e in Ddo(c) for e=0, 1.

We can now recast Eq. 4 to include only observational
parameters, as follows:

∫
θ0|c,k

∫
θk

(
∑
k

θ0|c,kθk)N
0
do(c)(

∑
k

(1− θ0|c,kθk))N
1
do(c)

×
K∏
k=1

f(θ0|c,k, θk|Dobs,Hz )dθ0|c,kdθk

(5)

where we use the notation
∫
θi

()dθi to denote multi-
ple integration

∫
θ1
. . .

∫
θI

()dθ1 . . . dθI . Eq. 5 captures
the proximity of the interventional distribution of Y in
Ddo(c) to the interventional distribution we can esti-
mate from Dobs using Z as an adjustment set for X,Y .
f(θy|c,k|Dobs,Hz ) = f(θy|c,k|Dobs) is the posterior
density for the parameters θy|c,k given Dobs. These are
parameters in the observational distribution, and there-
fore independent ofHz given Dobs.

While Eq. 5 cannot be computed in closed form, we
can approximate it using a simple sampling procedure,
presented in Algorithm 1. In this procedure, we sam-
ple from the posterior distribution of f(θy|c,k,θk|Dobs)
and take the average over nS samples. To do so, we
learn a Bayesian network graph G over the observed vari-
ables (in fact, we only need to learn a network over
X,Y,Z), and estimate the posterior of its parameters
f(φi|pai |G, Dobs). We then sample from this posterior
distribution of the network, and use Bayesian inference
to get a sample from the posterior f(θy|c,k,θk|Dobs).
We use these parameters to derive a sample p for
P (Dexp|Dobs,Hz ). We estimate P (Ddo(c)|Dobs,Hz )
as the average of these samples.

Under causal sufficiency, an adjustment set always ex-
ists. Under causal insufficiency, it is possible that no
subset of V is an adjustment set. Thus, we also need



to consider the case where no adjustment set exists. We
denote this hypothesis as H6∃ (note that this is different
thanH∅, which states that the empty set is an adjustment
set for (X,Y )). Under H 6∃, we can not use the adjust-
ment formula to connect Dobs to the post-intervention
distribution, and thus

P (Ddo(c)|Dobs,H 6∃) =

∫
θyc

P (Ddo(c)|θyc)f(θyc)dθyc .

(6)

We can compute P (Ddo(c)|Dobs,H 6∃) in closed form

as
∏
e

∏
i Γ(Ne

do(c))

Γ(Ndo(c)+E) for a uniform prior over the
probability distributions. If P (Ddo(c)|Dobs,H 6∃) >
P (Ddo(c)|Dobs,HZ), then Z does not give an estimate
closer to the experimental data than using a weak uni-
form prior.

Notice that even if no adjustment set exists, it may still
be possible to use the observational data to obtain an es-
timate of the post-intervention distribution P (y|do(c))
(e.g., through the front-door criterion). Our method only
makes inferences that based on the back-door adjust-
ment, and therefore Eq. 6 complements the space of
possible hypotheses {Hz } with respect to the backdoor
criterion.

3.2 Estimating P (Hz |Dobs)

To estimate Eq. 2 we also need to estimate the proba-
bility that Hz is true, based on the observational data:
P (Hz |Dobs). Under adjustment faithfulness, we can
consider P (Hz |Dobs) in the space of possible SMCMs:

P (Hz |Dobs) =
∑
G
P (Hz |Dobs,G)P (G|Dobs). (7)

For a given graph G, Hz is true if Z satisfies the adjust-
ment criterion in G (G ` Hz ), and false otherwise. Thus,
P (Hz |Dobs,G) = 1 if G ` Hz , and 0 otherwise. Eq. 7
becomes

P (Hz |Dobs) =
∑
G`Hz

P (G|Dobs). (8)

Eq. 8 requires exhaustive enumeration of all possible
graphs, and a method for obtaining the posterior prob-
ability of an SMCM given the data, both of which are
complicated. Below we describe a method for approxi-
mating

∑
G`Hz

P (G|Dobs).

First, we will assume that our observational sample size
is large enough such that P (G|Dobs) = 1 for a SMCM G
if and only if G satisfies all the conditional dependence
and independence constraints that hold in the data, ac-
cording to the criterion of m-separation. Let [Ĝ] denote

this set of Markov equivalent graphs. Assuming all ad-
justments are equally likely, a priori, Eq. 8 is equal to
the fraction of ME graphs in [Ĝ] where Z satisfies the
adjustment criterion:

P (Hz |Dobs) =
|{G ∈ [Ĝ] : G ` Hz }|

|[Ĝ]|
(9)

3.2.1 Identifying all Markov equivalent SMCMS
with a logic-based approach

Identifying all the ME graphs Dobs can be done with a
logic-based method for learning causal structure [Hytti-
nen et al., 2014, Triantafillou and Tsamardinos, 2015].
Logic-based methods encode path constraints imposed
by the observed (in) dependence relationships in the
data into a logic formula, expressed using the graph
features (typically directed and bidirected edges) as the
underlying boolean variables. Due to the exponential
number of constraints, the scalability of logic-based ap-
proaches is limited. To face this problem, [Triantafillou
and Tsamardinos, 2015] utilize the relationship of SM-
CMs with Maximal Ancestral Graphs [Richardson et al.,
2002]. Markov equivalence classes of MAGs can be
learned with FCI, a scalable algorithm that uses faithful-
ness to limit the number of possible independence tests.
FCI is sound and complete in the sample limit [Zhang,
2008].

MAGs are ancestral mixed graphs, meaning that they
contain no directed or almost directed cycles, where an
almost directed cycle occurs if X ↔ Y and X causes
Y . Each pair of variables X,Y in an ancestral graph
is joined by at most one edge. The orientation of this
edge represents (non) causal ancestry: A bi-directed edge
X↔Y denotes that X does not cause Y , and Y does not
cause X , but the two share a latent confounder. X → Y
denotes causal ancestry: X is a causal ancestor of Y .
Thus, if X causes Y (not necessarily directly in the con-
text of observed variables), and they are also confounded,
there is an edge X → Y in the corresponding MAG. For
an SMCM G, there exists a unique MAG M over the
same variables [Triantafillou and Tsamardinos, 2015]. In
contrast, for a given MAGM, there may exist more than
one Markov equivalent SMCMs with the same ancestral
relationships.

MAGs have the following attractive property: An m-
separation (conditional independence for faithful distri-
butions) between X and Y given a set Z corresponds to
a missing edge between X and Y . Thus, all members
of a Markov equivalence class of MAGs share the same
skeleton, the same unshielded colliders, and the same
discriminating colliders. This is not true for SMCMs.
Specifically, it is possible that a pair of variables X , Y
are not adjacent in an SMCM G, even though they cannot



Condition (a) in Theorem 1:
oncp(W ) : −ancestor(x,W ), ancestor(W, y).
decp(Z) : −oncp(W ), Q ∈ Z, ancestor(W,Q).
conda(Z) : −not decp(Z).
Condition (b) in Theorem 1:
foncp(Z) : −directed(x, Z), ancestor(Z, y).
dirpbg(Q,Z) : −directed(Q,Z), notfoncp(Z).
condb(Z) : −msepPG(x, y,Z).
Adjustment Sets:
adjSet(Z) : −conda(Z), condb(Z).

Figure 2: ASP encoding for conditions (a) and (b).

be m-separated given any set of observed variables. As
an example, consider an SMCM where X → Y → Z,
and Y ↔ Z. X and Z are not m-separated given ∅ or
Y , but they are not adjacent. The corresponding MAG is
X → Y → Z, X → Z. Edges in a MAG correspond to
the existence of a primitive inducing path in any Markov
equivalent SMCM. A primitive inducing path between
X and Y is a path where every variable is a collider
and an ancestor of either X or Y in G [Triantafillou and
Tsamardinos, 2015].

Based on these results, we used the following approach
to identify all Markov equivalent SMCMs that satisfy all
conditional independence constraints in Dobs: We first
use FCI to identify the Markov equivalence class of [Ĝ].
We then encoded the invariant features of [Ĝ] in Answer
Set Programming (ASP). Specifically, we used the rep-
resentation presented in Zhalama et al. [2019] for the
presence or absence of an inducing path in G, and the
inference rules in [Triantafillou and Tsamardinos, 2015]
for definite non-colliders and discriminating colliders.

To obtain all possible SMCMs where Hz holds, we en-
coded the adjustment criterion in ASP. To do so, we make
use of some results presented in van der Zander et al.
[2014] for constructing and testing adjustment sets in
DAGs and MAGs. Specifically, to test if a set Z is an
adjustment set relative to X,Y in a DAG G, the authors
construct the proper backdoor graph Gpbd by removing
the first edge of each (proper) causal path from X to Y .
We extend this operation to SMCMs. Then the following
holds:

Theorem 1. Let G be an SMCM, and let X, Y, Z be
disjoint sets of variables. Then Z satisfies the adjustment
criterion relative to (X, Y) if and only if:

(a) No descendant of a node that lies on a proper causal
path from X to Y is in Z

(b) Z m-separates X and Y in the proper back-door
graph GpbdXY.

Proof. The proof is identical to that of Theorem 4.4. in
van der Zander et al. [2014], using m-separation in place
of d-separation.

Thus, graphs where Z is an adjustment set for X,Y are
graphs where conditions (a) and (b) hold. We encoded
these constraints in ASP, as shown in Figure 2. We use
x, y to denote the treatment and outcome, respectively.
These are given as inputs to the ASP, and we show them
in lowercase to indicate that they are not variables. We
also use the following predicates:

• ancestor(W, Q) : W includes an ancestor of Q.

• oncp(W ): W is lies on a causal path from x to y.

• decp(Z): Z includes a descendant of a node that lies
on a causal path from x to y.

• conda(Z): condition (a) holds for Z.

• foncp(Z): Z is the first node on a causal path from
x to y.

• dirpbg(Q,Z): edge Q→ Z exists in Gpbd.

• msepPG(x, y,Z): x, y are m-separated given Z
in Gpbd. To make this inference, we encoded of
the Bayes-Ball algorithm, using the rules in Bor-
boudakis and Tsamardinos [2016], with dirpbg in
place of directed edges.

• adjSet(Z): Z satisfies the adjustment criterion for
x, y in a graph G.

3.3 Finding Optimal Adjustment Sets

We can use Alg. 1 and Eq. 9 to compute
P (Dexp|Dobs,Hz )P (Hz |Dobs) for different candi-
date adjustment sets Z and identify the most probable
adjustment set given Dexp, Dobs, i.e. the set Z? =
argmaxzP (Dexp|Dobs,Hz )P (Hz |Dobs). Notice that
the adjustment hypotheses are not necessarily mutu-
ally exclusive; multiple sets can be adjustment sets
for (X,Y ), and explain the observational data equally
well; thus argmaxzP (Dexp|Dobs,Hz )P (Hz |Dobs)
may have multiple optimal solutions.

Algorithm 2 describes the process of selecting an opti-
mal adjustment set: The algorithm takes as input a set of
observational data Dobs over variables V and a collec-
tion of experimental data Dexp that measure the Y under
different manipulations do(X). Additional parameters
include the number of samples for the sampling approx-
imation of P (Dexp|Dobs,Hz ), algorithm FindPAG for
finding the ME class [Ĝ] of graphs from Dobs, and al-
gorithm BayesInf for performing Bayesian inference.



Algorithm 2: findOptimalAdjustmentSet

input : Y,Dobs, Dexp = {Ddo(c)}C−1
c=0 , nS,FindPAG

output: Adjustment set Z?:
[Ĝ]← FindPAG(Dobs);
PosAdjSetVars← Variables that lie on a path between X

and Y in [Ĝ];
foreach subset Z of PosAdjSetVars and @ do

P (Hz |Dobs) = |{G∈[Ĝ]:G`Hz }|
|[Ĝ]| ;

P (Dexp|Dobs,Hz )←∏C−1
c=0 scoreExp(X,Y,Z, Dobs, Ddo(c), nS);

Z? ← argmaxzP (Dexp|Dobs,Hz )P (Hz |Dobs);

The algorithm initially learns [Ĝ] and forms PosAdjSet-
Vars, a superset of a possible adjustment set, that con-
sists of all variables that lie on a path from X to Y . It is
straightforward to show that if an adjustment set exists,
it is a subset of PosAdjSetVars: If any open non-causal
path exists between X and Y , they can only be blocked
(if blockable) by variables on these paths. Conditioning
on other variables can only violate conditions (a) or (b) in
Definition 1, therefore if the paths can be blocked, they
can be blocked by conditioning on a subset of PosAd-
jSetVars. Thus, the algorithm is asymptotically guaran-
teed to compute the score of at least one true adjustment
set, if one exists, under our assumptions. Subsequently,
the algorithm obtains P (Dexp|Dobs,Hz )P (Hz |Dobs)
for all subsets of PosAdjSets, as well as H@, and returns
the optimal adjustment set, or NA if H@ has the highest
score.

The complexity of the algorithm is exponential in the
number of variables, since FindPAG, BayesInf and
enumerating all possible SMCMs are NP-hard problems.
Notice, however, that BayesInf and enumerating all
possible SMCMs can be computed based on marginal
graphical models, including only X , Y , and Z for every
Z. In practice, the enumeration of SMCMs will become
infeasible even for small numbers of variables. One so-
lution to this problem could be to use advances in ASP to
sample uniformly from the space of all solutions [Smith
and Mateas, 2011]. However, this is not supported in our
current implementation.

4 RELATED WORK

In this work, we assume that we have a large observa-
tional data set Dobs, and a more limited experimental
data set Dexp that measures Y under the randomiza-
tion of X . From Dobs we can estimate P (V) (or as-
sess the set conditional (in) dependencies over V), and
fromDexp we get an estimate the marginal interventional

distribution P (Y |do(X)) (or assess the dependence of
X and Y in the interventional distribution). Given this
information, several methods exist for selecting adjust-
ment sets from Dobs alone, but require some additional
prior knowledge on the relationship of the covariates to
the treatment and outcome [VanderWeele and Shpitser,
2011, Entner et al., 2013]. Other methods like IDA and
extensions [Nandy et al., 2017, Malinsky and Spirtes,
2017] compute bounds on causal effects fromDobs alone
by computing causal effects in all graphs that are Markov
equivalent to the highest-scoring graph. These methods
do not output the most likely adjustment set. Finally,
graphical methods for identifying all adjustment sets in a
Markov equivalence class of graphs exist [Perkovic et al.,
2017, Jaber et al., 2019] also exist. These methods return
an adjustment set only if it is identifiable in the Markov
equivalence class of graphs that are consistent with the
observational data. When experimental data are also
available, several methods try to learn the causal struc-
ture or estimate causal effects based on all available data.
In the context of potential outcomes, Kallus et al. [2018]
propose a method improving conditional treatment effect
estimates by combining observational and experimental
data. The method requires some overlap of covariates
between observational and experimental data, a binary
treatment and continuous covariates and outcome. For
continuous data and linear relationships, observational
data and limited experimental data can be combined to
learn linear cyclic models [Eberhardt et al., 2010]. Al-
gorithms for learning causal graphs from multiple exper-
iments with discrete data exist [Cooper and Yoo, 1999,
Hauser and Bühlmann, 2012], but require experimental
data on all the observed variables, and are therefore not
suitable for limited experimental data that only measure
treatment and effect.

In the area of constraint-based causal discovery, logic-
based approaches can use the conditional independences
in Dobs and Dexp to learn causal graphs that are con-
sistent with all the corresponding m-separation and m-
connection constraints [Hyttinen et al., 2013, Triantafil-
lou and Tsamardinos, 2015]. [Hyttinen et al., 2015,
henceforth HEJ2015], use the resulting causal graphs to
identify bounds in causal effects. This method can re-
turn can also identify marginal interventional distribu-
tions that are not identifiable with the adjustment cri-
terion (e.g., distributions that are identifiable with the
front-door criterion). However, the method will out-
put a single estimate for P (Y |do(X)) only if all the
graphs that are consistent with the m-separations and m-
connections in Dobs and Dexp imply the same estimate.

As an example, graphs G1 and G2 in Fig. 1 are consis-
tent with the same path constraints (m-connections and
m-separations) in Dexp and Dobs, but imply different
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Figure 3: (a, b) Alg. 2 improves causal effect estimates. Difference of true interventional distribution from the
corresponding predicted distribution using (i) the frequentist estimate in Dexp (blue), (ii) Alg. 2 (orange), and the (iii)
range of estimates for [HEJ2015] (gray). Our method improves the estimate of the ID for all sample sizes, when the
causal effect is not identifiable from (in) dependence constraints in Dobs and Dexp. (c) Alg. 2 correctly identifies
adjustment sets. Areas under the curve for predicting if Z is an adjustment set, using Alg. 2, and using the probability
Hz holds in the ME class of graphs.

P (AE|do(D)). Moreover, G1 with an additional bidi-
rected edge D ↔ AE is also consistent with the same
path constraints, but P (AE|do(D)) is not identifiable. In
that case, [HEJ2015] would return all possible quantities:
{P (AE|D),

∑
c P (AE|D, c)P (c), NA} as possible es-

timates for P (AE|do(D)). In contrast, our method gen-
erates a higher score for the estimate that is closer to the
sample estimate P̂exp(AE|do(D)), and uses this score to
select the most likely adjustment set. Thus, if the causal
effect is identifiable from conditional (in) dependence
constraints alone, our method and the [HEJ2015] method
will yield the same results (asymptotically). However,
our method can be used to improve the causal effect esti-
mate of Dexp and provide insight on the causal structure
among V even if the causal effect is not identifiable by
independence constraints.

X Y X

Z

Y

W

(a) G1 (b) G2

Figure 4: SMCMs with bidirected edges used to sim-
ulate data. In G1 there is no observed adjustment set
for X , Y . In G2, Z is the only adjustment set for X,Y .
In both cases, the (absence of an) adjustment set is not
identifiable in the ME class defined by Dobs and Dexp.

5 EXPERIMENTS

We evaluated our methods using simulated and real data,
and compared it to [HEJ2015]. Secificaally, We imple-
mented a brute-force algorithm that identifies bounds in

causal effects by running the ID algorithm [Shpitser and
Pearl, 2006] on all Markov equivalent graphs (This ver-
sion is also presented in [HEJ2015]). The same effects
are identifiable by both algorithms. This version requires
enumeration of the possible graphs over all variables, so
to keep the problem tractable, we assume causal suffi-
ciency in this part of the experiments.

We generated random DAGs with 5 or 10 variables, a
mean in-degree of 3, and an ancestral relationship X to
Y . We simulated discrete variables with 3 to 5 categories
each and conditional probability tables P (x|Pa(x))
sampled from a Dirichlet distribution with priors sam-
pled uniformly at random in [0, 1]. We used PC with an
oracle to obtain the observational ME class [Ĝ]. For Alg.
1 in [HEJ2015], we used the subset [Ĝs] of [Ĝ] that also
satisfies dependence in Dexp. Thus, [Ĝs] consists of all
members Ĝ of [Ĝ] where X and Y are d-connected in
the manipulated DAG GX .

For each DAG, we simulated observational data Dobs

with N = 10, 000 samples and experimental data
Dexp = {Ddo(c)}, where we measured Ndo(c) =
50, 100, and 500 samples of Y under do(X = c) for each
c. In all experiments, we used nS = 500 sampling itera-
tions, and we used exact inference on a Bayesian network
learned with FGES on Dobs as BayesInf. We used
Alg.2 and [HEJ2015] to make a prediction (or multiple,
in the case of [HEJ2015]) P (Y |do(X)). We estimated
the absolute difference of the predicted vs the true inter-
ventional distribution, |θ̂y|do(x)− θy|do(x)| averaged over
all parameters θy|do(x). Thus, this is the average error
each method makes per distribution parameter (denoted
as |θ̂ − θ| on the y-axes of the figures). For [HEJ2015],
we present a range between the minimum and maximum
error among all estimates.
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Figure 5: Performance of Alg. 2 in causally insufficient systems. (a, b) Fraction of times where Alg. 2 returns each
possible adjustment set for data simulated from the SMCMs in Fig. 4. For G1, our method correctly identifies that
there is no observed adjustment set the majority of times for all sample sizes. In data from G2, our method identifies
that we must control for Z, but sometimes includes W in Z∗, when the bias from adjusting for a collider is small. (c).
Difference of the predicted vs true distribution using (i) the frequentist estimate in Dexp, (ii) Alg. 2, and the (iii) range
of estimates from [HEJ2015]. In all cases, our method improves the estimation of P (Y |do(X)).

Fig. 3 shows that Alg. 2 allows us make inferences that
are not possible using independence constraints. Fig.
3(a) shows |θ̂ − θ| for Alg. 2 (orange line), the empir-
ical estimate in P̂exp(Y |do(X)) in Dexp (blue line), and
the range of estimates returned by [HEJ2015] (grey area),
in 50 networks where P (Y |do(X)) is not identifiable in
[Ĝs](for identifiable causal effects, the behavior of our al-
gorithm is the same, while [HEJ2015] will output single
estimate, close to the lower bound of the grey area). We
also show the same metric for the empirical distribution
estimated in the experimental data, Pexp(Y |do(X)). Alg
2 improves the estimation of P (Y |do(X)) in all cases.

In addition, Alg. 2 correctly identifies adjustment sets.
In the same networks, we used scores obtained by Alg.
2 to rank candidate adjustment sets, and computed the
corresponding AUCs (Fig. 3c, orange line). As a base-
line, we computed AUCs using the probability that Z is
an adjustment set in the ME class [Ĝs], computed as the
number of graphs in whichHz is true divided by the size
of the ME class (Fig. 3c, blue line). Our method succes-
fully identifies adjustment sets that are not identifiable by
(in) dependence constraints.

Alg. 2 can also identify that there is no adjustment set:
We simulated data from the causally insufficient graph
G1 in Fig. 4. G1 includes a latent confounder for X,Y ,
and therefore no adjustment set exists. Fig 5 (a) shows
the percentage of times our algorithm selectsH@ (orange
bar) and H∅ (blue bar). Our algorithm succesfully pre-
dicts that there is no adjustment set for G1, particularly
for larger experimental sample sizes.

Finally, Alg. 2 can identify that the presence of m-bias.
To show this, we simulated data from G2 in Fig. 4. Fig
5b shows the shows the percentage of times our algo-
rithm selects each possible adjustment set. The correct

adjustment set is selected the majority of times (orange
bar), particularly for larger sample sizes. However, our
method often includes the collider in the optimal adjust-
ment set (purple bar). This happens because the effect
of m-bias (i.e., bias in the causal effect estimation when
conditioning on a collider) is often very small. Similar
results have been reported in the literature [Greenland,
2003]. This is also seen in Fig. 5c, where we show the
distribution distance for Alg. 2 (orange), Dexp (blue)
and the ranges returned by [HEJ2015] (grey area). Our
method improves causal effect estimation for all settings.

6 DISCUSSION

We present a method for learning adjustment sets and
improving the estimation of causal effects by combining
large observational and limited experimental data (e.g.,
combining electronic health records and RCTs), a sce-
nario that is very common. Our method currently can-
not handle selection, which can be a source of bias, par-
ticularly in RCTs. In addition, the scalability of the
method is currently limited, particularly since it relies
in the exhaustive enumeration of possible causal struc-
tures. Directions for future work include extensions of
the method that address these shortcomings. Neverthe-
less, the method currently can make inferences accu-
rately that are not possible with other state-of-the-art al-
gorithms.
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