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ABSTRACT

Eye tracking is used widely to investigate attention and cognitive processes while performing tasks in electronic

medical record (EMR) systems. We explored a novel application of eye tracking to collect training data for a ma-

chine learning-based clinical decision support tool that predicts which patient data are likely to be relevant for a

clinical task. Specifically, we investigated in a laboratory setting the accuracy of eye tracking compared to man-

ual annotation for inferring which patient data in the EMR are judged to be relevant by physicians. We evaluated

several methods for processing gaze points that were recorded using a low-cost eye-tracking device. Our results

show that eye tracking achieves accuracy and precision of 69% and 53%, respectively compared to manual an-

notation and are promising for machine learning. The methods for processing gaze points and scripts that we

developed offer a first step in developing novel uses for eye tracking for clinical decision support.
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INTRODUCTION

There is growing interest in leveraging eye tracking to support ad-

vanced types of clinical decision support (CDS) tools in electronic

medical record (EMR) systems.1,2 For example, eye tracking could

capture which data (eg, vital signs, laboratory test results, medica-

tion orders, etc.) in a patient’s EMR a physician has viewed in the

context of a clinical task.3 If eye-tracking devices were deployed on

EMR computer monitors, then the data that are viewed by many
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physicians could be collected, and machine learning models derived

from such data can predict which data are likely to be relevant in a

given patient. Such predictive models can form the basis of a CDS

tool to highlight relevant patient data and draw the physician’s at-

tention to them.4 Further, such a tool has the potential to mitigate

the cognitive overload arising from the large amounts of patient

data that physicians have to collate and assess in data-rich settings

like the intensive care unit (ICU).

We developed in learning EMR (LEMR) system to investigate

the feasibility of a CDS tool to predict and highlight relevant data.5

The LEMR system relies on supervised machine learning models

that predict which patient data are likely to be relevant in the con-

text of a clinical task.6,7 However, a critical barrier to building ma-

chine learning models for a LEMR system is the acquisition of

training data regarding which patient data are relevant for a clinical

task. Such data are not recorded in sufficient granularity in currently

deployed EMR systems. Hence, we collected training data in a labo-

ratory setting where physicians reviewed patient cases and provided

manual annotations about which data were relevant.4 However,

manual annotation is onerous, expensive, and time-consuming and

limits the amount of training data that can be collected. Eye tracking

offers an alternative method for capturing training data, and we in-

vestigated whether eye-tracking data are as accurate as manual

annotations.2,3 If so, eye tracking can provide a promising, higher-

throughput alternative that if deployed on EMR systems will unob-

trusively capture which data are viewed by thousands of physicians

and provide large volumes of data for machine learning. To our

knowledge, we are the first to investigate the use of eye-tracking

data to develop machine learning models for CDS.1–3

BACKGROUND

In this section, we provide brief descriptions of eye-tracking technol-

ogy and its application to EMR systems, the LEMR system, and the

eye-tracking device used in the LEMR system.

Eye tracking and its applications to EMR systems
Eye tracking is a method to track and record eye movements and

gaze points across time and task, and it is commonly used for ob-

serving and measuring the allocation of visual attention.8 Eye-track-

ing devices record a sequence of gaze points with a regular sampling

rate. Gaze point data form the basis of a variety of analyses of visual

attention, such as the characterization of fixation and saccadic eye

movements in an area of interest (AOI)9 and dwell time, which is

the total amount of time spent looking within an AOI.10 Eye track-

ing is widely used to study cognitive processes that underlie a variety

of tasks such as visual search, comprehension, and judgment and de-

cision-making.11

A range of methods have been developed to measure visual atten-

tion and dwell time in AOIs from gaze point data. Simple methods

calculate the dwell time or the time spent looking at an AOI by sum-

ming the time that the gaze points were within the AOI.12 More so-

phisticated methods identify fixations within an AOI based on the

assumption that visual attention occurs only during fixations and

calculate the dwell time by summing the time that the fixations were

within the AOI.13

In the context of EMR systems, eye-tracking research has fo-

cused on understanding users and their interactions with the sys-

tems. For example, investigators have used eye tracking to

understand clinical reasoning,14 track information search patterns,15

evaluate usability,16 measure time use,17 and investigate visual and

cognitive processes while performing tasks.18 Recent reviews of

the literature have described the application of eye tracking in clin-

ical decision-making19 and usability of EMR systems.1 However,

little work has been done to investigate the use of eye tracking in

EMR systems to enable CDS tools. In previous work, we described

the application of eye tracking to CDS for the collection of training

data for deriving machine learning models of relevant patient

data.2,3

The LEMR system
We developed the LEMR system to highlight relevant patient data

by using machine learning models to identify such data in the con-

text of a clinical task for a specific patient.4,6 The LEMR system can

also be used to collect training data for machine learning. The

LEMR interface, shown in Figure 1, enables the collection of data

that is judged to be relevant for a clinical task by a physician in two

ways: (1) manual annotation, when the physician annotates relevant

data by clicking on checkboxes (see Figure 3) and (2) eye gaze, when

an eye tracking device records gaze points while the physician is

reviewing the patient’s record (see Figure 2). Our goal in developing

the LEMR system was not to replicate an entire modern EMR but to

have a useful prototype for displaying patient data and for capturing

gaze point data and annotations to support studies in a laboratory

setting.

Eye-tracking device
The LEMR system is outfitted with Tobii EyeX, an inexpensive por-

table eye-tracking device and software package, which is primarily

marketed for developing computer gaming and virtual reality appli-

cations.20 The hardware component, the Tobii EyeX Controller, is

mounted at the bottom edge of a computer monitor (see Figure 1)

and samples eye-gaze point coordinates at approximately 60 Hz.

The software component, the Tobii EyeX Software Development

Kit, records and outputs x-axis and y-axis gaze point coordinates for

each eye.

METHODS

In this section, we describe the patient data and physician reviewers,

the clinical task, data collection, the methods that we applied to pro-

cess the gaze point data, and the evaluation measures we used.

Patient data and physician reviewers
We randomly selected 178 patients who were admitted to an ICU

between June 2010 and May 2012 at the University of Pittsburgh

Medical Center and had a diagnosis of either acute kidney failure

(ICD-9 584.9 or 584.5; 93 patients) or acute respiratory failure

(ICD-9 518.81; 85 patients). Eleven critical care physicians, includ-

ing fellows and attending physicians, reviewed the EMRs of the se-

lected patients in the LEMR system with eye tracking in a

laboratory setting.

Clinical task
We chose the clinical task of identifying relevant patient data that

have accumulated during the past day to present a summary of the

patient’s clinical status at morning rounds in the ICU. This task is

performed daily and is typically time-consuming, with the physician

painstakingly searching the EMR to identify and retrieve relevant

data. Each patient record was loaded into the LEMR system as
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Figure 1. A computer monitor displaying the LEMR interface as it appears during the familiarization and preparation tasks (see Methods section). From left to

right, the system displays patient data on vital signs, ventilator settings, intake and output, medication administrations, laboratory test results, and free-text notes

and reports. The eye-tracking device mounted at the bottom is used to capture gaze points during the preparation task (see Methods section).

Figure 2. A portion of the LEMR interface as it appears during the preparation

task (see Methods section) showing four laboratory test results. The horizontal

light blue band indicates the normal range for the corresponding laboratory

test and the vertical light orange band indicates the most recent 24-h period.

The larger green circles, red circles, and purple circles denote normal, high, and

low values of the corresponding laboratory values. The smaller orange circles

denote the location of gaze points recorded by the eye-tracking device; these

are shown for illustrative purposes only and are not visible on the interface.

Figure 3. A portion of the LEMR interface as it appears during the annotation

task (see Methods section) showing four laboratory test results with check-

boxes. Physicians indicate which patient data are relevant by clicking on the

corresponding checkboxes. The glucose laboratory test is surrounded by a

yellow margin to indicate that its checkbox has been clicked.
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shown in Figure 1. A physician reviewed a record by completing

three tasks sequentially. In the familiarization task, the physician

was shown patient data from the time of ICU admission up to 8:00

AM on a random ICU day between day 2 and the day before dis-

charge from the ICU (inclusive). The physician was asked to review

the data, become familiar with the patient, and understand the clini-

cal course. After becoming familiar with the patient, the physician

switched to the preparation task and was shown an additional 24

h of patient data with instructions to review the new data for the

task of summarizing the clinical status for presentation at morning

rounds. During this task, eye tracking was used to record the physi-

cian’s gaze points. After reviewing the new data, the physician

turned to the annotation task and indicated which patient data were

relevant by clicking on checkboxes.

Data collection
From gaze points recorded during the preparation task, we esti-

mated which patient data were considered to be relevant by measur-

ing the dwell times within AOIs; from the manual checkbox

annotations recorded during the annotation task, we derived a refer-

ence standard of patient data that was specified as relevant by the

same physician. We compared the performance of the gaze-derived

relevant patient data with the manual annotation reference

standard.

Methods for processing gaze data
We evaluated five methods for processing gaze points to infer rele-

vant patient data. We focused only on vital signs, ventilator settings,

intake and output measurements, laboratory test results, and medi-

cation administration, and excluded free-text notes and reports (see

Figure 1). These data are presented in rectangular areas in the

LEMR interface and are the AOIs for which we applied five meth-

ods to calculate dwell times. We assumed that AOIs with longer

dwell times indicate relevant patient data. We selected three fixation

identification algorithms that include the velocity-threshold identifi-

cation (I-VT), the dispersion-threshold identification (I-DT), and

area-of-interest identification (I-AOI) methods. In addition, we de-

veloped two simple gaze point algorithms called the gaze point (GP)

and distributed gaze point (DGP) methods. The fixation algorithms

measure the dwell times of fixations while the gaze point algorithms

measure the dwell times of all gaze points within a ROI. We provide

brief descriptions of the five methods next.

The I-VT method is a velocity-based method that computes a ve-

locity for each gaze point based on the distance between the gaze

point and the previous gaze point. Based on a velocity threshold, a

point is classified as a fixation point if its velocity is below the

threshold or as a saccade point if its velocity is above the threshold.

I-VT identifies a fixation as a collection of consecutive fixation

points and discards the saccade points. Thus, I-VTI requires a veloc-

ity threshold as an input parameter. We fixed the velocity threshold

to 20 degrees per second.

The I-DT method identifies tightly clustered groups of gaze

points as fixations. More specifically, it identifies a fixation as a col-

lection of consecutive gaze points such that the points are within a

maximum distance of one another (called dispersion) and within a

period of time exceeding some minimum duration (generally 100

milliseconds).9 Thus, I-DT requires two input parameters, the dis-

persion threshold and the duration threshold. Therefore, in our

experiments, we explored a range of values for the input parameters.

The dispersion threshold was selected from values [50, 80, 100,

150, 200 pixels] and the duration threshold was selected from values

[10, 20, 30, 40 data points]. Since the sampling frequency is 60 Hz,

the interval between consecutive data points is 16.7 ms; thus 10 data

points for the duration threshold translates to a duration of 167

milliseconds.

The I-AOI method identifies fixations in a fashion similar to the

I-DT; however, it identifies fixations that occur within one or more

AOIs. I-AOI utilizes a duration threshold to distinguish fixations in

the AOI from saccades in that area.9 Thus, I-AOI requires a dura-

tion threshold as an input parameter. We selected the duration

threshold from values [10, 20, 30, 40, 50, 100, 150, 200 data

points].

We developed two simple and computationally efficient gaze

point methods that do not rely on fixation identification. The GP

method maps all gaze points to AOIs without classifying the points

as part of a fixation or a saccade. A higher proportion of the total

recorded gaze points that map to an AOI results in a longer dwell

time and indicates that more visual attention has been directed there

(see Supplementary Appendix for pseudocode).

The DGP method is a probabilistic refinement of the GP method,

in which each gaze point contributes to adjacent AOIs in a probabil-

istic fashion. The fractional contribution of a gaze point to an AOI

is equal to the density of a bivariate normal distribution (see Supple-

mentary Appendix for pseudocode). The means of the distribution

are located at the center of the gaze point and the variances are de-

rived from the average error of the eye-tracking device in the hori-

zontal and vertical directions that we estimated in a prior study.3

Performance measures
We evaluated the performance of the methods with accuracy, preci-

sion, and recall. In the context of a gaze-point processing method, a

true positive (TP) is an AOI that was identified as relevant by both

gaze-point processing and manual annotation, a false positive (FP) is

an AOI that was identified as relevant by gaze-point processing but

not by manual annotation, a true negative (TN) is an AOI that was

identified as irrelevant by both gaze-point processing and manual

annotation, and a false negative (FN) is an AOI that was identified

as irrelevant by gaze-point processing but as relevant by manual an-

notation. Accuracy is obtained by dividing the sum of true positives

and true negatives by the total number of AOIs (accuracy ¼ (TP þ
TN)/(TP þ FP þ FN þ TN)). Precision is obtained by dividing the

number of true positives by the sum of true positives and false posi-

tives (precision ¼ TP/(TP þ FP)), and recall is obtained by dividing

the number of true positives by the sum of true positives and false

negatives (recall ¼ TP/(TP þ FN)). We used the binomial test of pro-

portion to perform pairwise statistical comparisons of the methods

for each of the performance measures.

RESULTS

The reviewers were physicians trained in critical care medicine and

included fellows and attending physicians. Characteristics of the

reviewers are summarized in Table 1.

The performance of the five methods for processing gaze data is

shown in Table 2. Overall, I-VT and GP had the highest accuracy at

69%, GP had the highest precision at 53% and DGP had the highest

recall at 48%. I-VT had slightly lower precision than GP. For each

performance measure, the highest value or values are statistically

significantly higher than the remaining values on the binomial test

of proportion.
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DISCUSSION

We evaluated five methods for processing gaze data obtained to in-

fer what patient data physicians judged to be relevant for summariz-

ing the patient’s clinical status at morning rounds in the ICU.

Compared to manual annotation, the results support the use of eye

tracking and relatively simple methods for processing gaze data to

infer data relevance with modest accuracy and precision. We derived

machine learning models using gaze data to predict relevant patient

data in the LEMR system and found that they performed as well as

models that were derived using manual annotation. The detailed

results are reported in a separate publication and support further de-

velopment of the use of eye-tracking data to drive a CDS tool to

identify and highlight relevant patient data in EMR systems.2 The

scripts for the eye-tracking methods with accompanying documenta-

tion are freely available on GitHub at https://github.com/ajk77/Eye-

BrowserPy (last accessed July 16, 2021).

The eye-tracking device, Tobii EyeX, was developed as an inex-

pensive device for gaming applications. It is simple to install on a

computer monitor, unobtrusive, and easy to calibrate. The Software

Development Kit provides API bindings for several programming

languages including Python that are straightforward to use for

programming.

There are several limitations to our study. A key limitation is

that the methods we used infer visual attention or seeing rather than

cognition, and seeing does not imply that the information was cogni-

tively processed. A second limitation is that the eye-tracking device,

Tobii EyeX, was not developed explicitly for research applications

and the device has modest temporal and spatial resolution and sam-

pling frequency. However, it was adequate for our application that

only required monitoring of simple eye movements. Further, the de-

vice could not track head movements, and the physician reviewers in

our study had to restrain their head movements. However, this limi-

tation may be mitigated with newer devices such as Tobii Eye

Tracker 5 that are capable of tracking both head and eye movements

and offer the ability to robustly estimate the coordinates of eye-gaze

even if the head position changes.21 A third limitation is that the in-

terface of the LEMR system is significantly different from the ven-

dor EMR systems currently used in clinical care, and furthermore

may not be optimal for the review of patient data. Further studies

are needed to assess and improve the LEMR interface. A fourth limi-

tation is that given our results of modest accuracy and precision of

eye tracking, the performance of the models derived from such data

may be imperfect and unreliable to such an extent that it leads to

poorer performance and trust in the LEMR system.22,23 One ap-

proach to mitigating this limitation that we plan to investigate in fu-

ture studies is to examine whether the performance of the models

can be improved with a combination of smaller amounts of more ac-

curate, manually obtained data with larger amounts of less accurate

eye-tracking data over either type of data alone. A final limitation is

that we did not comprehensively investigate a wider range of meth-

ods that are available for processing gaze data; we plan to do so in

the future.

CONCLUSION

Eye tracking provides an automated and unobtrusive method to cap-

ture which patient data physicians judge to be relevant for a specific

clinical task. Gaze point data recorded with an inexpensive eye-

tracking device have modest accuracy and precision in inferring rele-

vant data and are promising for deriving machine learning models

that identify and highlight relevant patient data. The methods for

processing gaze points and scripts that we developed offer a first

step in developing novel uses for eye tracking for CDS. In addition,

to predicting which patient data in EMR systems are relevant, eye

tracking may be useful for additional CDS tools that depend on cap-

turing which patient data were viewed by physicians.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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Table 1. Characteristics of physician reviewers

Number of physicians Average number of years spent in ICU Average number of weeks per year spent rounding in ICU

11 1.8 (0.3–7.0) 34 (26–42)

Table 2. Accuracy, precision, and recall values with standard error

of five methods for processing gaze data

Method Accuracy (%) Precision (%) Recall (%)

I-VT 69 6 0.03 52 6 0.08 33 6 0.24

I-DT 67 6 0.03 46 6 0.05 26 6 0.23

I-AOI 68 6 0.03 49 6 0.09 31 6 0.26

GP 69 6 0.04 53 6 0.10 38 6 0.28

DGP 67 6 0.05 50 6 0.08 48 6 0.25

The highest values for each performance measure are in bold font.
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