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Abstract. Discovering causal structure from observational data in the
presence of latent variables remains an active research area. Constraint-
based causal discovery algorithms are relatively efficient at discovering
such causal models from data using independence tests. Typically, how-
ever, they derive and output only one such model. In contrast, Bayesian
methods can generate and probabilistically score multiple models, out-
putting the most probable one; however, they are often computation-
ally infeasible to apply when modeling latent variables. We introduce a
hybrid method that derives a Bayesian probability that the set of inde-
pendence tests associated with a given causal model are jointly correct.
Using this constraint-based scoring method, we are able to score multiple
causal models, which possibly contain latent variables, and output the
most probable one. The structure-discovery performance of the proposed
method is compared to an existing constraint-based method (RFCI)
using data generated from several previously published Bayesian net-
works. The structural Hamming distances of the output models improved
when using the proposed method compared to RFCI, especially for small
sample sizes.
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1 Introduction

Much of science consists of discovering and modeling causal relationships [21,
29,33]. Causal knowledge provides insight into mechanisms acting currently and
prediction of outcomes that will follow when actions are taken (e.g., the chance
that a disease will be cured if a particular medication is taken).

There has been substantial progress in the past 25 years in developing com-
putational methods to discover causal relationships from a combination of exist-
ing knowledge, experimental data, and observational data. Given the increasing
amounts of data that are being collected in all fields of science, this line of
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part II, LNAI 10535, pp. 142–157, 2017.
https://doi.org/10.1007/978-3-319-71246-8_9



A Hybrid Causal Discovery Method 143

research has significant potential to accelerate scientific causal discovery. Some
of the most significant progress in causal discovery research has occurred using
causal Bayesian networks (CBNs) [29,33].

Considerable CBN research has focused on constraint-based and Bayesian
approaches to learning CBNs, although other approaches are being actively
developed and investigated [30]. A constraint-based approach uses tests of con-
ditional independence; causal discovery occurs by finding patterns of conditional
independence and dependence that are likely to be present only when particular
causal relationships exist. A Bayesian approach to learning typically involves a
heuristic search for CBNs that have relatively high posterior probabilities.

The constraint-based and the Bayesian approaches each have significant, but
different, strengths and weaknesses. The constraint-based approach can model
and discover causal models with hidden (latent) variables relatively efficiently
(depending upon what the true causal structure is, which variables are measured,
and how many and what kind of hidden confounders have not been measured).
This capability is important because oftentimes there are hidden variables that
cause measured variables to be statistically associated (confounded). If such con-
founded relationships are not revealed, erroneous causal discoveries may occur.

The constraint-based approaches do not, however, provide a meaningful sum-
mary score of the chance that a causal model is correct. Rather, a single model
is derived and output, without quantification regarding how likely it is to be cor-
rect, relative to alternative models. In contrast, Bayesian methods can generate
and probabilistically score multiple models, outputting the most probable one.
By doing so, they may increase the chance of finding a model that is causally
correct. They also can quantify the probability of the top scoring model relative
to other models that are considered in the search. The top scoring model might
be close, or alternatively far away, from other models, which could be helpful to
know. The Bayesian scoring of causal models that contain hidden confounders
is very expensive computationally, however. Consequently, the practical appli-
cation of Bayesian methods is largely relegated to CBNs that do not contain
hidden variables, which significantly decreases the general applicability of these
methods for causal discovery. In addition, while constraint-based methods can
incorporate domain beliefs known with certainty (e.g., that a gene X is regulated
by gene Y ), they cannot incorporate domain beliefs about what is likely but not
certain (e.g., that there is a 0.8 chance that gene X is regulated by gene Z). In
general, Bayesian methods can incorporate as prior probabilities domain beliefs
about what is likely but not certain, which is a common situation.

The current paper investigates a hybrid approach that combines strengths of
constraint-based and Bayesian methods. The hybrid method derives the proba-
bility that relevant constraints are true. Consider a causal model (or equivalence
class of models) that entails a set of conditional independence constraints over
the distribution of the measured variables. In the hybrid approach, the proba-
bility of the model being correct is equal to the probability that the constraints
that uniquely characterize the model (or class of models) are correct. This hybrid
method exhibits the computational efficiency of a constraint-based method com-
bined with the Bayesian approaches ability to quantitatively compare alternative
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causal models according to their posterior probabilities and to incorporate non-
certain background beliefs.

The remainder of this paper first provides relevant background in Sect. 2.
Sections 3 and 4 then describe a method for the Bayesian scoring of constraints,
how to combine it with a constraint-based learning method, and two techniques
for evaluating the posterior probabilities of models that are output. Section 5
describes an evaluation of the method using data generated from existing CBNs.

2 Background

A causal Bayesian network (CBN) is a Bayesian network in which each arc is
interpreted as a direct causal influence between a parent node (a cause) and a
child node (an effect), relative to the other nodes in the network [29]. In this
paper, we focus on the discovery of CBN structures because this task is generally
the first and most crucial step in the causal discovery process. As shorthand, the
term CBN will denote a CBN structure, unless specified otherwise. We also
focus on learning CBNs from observational data, since this is among the most
challenging causal learning tasks. General reviews of the topic are in [11,14,22].

2.1 Constraint-Based Learning of CBNs from Data

A constraint-based Bayesian network search algorithm searches for a set of
Bayesian networks, all of which entail a particular set of conditional indepen-
dence constraints, which we simply call constraints, that are judged to hold in a
dataset of samples based on the results of tests applied to that data. It is usu-
ally not computationally or statistically feasible to actually test each possible
constraint among the measure variables for more than a few dozen variables,
so constraint-based algorithms typically select a sufficient subset of constraints
to test. Generally, the subset of constraint tests that are performed within a
sequence of such tests depends upon the results of previous tests.

Fast Causal Inference (FCI) [33] is a constraint-based causal discovery algo-
rithm, which we discuss in more detail here because it serves as a good example of
a constraint-based algorithm, and we use an adapted version of it, called Really
Fast Causal Inference (RFCI) [10], in the research reported here. FCI takes as
input observed sample data and optional deterministic background knowledge,
and it outputs a graph, called a Partial Ancestral Graph (PAG). A PAG rep-
resents a Markov equivalence class of Bayesian networks (possibly with hidden
variables) that entail the same constraints. A PAG model returned by FCI rep-
resents as much about the true causal graph as can be determined from the
conditional independence relations among the observed variables [36]. In par-
ticular, under assumptions, the FCI algorithm has been shown to have correct
output with probability 1.0 in the large sample limit, even if there are hidden
confounders [36]. In addition, a modification of FCI can be implemented to
run in polynomial time, if a maximum number of causes (parents) per node is
specified [9].
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(a) The data-generating CBN (b) The PAG that is output

Fig. 1. The PAG in (b) is learnable in the large sample limit from observational data
generated by the causal model in (a), where HBC is a hidden variable and the other
variables are measured.

As an example, Fig. 1 shows in panel (b) the PAG that would be output by
the FCI search if given a large enough sample of data from the data-generating
CBN shown in panel (a), assuming the Markov and faithfulness1 conditions hold
[33]. In panel (b), the subgraph B ↔ C represents that B and C are both caused
by one or more hidden variables (i.e., they are confounded by a hidden variable).
The subgraph C → D represents that C is a cause of D and that there are no
hidden confounders of C and D. The subgraph A ◦→B represents that either
A causes B, A and B are confounded by a hidden variable, or both. Another
edge possibility, which does not appear in the example, is X ◦–◦ Y , which is
compatible with the true causal model having X as cause of Y , Y as a cause of
X, a hidden confounder of X and Y , or some acyclic combination of these three
alternatives. The PAG in Fig. 1b indicates that not all the causal relationships
in Fig. 1a can be learned from constraints on the data generated by that causal
model, but some can be; in particular, Fig. 1b shows that is it possible to learn
that B and C are both caused by a hidden variable(s) and that C causes D.

2.2 Bayesian Learning of CBNs from Data

Score-based methods derive a score for a CBN, given a dataset of samples and
possibly prior knowledge or belief. Different types of scores have been developed
and investigated, including the Minimum Description Length (MDL), Minimum
Message Length (MML), and Bayesian scores [11,18]. There are two major prob-
lems when learning a CBN using Bayesian approaches:

– Problem 1 (model search): There is an infinite space of hidden-variable mod-
els, both in terms of parameters and hidden structure. Even when restrictions
are assumed, the search space generally remains enormous in size, making it
challenging to find the highest scoring CBNs.

– Problem 2 (model scoring): Scoring a given CBN with hidden variables is also
challenging. In particular, marginalizing over the hidden variables greatly com-
plicates Bayesian scoring in terms of accuracy and computational tractability.

1 The faithfulness assumption states that if X and Y conditional on a set Z are d-
connected in the structure of the data-generating CBN, then X and Y are dependent
given Z in the probability distribution defined by the data-generating CBN.



146 F. Jabbari et al.

These two problems notwithstanding, several heuristic algorithms have been
developed and investigated for scoring CBNs containing hidden variables. An
early algorithm for this task was developed by Friedman [17]; it interleaved
structure search with the application of EM. Other approaches include those
based on variational EM [2] and a greedy search that incorporates EM [5]. These
and related approaches were primarily developed to deal with missing data,
rather than hidden variables for which all data are missing.

Several Bayesian algorithms have been specifically developed to score CBNs
with hidden variables, including methods that use a Laplace approximation [19],
an approach that uses EM and a form of clustering [16], and a structural expec-
tation propagation method [23]. However, these methods do not search over the
space of all CBNs that include a given set of measured variables. Rather, they
require that the user manually provides the proposed CBN models to be scored
[19], they search a very restricted space of models, such as bipartite graphs [23]
or trees of hidden structure [7,16], or they score ancestral relations between pairs
of variables [28]. Thus, within a Bayesian framework, the automated discovery
of CBNs that contain hidden variables remains an important open problem.

2.3 Hybrid Methods for Learning CBNs from Data

Researchers have also developed algorithms that combine constraint-based and
Bayesian scoring approaches for learning CBNs [8,12,13,24–26,32,34,35]. How-
ever, these hybrid methods, except [8,24,26,34], do not include the possibility
that the CBNs being modeled contain hidden variables. When a CBN can con-
tain hidden variables, the Bayesian learning task is much more difficult.

In [8], a Bayesian method is proposed to score and rank order constraints;
then, it uses those rank-ordered constraints as inputs to a constraint-based causal
discovery method. However, it does not derive the posterior probability of a
causal model from the probability of the constraints that characterize the model.
The method in [26] models the possibility of hidden confounders but it does not
provide any quantification of the output graph. In [34], a method is proposed to
convert p-values to posterior probabilities of adjacencies and non-adjacencies in
a graph; then, those probabilities are used to identify neighborhoods of the graph
in which all relations have probabilities above a certain threshold. This method
is, in fact, a post-processing step on the skeleton of the output network and not
applicable to convert p-values to probabilities while running a constraint-based
search method. It also does not provide a way of computing posterior probability
of the whole output PAG. [24] introduces a logic-based method to reconstruct
ancestral relations and score their marginal probabilities; it does not provide
the probability of the output graph, however. In [24], authors mentioned that
modeling the relationships among the constraints may be an improvement; in
this paper, we propose an empirical way of modeling such relationships.

The research reported in [20] is the closest previous work of which we are
aware to that introduced here. It describes how to score constraints on graphs
by treating the constraints as independent of each other. The method is very
expensive computationally, however, and is reported as working on up to only 7
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measured variables. The method we introduce was feasibly applied to a dataset
containing 70 variables and plausibly is practical for considerably larger datasets.
Also, the method in [20], as described, is limited to deriving just the most prob-
able graph, rather than deriving a set of graphs, as we do, which can be rank
ordered, compared, and used to perform selective model averaging that derives
(for example) distributions over edge types.

3 The Proposed Hybrid Method

This paper investigates a novel approach based on Bayesian scoring of con-
straints (BSC) that has major strengths of the constraint-based and Bayesian
approaches. Namely, BSC uses a Bayesian method to score the constraints, rather
than score the CBNs directly. The posterior probability of a CBN will be pro-
portional to the posterior probability of the correctness of the constraints that
characterize that CBN (or class of CBNs). The BSC approach, therefore, atten-
uates both problems of the Bayesian approach listed in Sect. 2.2:

– Problem 1 (model search): In the BSC approach, the search space is finite, not
infinite as in the general Bayesian approach, because the number of possible
constraints on a given set of measured variables is finite.

– Problem 2 (model scoring): In a constraint-based approach, the constraints
are on measured variables only, as discussed in Sect. 2. Thus, when BSC uses a
Bayesian approach to derive the probability of a set of constraints and thereby
score a CBN, it needs only to consider measured variables. In contrast, a
traditional Bayesian approach must marginalize over hidden variables, which
is a difficult and computationally expensive operation.

3.1 Bayesian Scoring of Constraints (BSC)

This section describes how to score a constraint ri. The term ri denotes an arbi-
trary conditional independence of the form (Xi ⊥⊥ Yi|Zi) which is hypothesized
to hold in the data-generating model that produced dataset D, where Xi and
Yi are variables of dataset D, and Zi is a subset of variables not containing Xi

or Yi. Each ri is called a conditional independence constraint, or constraint for
short, where its value is either true or false. To score the posterior probability
of a constraint ri, we assume that the only parts of data D that influence belief
about ri are the data Di, i.e. data about Xi, Yi, and Zi. This is called the data
relevance assumption which results in:

P (ri|D) = P (ri|Di) . (1)

Assuming uniform structure priors on constraints and applying Bayes rule
result in the following equation:

P (ri|Di) =
P (Di|ri)

P (Di|ri) + P (Di|r̄i)
. (2)
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Since we consider discrete variables in this paper, we can use the BDeu score
in [18], which provides a closed-form solution for deriving marginal likelihoods,
i.e. P (Di|ri) and P (Di|r̄i), in Eq. (2). To derive a value for P (Di|ri) (i.e., assum-
ing Xi is independent of Yi given Zi), we score the following BN structure, where
Zi is a set of parents nodes for Xi and Yi:

Xi ← Zi → Yi

To compute P (Di|r̄i) (i.e., assuming Xi and Yi are dependent given Zi) we score
the following BN structure:

Zi → XiYi

where XiYi denotes a new node whose values are the Cartesian product of the
values of Xi and Yi. This is similar to scoring a DAG that consists of the following
edges: Xi ← Zi → Yi and Xi → Yi, which has been used previously [20]. In
general, however, any Bayesian test of conditional independence can be used.

3.2 RFCI-BSC (RB)

This section describes an algorithm that combines constraint-based model search
with the BSC method described in Sect. 3.1. As mentioned, RFCI [10] is a
constraint-based algorithm for discovering the causal structure of the data-
generating process in the presence of latent variables using Partial Ancestral
Graphs (PAGs) as a representation, which encodes a Markov equivalence class
of Bayesian networks (possibly with latent variables). RFCI has two stages. The
first stage involves a selective search for the constraints among the measured
variables, which is called adjacency search. The second stage involves determin-
ing the causal relationships among pairs of nodes that are directly connected
according to the first stage; this stage is called the orientation phase.

We adapted RFCI to perform model search using BSC. We call this algo-
rithm RFCI-BSC, or RB for short. During the first stage of search, when RFCI
requests that an independence condition be tested, RB uses BSC to determine
the probability p that independence holds. It then samples with probability p
whether independence holds and returns that result to RFCI. To do so, it gen-
erates a random number U from Uniform[0, 1]; if U ≤ p then it returns true,
and otherwise, it returns false. Ultimately, RFCI will complete stage 1 in this
manner, then stage 2, and finally return a PAG.

RB then repeats the procedure in the previous paragraph n times to generate
up to n unique PAG models. Let each repetition be called a round. Since the set
of constraints generated in each round is determined stochastically (i.e. sampling
with probability p), these rounds will produce many different sets of constraints,
and consequently, different PAGs. Algorithm1 shows pseudo-code of the RB
method that inputs dataset D and the number of rounds n. It then outputs
a set of at most n PAGs and for each PAG, an associated set of constraints
that were queried during the RFCI search. Note that RFCI� in this procedure
denotes the RFCI search that uses BSC to evaluate each constraint, rather than
using frequentist significant testing. The computational complexity of RB is O(n)
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Algorithm 1. RB(D, n)
Input: dataset D, number of rounds n
Output: a set G containing PAG members Gj , a set r of constraints

1: Let G and r be empty sets
2: for j = 1 to n do
3: Gj , rj ← RFCI�(D) � RFCI� uses BSC to evaluate each constraint
4: G ← G ∪ Gj

5: r ← r ∪ rj

6: return G and r

times that of RFCI, since it calls RFCI n times. In the next section, we propose
two methods to score each generated PAG model Gj .

4 Scoring a PAG Using RB

Let r be the union of all the independence conditions tested by RB over all
rounds, which we will use to score each generated PAG model Gj . Based on the
axioms of probability, we have the following equation:

P (Gj |D) =
∑

r

P (Gj |r,D) · P (r|D) , (3)

where the sum is over all possible value assignments to the constraints in set
r. Although Eq. (3) is valid, it does not provide a useful method for calculating
P (Gj |D). In this section, we propose a method to derive a way of computing
P (Gj |D) effectively.

Assume that the data only influence belief about a causal model via belief
about the conditional independence constraints given by r, i.e. P (Gj |r,D) =
P (Gj |r), which is a standard assumption of constraint-based methods. Therefore,
we can rewrite Eq. (3) as following:

P (Gj |D) =
∑

r

P (Gj |r) · P (r|D) . (4)

Although Eq. (4) is less general than a full Bayesian approach that integrates
over CBN parameters, it is nonetheless more expressive than existing constraint-
based methods that in essence assume that P (r|D) = 1 for a set of constraints
r that are derived using frequentist statistical tests.

Let r
′
j denote the values of all the constraints in r, according to the inde-

pendencies implied by graph Gj as tested by RFCI. Since RFCI finds a set of
sufficient independence conditions that distinguishes Gj from all other PAGs, so
that P (Gj |r = r

′
j) = 1 and P (Gj |r �= r

′
j) = 0, Eq. (4) becomes:

P (Gj |D) =
∑

r

P (Gj |r) · P (r|D) = P (r = r
′
j |D) . (5)
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Section 3.1 describes a method to compute the probability of one constraint
given data, i.e. P (ri|Di). Now, we need to extend it for a set of constraints, i.e.
P (r = r

′
j |D) in Eq. (5). Applying the chain rule of probability, it becomes:

P (r = r
′
j |D) = P (r

′
1, r

′
2, r

′
3, ..., r

′
m|D) =

m∏

i=1

P (r
′
i|r

′
1, r

′
2, ..., r

′
i−1,D)

=
m∏

i=1

P (r
′
i|r

′
1, r

′
2, ..., r

′
i−1,Di)(assuming data relevance) ,

(6)

where r
′
i denotes the value of ith constraint according its value given in r

′
j .

Using Eq. (6), RB determines the most probable generated PAG and its posterior
probability. For each pair of measured nodes, we can also use model averaging to
estimate the probability distribution over each PAG edge type as follows: Since
PAGs are being sampled (generated) according to their posterior distribution
(under assumptions), the probability of edge E existing between nodes A and
B is estimated as the fraction of the sampled PAGs that contain E between A
and B. In the following subsections, we propose two methods to approximate
the joint posterior probabilities of constraints.

4.1 BSC with Independence Assumption (BSC-I)

In the first method, we assume that constraints in set r = {r1, r2, ..., rm}, which
is a set of all independence constraints obtained by running RB algorithm, are
independent of each other. We call this approach BSC-I. Given this assumption
and Eq. (6), BSC-I scores an output graph as follows:

P (Gj |D) = P (r = r
′
j |D) =

m∏

i=1

P (r
′
i|Di) , (7)

where P (r
′
i|Di) can be computed as described in Sect. 3.1.

4.2 BSC with Dependence Assumption (BSC-D)

In this scoring approach, we model the possibility that the constraints are depen-
dent, which often happens. The relationships among the constraints can be com-
plicated, and to our knowledge, they have not been modeled previously. In the
remainder of this section, we introduce an empirical method to model the rela-
tionships among conditional constraints.

Similar to BSC-I, consider r as a set of all the independence constraints
queried by the RB method. As we mentioned earlier, each constraint ri ∈ r has
the form (Xi ⊥⊥ Yi|Zi), where Xi and Yi are variables of dataset D and Zi is a
subset of variables not containing Xi or Yi. Each ri can take two values, true (1)
or false (0); therefore, it can be considered as a binary random variable. We build
a dataset, Dr, of these binary random variables using bootstrap sampling [15]



A Hybrid Causal Discovery Method 151

Algorithm 2. EmpiricalDataCreation(D, n, r)
Input: dataset D, number of bootstraps n, and a set of constraints r
Output: empirical dataset Dr with n rows and m = |r| columns

1: Let Dr[n, m] be a new 2-d array with n rows and m columns
2: for b = 1 to n do
3: sampleb ← Bootstrap(D)
4: for ri ∈ {r1, r2, . . . , rm} do
5: p ← BSC(ri, sampleb)
6: if p ≥ 0.5 then
7: Dr[b, i] ← 1
8: else
9: Dr[b, i] ← 0

10: return Dr[n, m]

and the BSC method. To do so, we first bootstrap (re-sample with replacement)
the data D; let sampleb denote the resulting dataset. Then, for each constraint
ri ∈ r, we compute the BSC score using sampleb and set its value to 1 if its
BSC score is more than or equal to 0.5, and 0 otherwise. We repeat this entire
procedure n times to fill in n rows of empirical data for the constraints. Algo-
rithm2 provides pseudo-code of this procedure. It inputs the original dataset D,
the number of bootstraps n, and a set of constraints r. It outputs an empirical
dataset Dr with n rows and m = |r| columns. The Bootstrap(D) function in this
procedure creates a bootstrap sample from D, and BSC(ri, sampleb) computes
the BSC score of constraint ri using sampleb.

The empirical data Dr can then be used to learn the relations among the
constraints r. We learn a Bayesian network because doing so can be done effi-
ciently with thousands of variables, such networks are expressive in representing
the joint relationships among the variables, and inference of the joint state of the
variables (constraints in this application) can be derived efficiently. We use an
optimized implementation of the Greedy Equivalence Search (GES) [6], which is
called Fast GES (FGES) [31] to learn a Bayesian network structure, BNr, that
encodes the dependency relationships among the constraints r. We then apply a
maximum a posteriori estimation method to learn the parameters of BNr given
Dr, which we denote as θr. Finally, we use BNr and θr to factorize P (r = r

′
j |D)

and score the output PAG as follows:

P (Gj |D) = P (r = r
′
j |D) =

m∏

i=1

P (r
′
i|Pa(ri),D) , (8)

where r
′
i and Pa(ri) denotes the parents of variable ri in r

′
j and its parents in

BNr, respectively.

5 Evaluation

This section describes an evaluation of the RB method using each of the BSC-
I and BSC-D scoring techniques, which we call RB-I and RB-D, respectively.
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Algorithm 3. RB-I(D, n)
Input: dataset D, number of rounds n
Output: the most probable PAG PAG-I

1: Let G and r be empty sets
2: G, r ← RB(D, n)
3: PAG-I ← arg max

Gi∈G
BSC-I(Gi, r, D)

4: return PAG-I

Table 1. Information about the CBNs used in the simulation experiments.

Name Alarm Hailfinder Hepar II

Domain Medicine Weather Medicine

Number of nodes 37 56 70

Number of edges 46 66 123

Number of parameters 509 2656 1453

Average degree 2.49 2.36 3.51

Algorithm 3 provides pseudo-code of RB-I method, which inputs dataset D, the
number of rounds n, and outputs the most probable PAG. It first runs the RB
method (Algorithm 1) to get a set of PAGs G and constraints r. It then computes
the posterior probability of each PAG Gi ∈ G using BSC-I and returns the most
probable PAG, which is denoted by PAG-I in Algorithm 3. Note that RB-D
would be exactly the same except for using BSC-D in line 3.

5.1 Experimental Methods

To perform an evaluation, we first simulated data from manually constructed,
previously published CBNs, with some variables designated as being hidden. We
then provided that data to each of RB-I and RB-D. We compared the most
probable PAG output by each of these two methods to the PAG consistent with
the data-generating CBN. In particular, we simulated data from the Alarm [3],
Hailfinder [1], and Hepar II [27] CBNs, which we obtained from [4]. Table 1 shows
some key characteristics of each CBN. Using these benchmarks is beneficial in
multiple ways. They are more likely to represent real-world distributions. Also,
we can evaluate the results using the true underlying causal model, which we
know by construction; otherwise, it is rare to find known causal models on more
than a few variables and associated real, observational data.

To evaluate the effect of sample size, we simulated 200 and 2000 cases ran-
domly from each CBN, according to the encoded joint probability distribution.
In each CBN, we randomly designated 0.0%, 10.0%, and 20.0% of the confounder
nodes to be hidden, which means data about those nodes were not provided to
the discovery algorithms. In applying the two versions of the RB algorithm, we
sampled 100 PAG models, according to the method described in Sect. 3.2 (i.e.,
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n = 100 in Algorithm 1). Also, we bootstrapped the data 500 times (i.e., n = 500
in Algorithm 2) to create the empirical data for BSC-D scoring. For each network,
we repeated the analyses in this paragraph 10 times, each time randomly sampling
a different dataset. We refer to one of these 10 repetitions as a run.

Let PAG-I and PAG-D denote the sampled models that had the highest pos-
terior probability when using BSC-I (see Eq. (7)) and BSC-D (see Eq. (8)) scoring
methods, respectively. Let PAG-CS denote the model returned by RFCI when
using a chi-squared test of independence, which is the standard approach; we
used α = 0.05, which is a common alpha value used with RFCI. Let PAG-True
be the PAG that represents all the causal relationships that can be learned about
a CBN in the large sample limit when assuming faithfulness and using indepen-
dence tests that are applied to observational data on the measured variables in
a CBN.

We compared the causal discovery performance of PAG-I, PAG-D, and
PAG-CS using PAG-True as the gold standard. For a given CBN (e.g., Alarm)
we calculated the mean Structural Hamming Distance (SHD) between a given
PAG G and PAG-True, which counts the number of different edge marks over all
10 runs. For example, if the output graph contains the edge A◦→B while B → A
exists in PAG-True, then edge-mark SHD of this edge is 2. Similarly, edge-mark
SHD would be 1 if A → B is in the output PAG but A ↔ B is in PAG-True.
Clearly, any extra or missing edge would count as 2 in terms of edge-mark SHD.
We also measured the number of extra and/or missing edges (regardless of edge
type) between a given PAG G and PAG-True, which corresponds to the SHD
between the skeletons (i.e., the adjacency graph) of the two PAGs. For instance,
if one graph includes A ◦–◦ B while there is no edge between these variables in
the other one, then skeleton SHD would be 1. For each of the measurements, we
calculated its mean and 95% confidence interval over the 10 runs.

5.2 Experimental Results

Figure 2 shows the experimental results. The diagrams on the left show the SHD
between the skeletons of each PAG and PAG-True. The diagrams on the right-
hand side represent the SHD of the edge marks between each output PAG and
PAG-True. For each diagram, circles and squares represent the average results
for datasets with 2000 and 200 cases, respectively. The vertical error bars in the
diagrams represent the 95% confidence interval around the average values. Also,
each column labeled as H = 0.0, 0.1, or 0.2 shows the proportion of hidden
variables in each experiment. Figure 2a and 2b show that using the RB method
always improves both performance measures for the Alarm network, especially
for small sample sizes. Similar results were obtained on Hepar II network (Fig. 2e
and 2f). For Hailfinder, we observed significant improvements on both the skele-
ton and edge-marks SHD when the sample size is 2000. The results show that the
edge-mark SHD always improves when applying the RB method. We observed
that BSC-I and BSC-D performed very similarly.

We found that using BSC-I and BSC-D may result in different probabilities
for the generated PAGs; however, the ordering of the PAGs according to their
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(a) Alarm: skeleton SHD (b) Alarm: edge-mark SHD

(c) Hailfinder: skeleton SHD (d) Hailfinder: edge-mark SHD

(e) Hepar II: skeleton SHD (f) Hepar II: edge-mark SHD

Fig. 2. Skeleton and edge-mark SHD of output PAGs relative to the gold standards
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posterior probabilities is almost always the same. We conjecture that perfor-
mance of BSC-I is analogous to a naive Bayes classifier, which often performs
classification well, even though it can be highly miscalibrated due to its universal
assumption of conditional independence.

6 Discussion

This paper introduces a general approach for Bayesian scoring of constraints
that is applied to learn CBNs which may contain hidden confounders. It allows
the input of informative prior probabilities and the output of causal models
that are quantified by their posterior probabilities. As a preliminary study, we
implemented and experimentally evaluated two versions of the method called
RB-I and RB-D. We compared these methods to a method that applies the
RFCI algorithm using a chi-squared test.

For the edge-mark SHD, RB-I and RB-D had statistically significantly better
results than RFCI for all three networks for any sample size and fraction of
hidden variables. The skeleton SHD was better for most tested scenarios when
using RB-I and RB-D, except for Hailfinder with H = 0.1 and 200 samples, and
Hepar II with 2000 samples. Overall, the results indicate that RB tends to be
more accurate than RFCI in predicting and orienting edges. Also, both RB-I and
RB-D methods perform very similarly. We found out that posterior probabilities
obtained by each of these methods are not equal but they result in the same
most probable PAG. As the sample size increases, we expect the constraints
to become independent of each other, but in our experiments, dependence did
not matter for SHD, even with small sample sizes. Interestingly, this provides
support that the simpler BSC-I method is sufficient for the purpose of finding
the most probable PAG.

The RB method is a prototype that can be extended in numerous ways,
including the following: (a) Develop more general tests of conditional indepen-
dence to learn CBNs that contain continuous variables or a mixture of contin-
uous and discrete variables; (b) Perform selective Bayesian model averaging of
the edge probabilities as described in Sect. 4; (c) Incorporate informative prior
probabilities on constraints. For example, one way to estimate the prior proba-
bility P (ri) for insertion into Eq. (2) is to use prior knowledge to define Maximal
Ancestral Graph (MAG) edge probabilities for each pair of measured variables.
Then, use those probabilities to stochastically generate a large set of graphs and
retain those graphs that are MAGs. Finally, tally the frequency with which ri

holds in the set of MAGs as an estimate of P (ri).
The evaluation reported here can be extended in several ways, such as using

additional manually constructed CBNs to generate data, evaluating a wider
range of data sample sizes and fractions of hidden confounders, and applying
additional algorithms as methods of comparison [8,17,23]. Despite its limita-
tions, the current paper provides support that the Bayesian scoring of constraints
is a promising hybrid approach for the problem of learning the most probable
causal model that can include hidden confounders. The results suggest that fur-
ther investigation of the approach is warranted.



156 F. Jabbari et al.

Acknowledgments. Research reported in this publication was supported by grant
U54HG008540 awarded by the National Human Genome Research Institute through
funds provided by the trans-NIH Big Data to Knowledge initiative. The content is
solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health.

References

1. Abramson, B., Brown, J., Edwards, W., Murphy, A., Winkler, R.L.: Hailfinder:
a Bayesian system for forecasting severe weather. Int. J. Forecast. 12(1), 57–71
(1996)

2. Beal, M.J., Ghahramani, Z.: The variational Bayesian EM algorithm for incomplete
data: with application to scoring graphical model structures. In: Proceedings of the
Seventh Valencia International Meeting, pp. 453–464 (2003)

3. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM mon-
itoring system: a case study with two probabilistic inference techniques for belief
networks. In: Hunter, J., Cookson, J., Wyatt, J. (eds.) AIME 89. LNMI, vol. 38, pp.
247–256. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-93437-
7 28

4. Bayesian Network Repository. http://www.bnlearn.com/bnrepository/
5. Borchani, H., Ben Amor, N., Mellouli, K.: Learning Bayesian network equivalence

classes from incomplete data. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS
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