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Abstract
Bayesian network (BN) structure learning algorithms are almost always designed to recover the

structure that models the relationships that are shared by the instances in a population. While
accurately learning such population-wide Bayesian networks is useful, learning Bayesian networks
that are specific to each instance is often important as well. For example, to understand and treat
a patient (instance), it is critical to understand the specific causal mechanisms that are operating
in that particular patient. We introduce an instance-specific BN structure learning method that
searches the space of Bayesian networks to build a model that is specific to an instance by guiding
the search based on attributes of the given instance (e.g., patient symptoms, signs, lab results, and
genotype). The structure discovery performance of the proposed method is compared to an existing
state-of-the-art BN structure learning method, namely an implementation of the Greedy Equiva-
lence Search algorithm called FGES, using both simulated and real data. The results show that the
proposed method improves the precision of the model structure that is output, when compared to
GES, especially for those variables that exhibit context-specific independence.
Keywords: causal Bayesian networks, structure learning, context-specific independence, instance-
specific machine learning.

1. Introduction

A Bayesian network (BN) is a well-known graphical model that represents probabilistic relation-
ships among a set of variables. Under assumptions, BNs can be interpreted as causal models and
learned from observational data, which has wide applicability (Spirtes et al., 2000; Pearl, 2009;
Illari et al., 2011). In this paper, for domain emphasis, we focus on learning causal Bayesian net-
works (CBNs), although the methods apply to BN structure learning in general. There are two main
approaches to learning CBN structures from data: (1) constraint-based and (2) score-based (e.g.,
Bayesian) approaches, although other methods are also being actively developed and investigated
(Peters et al., 2012; Jabbari et al., 2017). A constraint-based approach iteratively performs many
statistical independence tests on data to constrain the structures that are consistent with the test re-
sults; it then outputs the CBN structure that is most consistent. A Bayesian approach typically uses
heuristic search and outputs the most probable CBN structure it can find.

Almost all CBN structure learning algorithms are designed to recover the structure that mod-
els the relationships that are shared by the instances in a population. While learning accurate
population-wide CBNs is useful, learning CBNs that are specific to a given instance can also be
very important. For example, a breast-cancer tumor (instance) in a patient can have a set of causal
mechanisms that are different from that of another breast-cancer tumor either in the same patient or
in a different patient. However, to determine the most effective treatment for a tumor in the current
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patient, it is important to know the particular causal mechanisms that are driving that tumor to be
cancerous. In reality, a given tumor usually is a composite of cellular mechanisms that rarely all
occur together, yet each individual mechanism may appear relatively commonly in other tumors.
A population-wide CBN would at best capture the more common mechanisms operating in breast
cancer and not all of the particular mechanisms that are active in the current patient’s breast-cancer
tumor. The task, then, is to construct the joint set of mechanisms of a given tumor from the indi-
vidual mechanisms seen in previous tumors. To do so, we use the known features (i.e., the variable
values) of the current tumor to help identify and construct the individual mechanisms that compose
the set of mechanisms that are jointly driving the current tumor. In the extreme scenario, if the mech-
anisms in every tumor are completely different from every other, we have little hope of learning its
mechanisms from a training set of prior tumors. The reality is that each of several mechanisms that
is active in a tumor typically occurs in some other tumors, but not in all other tumors.

More generally, a given person can be viewed as a joint set of causal mechanisms, where each
mechanism is typically shared with many other people, but the joint set is essentially unique to that
person. In a given person, the causal learning task is to construct the correct set of mechanisms for
that person from the features we know about the person and from a training set of data on many
other people. Moreover, this instance-specific causal learning approach is applicable to other causal
systems, beyond human biology.

In this paper, we propose a novel, fully Bayesian instance-specific structure learning method
that searches the space of CBNs to build a model that is specific to an instance T by guiding the
search based on T ’s attributes. This is a fundamental research problem that has received relatively
little attention to date. We hypothesize that such an instance-specific learning approach will model
the causal relationships for T better than does a population-wide one. We evaluate this hypothesis
using simulated and real data.

2. Related Work

Our method uses CBNs that represent context-specific independence (CSI). (Boutilier et al., 1996)
introduced the notion of context-specific independence to capture independence relationships that
hold between the parents and a child node in a BN in certain contexts (i.e., when the parent variables
take on particular values); in general these types of independencies cannot be captured completely
in the structure of standard BNs, wherein the BN structure is invariant to CSI relationships.

A number of greedy search algorithms have been proposed to learn CSI in BNs. (Friedman
and Goldszmidt, 1998) introduced a method that incorporates tree-structured conditional probabil-
ity tables (CPTs) into a BN structure search algorithm using a minimum description length (MDL)
score. (Chickering et al., 1997) proposed using decision-graph CPTs that can represent a richer
set of independence relationships, compared to tree-structured CPTs. (Chickering et al., 1997) also
developed a Bayesian score to evaluate the posterior probability of Bayesian networks that contain
decision-graph CPTs. This score is applied along with a greedy search algorithm to learn a global
BN structure in which the relationship between each node and its parents is represented using a
decision graph. Recently, (Pensar et al., 2015) introduced a method to label the edges of a BN to
encode local CSI structures; such graphs are called labeled directed acyclic graphs (LDAGs). Sim-
ilar to (Chickering et al., 1997), (Pensar et al., 2015) also proposed a LDAG-based Bayesian score
and MCMC search to learn a LDAG structure. (Zou et al., 2017) proposed an ordering-based algo-
rithm to learn local structures using Lasso regression (Tibshirani, 1996) on a linear combination of
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Boolean functions, where Boolean functions define the interactions among parents of each variable.
(Oates et al., 2016) proposed a method that uses integer linear programming to learn multiple DAGs
from multiple units of data, where each unit contains a set of data cases.

None of the methods in the previous paragraph learns a model that is specific to a given instance
(e.g., a given patient), which is the main goal and novel contribution of the current paper. Doing
so has two advantages: (1) First and foremost, the learned causal model is specific to the current
instance. We dynamically search to define the clusters of cases associated with the test instance T .
Importantly, this search occurs at the node level, not at the DAG level. Thus, depending on which
node and parents are being scored, we allow for using different clusters of cases when learning
a DAG for a test instance T . (2) Given that we seek an instance-specific model, searching for
it directly is generally much more efficient than is searching for all (or at least many) possible
instance-specific models and then choosing the one that matches the current test instance.

The work in (Cooper et al., 2018) learns tumor-specific causal models from data. However, that
method is limited to searching over bipartite causal graphs in which one partition contains causes
and the other contains effects. Also, the method assumes there is one and only one cause for each
effect. Both assumptions are reasonable for that application, but restrict generality. The current
paper describes a general approach for learning unrestricted, instance-specific CBNs.

3. Background

As mentioned earlier, a BN is a graphical model that is often used to represent probabilistic rela-
tionships among a set of variables. In general, a BN is composed of a graphical model structure
G, which is a directed acyclic graph (DAG), and a set of parameters θ for the DAG. A DAG G
consists of nodes that correspond to variables and directed edges that represent the conditional de-
pendence relationships among those variables. A parameter set θ parametrizes the relationships that
are present in the DAG. Greedy Equivalence Search (GES) (Chickering, 2003) is a state-of-the-art
method for learning a BN structure from observational data. In this section, we provide an overview
of GES and the Bayesian Dirichlet equivalent uniform (BDeu) score (Heckerman, 1998), which can
be used together with GES to learn a BN structure from discrete data. The GES algorithm and the
BDeu score form the infrastructure of our proposed instance-specific BN structure learning method.

3.1 Overview of Greedy Equivalence Search (GES)

(Chickering, 2003) developed GES that identifies a CBN by searching over the equivalence classes
of BN structures, i.e., DAGs. The equivalence class of DAGs represents a set of DAGs that have the
same d-separation properties and can be represented by partially directed acyclic graphs (PDAGs),
also known as patterns. A PDAG is a mixed graph that contains both directed and undirected edges.

GES is a two-phase score-based algorithm that includes a forward equivalence search (FES)
and backward equivalence search (BES). It works as follows. Let ε be the current PDAG during the
search. During forward search, let ε+(ε) represent the set of PDAGs that are generated by adding a
single edge to ε for each legal edge addition (Chickering, 2003, 1995). Similarly, during the BES,
ε−(ε) is the set of PDAGs that are obtained by deleting each single edge from ε. The forward phase
of GES starts with an empty graph (i.e., ε = ∅) and replaces the current state with the PDAG in
ε+(ε) that has the highest score. It continues this phase until no further local improvement can be
achieved. The backward phase starts from the local maximum achieved by the forward phase and
performs a backward search by replacing ε with the highest scoring PDAG in ε−(ε). It stops when
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it reaches a local maximum. For more information about this method see (Chickering, 2003). In
this paper, we use an efficient implementation of GES called FGES (Ramsey et al., 2017).

Each forward and backward step in GES involves scoring a single node given its parents; there-
fore, it requires a node-wise decomposable score. The Bayesian information criterion (BIC) score
(Schwarz, 1978) is often used to learn a BN structure when variables follow a Gaussian distribu-
tion and the BDeu score (Heckerman, 1998) is often used for multinomial variables, although other
scores are possible. In the following section, we review the BDeu score since we concentrate on
using multinomial variables in this paper.

3.2 Scoring Bayesian Networks

As mentioned earlier, development of a Bayesian approach for learning a BN structure amounts
to search for a structure with a high posterior probability on a given dataset. Let D be a dataset
containing n discrete variables X = {X1, X2, ..., Xn}, where each variable Xi can take ri values
and its parents Pa(Xi) can take qi distinct instantiations. Also, let G be the structure we wish to
score. According to Bayes’ theorem, the posterior probability of graphG given dataD is as follows:

P (G|D) =
P (D|G) · P (G)

P (D)
, (1)

where P (D|G) is the marginal likelihood of the data, P (G) is the structure prior, and P (D) is the
probability of the data. Since P (D) is a normalization constant and independent of the model, we
define the score of model G as follows:

score(G) = P (D|G) · P (G) , (2)

where we can compute P (D|G) by integrating over all unknown parameters θ as follows:

P (D|G) =

∫
θ
P (D|G, θ) · P (θ|G) . (3)

The marginal likelihood of the data has a closed-form solution called the Bayesian Dirichlet
(BD) score under the following assumptions: (1) the data are discrete and complete; (2) data samples
are independent and identically distributed; (3) parameter priors are represented using Dirichlet
distributions that are assumed independent over the model parameters. The BD score is as follows:

P (D|G) =
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)
·
ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (4)

where the first product is over all n variables, the second product is over the qi parent instantiations
of variable i, and the third product is over all ri values of variable Xi. The term Nijk is the number
of cases in D in which variable Xi = k and its parent Pa(Xi) = j; also, Nij =

∑ri
k=1Nijk. The

term αijk is a Dirichlet prior parameter that may be interpreted as representing “pseudo-counts”
and αij =

∑ri
k=1 αijk. We may define the pseudo-counts to be evenly distributed, in which case

Equation (4) represents the so-called BDeu score (Heckerman, 1998):

αijk =
α

ri · qi
, (5)

where α is a positive constant called the prior equivalent sample size (PESS) (Heckerman et al.,
1995). The BDeu score described here is a modular score that is decomposable at node level, as
required by the GES algorithm.
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4. Instance-Specific GES (IGES)

This section describes a novel algorithm called instance-specific GES (IGES) that takes as input a
set D of training instances and an instance T = {X1 = x1, X2 = x2, ..., Xn = xn} that is not
in D, and it returns as output a causal structure GIS for instance T and a (often different) causal
structure Gpop for the instances in D. The goal of IGES is to find causal structures GIS and Gpop
that maximize P (GIS , Gpop|D,T ). To do so, it derives P (D|T,GIS , Gpop) and P (GIS , Gpop).
Since finding a global optimum for P (GIS , Gpop|D,T ) is generally not computationally tractable,
IGES performs GES-style greedy search.

IGES operates in two phases. The first phase uses GES (as described in Section 3.1) with
the BDeu score to find Gpop given D. GES uses heuristic search that seeks to find the Gpop that
optimizes P (Gpop|D). The second phase uses GES with a novel, instance-specific Bayesian score
called IS-Score (see below) to find GIS given D, T , and Gpop; we use the name GES2 to denote
this application of GES. GES2 uses heuristic search that seeks to find the instance-specific structure
GIS that optimizes P (GIS |D,T,Gpop). Algorithm 1 shows the high-level procedure 1.

Algorithm 1 IGES(D, T )
Input: dataset D, instance T
Output: an instance-specific model GIS and a population-wide model Gpop

1: Gpop = GES(D)
2: GIS = GES2(D, T , Gpop)
3: return GIS and Gpop

GES2 is a modification of GES that uses the procedure IS-Score (defined below) to score a
node X given its parents PaIS(X) in GIS and its parents Papop(X) in Gpop. Let PaIS(X) = j
denote that the variables in vector PaIS(X) have the values denoted by vector j in instance T . The
basic idea behind the IS-Score is to find those cases (samples) in D in which PaIS(X) = j and
use them to score PaIS(X) → X in GIS . In essence, those instances in D form a cluster that are
similar to instance T in the context of scoring PaIS(X)→ X . Since those instances are being used
to score GIS , in order to avoid duplicate scoring, they can no longer be used to also score Gpop;
thus, the score for Gpop must be adjusted accordingly. More specifically, let DPaIS(X)=j denote the
instances inD in which PaIS(X) = j; letDPaIS(X)6=j denote the remaining instances inD. Using
data DPaIS(X)=j , the score for PaIS(X)→ X in instance-specific model GIS is as follows:

scoreIS
(
DPaIS(X)=j , PaIS(X)→ X

)
=

P (DPaIS(X)=j |PaIS(X)→ X) =
Γ(αj)

Γ(αj +Nj)
·

r∏
k=1

Γ(αjk +Njk)

Γ(αjk)
,

(6)

where r denotes all the possible instantiations of X , Njk is the number of instances in DPaIS(X)=j

in which X has the value k, and Nj =
∑r

k=1Njk; the terms αjk and αj =
∑r

k=1 αjk are the
corresponding Dirichlet priors.

1. To be more comprehensive, the algorithm would return a causal structure for each instance in D; however, doing
so would require more computation time, and it is not the main goal of the current paper. We plan to pursue this
extension in future work.
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Let Papop(X) denote the parents of X in the population-wide model Gpop, which in general
may be different than the parents of X in GIS , as given by PaIS(X). Using data DPaIS(X)6=j , the
score for Papop(X)→ X in population-wide model Gpop is as follows:

scorepop
(
DPaIS(X)6=j , Papop(X)→ X

)
=

P (DPaIS(X) 6=j |Papop(X)→ X) =

q∏
i=1

Γ(αi)

Γ(αi +Ni)
·

r∏
k=1

Γ(αik +Nik)

Γ(αik)
,

(7)

where r and q are the number of possible instantiations ofX and Papop(X), respectively. Nik is the
number of instances in DPaIS(X)6=j for which X takes the value k and its parents Papop(X) take
value i, and Ni =

∑r
k=1Nik. The terms αik and αi =

∑r
k=1 αik are the corresponding Dirichlet

priors. We define the parameter priors as follows:

αjk = αik =
α

r · (q + 1)
, (8)

where q + 1 is the total number of possible configurations for X’s parents in both the instance-
specific model (where the number of configurations is equal to 1) and the population-wide model
(where there are q configurations). α is a positive constant called the PESS (see Section 3.2).

The overall score for node X is given as the product of the instance-specific score and the
population-wide score for X:

scoreoverall(X) =

scoreIS(DPaIS(X)=j , PaIS(X)→ X) · scorepop(DPaIS(X)6=j , Papop(X)→ X) .
(9)

This score represents the marginal likelihood of X given the instance-specific and population-wide
parents of X . Algorithm 2 shows pseudo-code for the IS-Score procedure that derives this marginal
likelihood as the overall score for X . It is this procedure that GES2 calls when scoring a node given
its parents during forward and backward greedy search.

Algorithm 2 IS-Score(D, T , X , PaIS(X), Papop(X))

Input: dataset D, instance T , variable X that is being scored, X’s instance-specific parent set
PaIS(X), and X’s population-wide parent set Papop(X)

Output: the overall score for X

1: derive DPaIS(X)=j and DPaIS(X) 6=j from D and the values j of PaIS(X) in T
2: scoreIS ← scoreIS(DPaIS(X)=j , PaIS(X)→ X) . Equation (6)
3: scorepop ← scorepop(DPaIS(X)6=j , Papop(X)→ X) . Equation (7)
4: scoreoverall ← scoreIS · scorepop . Equation (9)
5: return scoreoverall

Figure 1 shows an example of the IGES procedure. Let Figure 1a represent the ground-truth
BN structure and parameters for variable X . In the large sample limit, by applying GES with the
BDeu score we expect to learn Gpop (Figure 1b), which is the same as the ground-truth structure.
However, Gpop does not capture the independence of Z and X when Y = 0 in the current instance
T = {X = 1, Y = 0, Z = 1}. Figure 1c shows the instance-specific BN (GIS) and the population-
wide model (Gpop) that would be learned by IGES, in the large sample limit.
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Y Z

X 

Y Z X = 0 X = 1

0 0 0.9 0.1

0 1 0.9 0.1

1 0 0.23 0.77

1 1 0.52 0.48

(a) The entries in the table on the left represent
P (X|Y,Z) and the graph on the right shows the
ground-truth BN.

Training set 
D 

Gpop

Y Z

X

Population search: 
GES + BDeu

(b) The result of applying GES to the example in the large
sample limit.

Instancespecific search: 
IGES + ISScoreTraining set 

D 

X 

T = {X = 1, Y = 0, Z = 1}

Y  Z

X

GIS

Gpop

Y=0

Training set 
DY≠0 

Training set 
DY=0 

(c) The results of applying IGES to the example in the large sample limit.

Figure 1: This example illustrates a situation in which the population-wide BN structure learning is
not capable of capturing context-specific independence while the instance-specific approach is.

As mentioned, IS-Score derives the marginal likelihood of the data onX , relative to the instance-
specific and population-wide parents of X . Assuming parameter independence and parameter mod-
ularity (Heckerman et al., 1995) as is commonly done, the marginal likelihood of all the data given
T , GIS , and Gpop is as follows:

P (D|T,GIS , Gpop) =
n∏
i=1

IS-Score(D,T,Xi, PaIS(Xi), Papop(Xi)) , (10)

where i iterates over the set of all nodes being modeled. This equation will be used later in Equation
(13) to derive an overall BN structure score.

We can also define modular structure priors that are decomposable at the node level to be applied
when scoring the parent-child relationship for each node. We use the following structure priors when
applying GES to learn the population-wide model (Ramsey et al., 2017):

P (Gpop) =
n∏
i=1

(
e

n− 1

)|Papop(Xi)|
·
(

1− e

n− 1

)n−1−|Papop(Xi)|
, (11)
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where i iterates over the set of all nodes in Gpop, |Papop(Xi)| is the number of parents of node Xi

in Gpop, and e is a prior weight, which we set to be e = 1 in this paper. For this structure prior, each
node being a parent of another node is modeled as a Bernoulli trial.

To compute the prior probabilities of the instance-specific BN structure GIS , we modify the
modular structure prior introduced in (Heckerman et al., 1995) by considering Gpop as the prior
network:

P (GIS) = c

n∏
i=1

κδi , (12)

where c is a normalization constant, i iterates over the set of all nodes, δi is the arc difference
between instance-specific parents of Xi in GIS (i.e., PaIS(Xi)) and its population-wide parents in
Gpop (i.e., Papop(Xi)), and 0 < κ ≤ 1 is a penalty factor. We combine Equations (10), (11), and
(12) to derive a probability that is proportional to the posterior probability of GIS and Gpop:

P (GIS , Gpop|D,T ) ∝ P (D|T,GIS , Gpop) · P (GIS) · P (Gpop) . (13)

5. Experimental Results

In this section we investigate the performance of the IGES instance-specific structure discovery
algorithm versus a state-of-the-art population-wide method, GES. We applied these two algorithms
on both real and simulated datasets. To generate simulated data, we applied the following steps:

• First, we generated random BNs with V = 50 nodes and either E = 50 or E = 100 edges.

• We then parametrized the Bayesian networks to include context-specific independence in the
conditional probability tables. We parametrized the CPTs so that each node that has more
than one parent includes at least one CSI. In the BNs of size V = 50 nodes and E = 50
edges, about 15% of the variables (on average) exhibit CSI in each simulated test case T .
When we double the density of BNs (i.e., V = 50 and E = 100) about 30% of the variables
(on average) exhibit CSI in each simulated test case T .

• Given the randomly generated BN and its parameters, we simulated a training dataset with
1000 samples. This is dataset D.

• We generated 500 test instances. Each test instance is a case T . The 1000 samples generated
in previous step along with each of the 500 test instances are used to learn 500 instance-
specific BN structures for each test case T using the proposed IGES algorithm.

We repeated the above steps 10 times and computed the average of the evaluation measures
over those runs. We used edge adjacency precision, recall, and F-measure and arrowhead precision,
recall, and F-measure (see below) as the primary evaluation measures. We derived specific subtypes
of precision, recall, and F-measure for the subset of the nodes that include CSI (PIS , RIS , and
FIS), the remaining nodes that do not include CSI (Pother, Rother, and Fother), and over all nodes
(Poverall, Roverall, and Foverall). The gold-standard for each node is therefore either an instance-
specific structure (which can vary with the instance) or population wide (which does not vary). In
the next paragraph, we define how we calculated each of these measures, which are computed at the
node level.
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Method PIS Pother Poverall RIS Rother Roverall FIS Fother Foverall
IGES (k = 0.001) 0.75(0.11) 0.99(0.02) 0.92(0.03) 0.69(0.17) 0.75(0.06) 0.73(0.08) 0.71(0.14) 0.85(0.04) 0.81(0.06)

IGES (k = 0.1) 0.81(0.12) 0.98(0.02) 0.93(0.04) 0.72(0.09) 0.75(0.06) 0.74(0.06) 0.76(0.10) 0.85(0.04) 0.82(0.04)

IGES (k = 0.5) 0.74(0.13) 0.89(0.04) 0.84(0.05) 0.67(0.11) 0.72(0.08) 0.71(0.07) 0.70(0.11) 0.79(0.06) 0.77(0.05)

IGES (k = 0.9) 0.61(0.11) 0.78(0.08) 0.72(0.08) 0.70(0.08) 0.76(0.07) 0.75(0.06) 0.65(0.08) 0.77(0.07) 0.74(0.06)

GES 0.57(0.07) 0.98(0.02) 0.84(0.04) 0.78(0.08) 0.81(0.08) 0.81(0.08) 0.66(0.07) 0.89(0.05) 0.82(0.04)

(a) Adjacency precision (P), recall (R), and F-measure (F)

Method PIS Pother Poverall RIS Rother Roverall FIS Fother Foverall
IGES (k = 0.001) 0.23(0.17) 0.91(0.15) 0.72(0.13) 0.44(0.30) 0.60(0.13) 0.59(0.13) 0.29(0.21) 0.71(0.13) 0.64(0.12)

IGES (k = 0.1) 0.35(0.17) 0.85(0.13) 0.77(0.14) 0.45(0.18) 0.55(0.08) 0.54(0.07) 0.38(0.17) 0.66(0.08) 0.63(0.08)

IGES (k = 0.5) 0.36(0.20) 0.70(0.16) 0.67(0.16) 0.56(0.24) 0.55(0.16) 0.55(0.14) 0.42(0.21) 0.60(0.13) 0.59(0.12)

IGES (k = 0.9) 0.22(0.10) 0.55(0.14) 0.49(0.13) 0.50(0.22) 0.59(0.06) 0.58(0.07) 0.30(0.13) 0.56(0.09) 0.52(0.09)

GES 0.16(0.07) 0.81(0.17) 0.58(0.14) 0.68(0.20) 0.68(0.08) 0.68(0.08) 0.24(0.08) 0.73(0.10) 0.61(0.09)

(b) Arrowhead precision (P), recall (R), and F-measure (F)

Method added deleted reversed log likelihood ratio
IGES (κ = 0.001) 2.38(0.94) 10.37(2.42) 4.45(2.17) 234.31(146.26)

IGES (κ = 0.1) 2.25(1.32) 10.09(2.07) 4.17(1.68) 397.47(116.00)

IGES (κ = 0.5) 5.15(1.71) 10.87(2.26) 3.95(1.83) 438.62(237.32)

IGES (κ = 0.9) 11.74(4.12) 9.82(2.32) 6.09(2.52) 524.60(229.72)

GES 6.09(1.60) 7.60(2.80) 7.12(2.96) -
(c) Structural Hamming distance and log likelihood ratio

Table 1: Results for BNs with V = 50 nodes and E = 50 edges. The numbers in parentheses are standard
deviations.

Let Goutput be GIS when using the IGES algorithm2 and be Gpop when using GES. Also, let
Gtruth be the gold-standard BN structure for a given instance T . To compute precision and recall
measures, we first calculated four basic statistics: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Precision was then derived as the ratio TP/(TP + FP) and
recall as the ratio TP/(TP + FN). Adjacency precision and recall are defined as follows. TP is the
number of adjacencies that are common in both Goutput and Gtruth without considering the edge
orientation. FP is the number of adjacencies that are present in Goutput but not in Gtruth, and FN
is the number of adjacencies that are present in Gtruth but not in Goutput. For arrowhead precision
and recall, TP is the number of edges that are common in both Goutput and Gtruth and share the
same edge orientation (e.g., X → Y in both BNs). False orientation in this case would be when
X → Y is present in one BN but there is Y → X , X — Y , or no edge between X and Y in the
other one. The F-measure is computed as the ratio 2PR/(P + R).

Tables 1a and 2a show the adjacency precision and recall for the BNs with (V = 50, E = 50)
and (V = 50, E = 100), respectively. Tables 1b and 2b show the arrowhead precision and recall
for the BNs with (V = 50, E = 50) and (V = 50, E = 100), respectively. As the tables indicate,
using IGES often results in higher precision but lower recall than using the GES search, especially
for the nodes with CSI. The F-measure of IGES versus GES is generally higher for FIS , lower for
Fother, and comparable for Foverall. In most cases, κ = 0.1 gives the best results for the IGES
method.

We also computed the edge difference (i.e., the structural Hamming distance) to compare per-
formance of the search procedures on each given instance T . The structural Hamming distance
for each Goutput compared to Gtruth is composed of three edge modifications: added, deleted,
and reversed edges. Tables 1c and 2c show the average results on 500 test cases for the BNs with
(V = 50, E = 50) and (V = 50, E = 100), respectively. In these experiments, IGES results in less

2. IGES outputs both GIS and Gpop for completeness, but GIS is what it actually learns as the instance-specific BN
structure for a given instance T .
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Method PIS Pother Poverall RIS Rother Roverall FIS Fother Foverall
IGES (k = 0.001) 0.62(0.06) 0.96(0.03) 0.79(0.05) 0.61(0.06) 0.65(0.07) 0.63(0.06) 0.61(0.05) 0.77(0.05) 0.70(0.05)

IGES (k = 0.1) 0.66(0.06) 0.95(0.03) 0.82(0.04) 0.57(0.08) 0.66(0.05) 0.63(0.04) 0.61(0.06) 0.78(0.03) 0.71(0.03)

IGES (k = 0.5) 0.63(0.06) 0.89(0.04) 0.76(0.03) 0.58(0.04) 0.64(0.04) 0.61(0.03) 0.60(0.04) 0.74(0.03) 0.68(0.03)

IGES (k = 0.9) 0.55(0.08) 0.79(0.06) 0.68(0.06) 0.57(0.08) 0.67(0.04) 0.63(0.03) 0.56(0.08) 0.73(0.03) 0.66(0.04)

GES 0.55(0.07) 0.94(0.05) 0.73(0.05) 0.69(0.07) 0.71(0.06) 0.70(0.05) 0.61(0.07) 0.81(0.04) 0.72(0.04)

(a) Adjacency precision (P), recall (R), and F-measure (F)

Method PIS Pother Poverall RIS Rother Roverall FIS Fother Foverall
IGES (k = 0.001) 0.36(0.10) 0.78(0.15) 0.59(0.12) 0.50(0.13) 0.50(0.09) 0.50(0.09) 0.41(0.09) 0.60(0.09) 0.53(0.08)

IGES (k = 0.1) 0.37(0.08) 0.74(0.14) 0.60(0.11) 0.46(0.07) 0.50(0.05) 0.49(0.05) 0.40(0.05) 0.59(0.07) 0.54(0.07)

IGES (k = 0.5) 0.38(0.08) 0.65(0.10) 0.56(0.08) 0.45(0.13) 0.50(0.09) 0.49(0.08) 0.41(0.08) 0.56(0.09) 0.52(0.07)

IGES (k = 0.9) 0.30(0.07) 0.57(0.08) 0.49(0.07) 0.45(0.11) 0.54(0.06) 0.53(0.05) 0.36(0.08) 0.56(0.06) 0.51(0.06)

GES 0.24(0.06) 0.76(0.13) 0.52(0.09) 0.59(0.11) 0.61(0.08) 0.61(0.07) 0.34(0.08) 0.67(0.08) 0.56(0.07)

(b) Arrowhead precision (P), recall (R), and F-measure (F)

Method added deleted reversed log likelihood ratio
IGES (κ = 0.001) 10.25(3.29) 22.24(3.97) 9.68(2.21) 207.54(190.36)

IGES (κ = 0.1) 8.70(2.04) 22.80(2.26) 8.37(2.84) 518.43(235.79)

IGES (κ = 0.5) 12.40(2.26) 24.16(2.69) 8.75(2.18) 638.72(274.38)

IGES (κ = 0.9) 18.99(4.34) 23.01(1.84) 9.41(2.72) 615.99(232.87)

GES 16.17(4.03) 18.60(2.39) 11.23(3.79) -
(c) Structural Hamming distance and log likelihood ratio

Table 2: Results for BNs with V = 50 nodes and E = 100 edges. The numbers in parentheses are standard
deviations.

erroneously added and reversed edges but more deleted edges. However, the overall average edge
error is lower using IGES.

We also calculated the log likelihood ratio as another performance metric. For each instance T ,
it is calculated as follows:

log likelihood ratio = log
P (D|T,GIS , Gpop)
P (D|T,Gpop)

, (14)

where we use Equation (10) to compute P (D|T,GIS , Gpop) in this equation. We also score the
denominator P (D|T,Gpop) using Equation (10) but in this case there is only one model (i.e., Gpop)
that will be used for all instances. The log likelihood ratio of 0 indicates the algorithms produce
models that have the same marginal likelihood (ML) for a given dataset, a positive value indicates
that IGES produces a higher ML, and a negative value indicates that GES produces a larger ML.
IGES results in higher log likelihood ratios compared to GES, as shown in Tables 1c and 2c.

We also evaluated the proposed IGES method on a real chronic pancreatitis dataset. The dataset
we used was collected as part of the multicenter North American Pancreatitis Study 2 (NAPS2)
(Whitcomb et al., 2008). This data consists of 2201 individuals, of whom 980 developed chronic
pancreatitis and 1221 were healthy. We discarded data of 2 individuals who had missing values.
We split the remainder of the dataset randomly into a training set of 1761 individuals (80%) and
a test set of 438 individuals (20%) while preserving the disease distribution. For each individual,
the dataset contains 143 variables, of which 142 are single nucleotide variants (SNVs) and one is
a binary outcome variable that denotes if the individual developed chronic pancreatitis. Each SNV
is a location on the human genome and for each individual takes one of three possible values. To
evaluate the performance of IGES versus GES, we computed the log likelihood ratio for the data
given the instance-specific model,GIS , and the population-wide modelGpop, similar to (Chickering
et al., 1997). The results in Table 3 shows that the IGES method had much higher average log
likelihoods.
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κ = 0.001 κ = 0.1 κ = 0.5 κ = 0.9
log likelihood ratio 3323.18(1344.47) 3408.66(1354.24) 3327.98(1212.82) 3116.33(1086.27)

Table 3: Average log likelihood ratio on the test data sampled from the chronic pancreatitis dataset
for different κ values. The numbers in parentheses represent standard deviations.

6. Discussion

This paper introduces a Bayesian instance-specific structure learning algorithm called IGES that
outputs a Bayesian network structure that is specific to a given instance T (e.g, a patient) by guiding
the search based on T ’s attributes. Although we applied GES-style algorithm in this paper, the
proposed method is quite general and can be adopted to any other score-based search method.

The results on simulated data indicate that IGES performs better in terms of adjacency and
arrowhead precision (especially when a node exhibits CSI) for discovering the instance-specific BN
structure of each test instance T . However, the recall decreases due to more edges being deleted
when applying IGES. The structural Hamming distance is lower on average when using IGES (the
lower the better). The log likelihood ratio always improves when using IGES for both real and
simulated data. A higher log likelihood ratio suggests that the BN structures learned by IGES are
more probable and better model the relationships among variables for each instance T .

The IGES method can be extended in numerous ways, including the following: (a) understand
better the reason for the relatively lower recall of the instance-specific BN models and try to increase
it while retaining precision; (b) extend the IGES algorithm to iteratively learn an instance-specific
model for each instance in the training set and use an aggregate of those models to define the
population-wide model; (c) attempt to prove that IGES is guaranteed to find the data-generating
instance-specific causal model for a test instance in the large sample limit; (d) develop an instance-
specific score to learn BN structures that contain other types of variables (e.g., continuous or a
mixture of continuous and discrete variables); (e) develop more informative structure and parameter
prior probabilities; (f) extend the experimental evaluations. Despite its limitations, the current paper
provides support that the proposed IGES method is a promising approach to discover a BN structure
that better models the relationships among variables of a given instance T , rather than a population-
wide model. The results suggest that further investigation of the approach is warranted.
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