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Abstract In this paper, we present a new nonparametric calibration method called ensemble
of near-isotonic regression (ENIR). The method can be considered as an extension of BBQ
(Naeini et al., in: Proceedings of twenty-ninth AAAI conference on artificial intelligence,
2015b), a recently proposed calibration method, as well as the commonly used calibration
method based on isotonic regression (IsoRegC) (Zadrozny and Elkan, in: Proceedings of the
ACM SIGKDD international conference on knowledge discovery and data mining 2002).
ENIR is designed to address the key limitation of IsoRegC which is the monotonicity assump-
tion of the predictions. Similar to BBQ, the method post-processes the output of a binary
classifier to obtain calibrated probabilities. Thus, it can be used with many existing classifica-
tion models to generate accurate probabilistic predictions. We demonstrate the performance
of ENIR on synthetic and real datasets for commonly applied binary classification models.
Experimental results show that the method outperforms several common binary classifier
calibration methods. In particular, on the real data, we evaluated ENIR commonly performs
statistically significantly better than the other methods, and never worse. It is able to improve
the calibration power of classifiers, while retaining their discrimination power. The method
is also computationally tractable for large-scale datasets, as it is O (N log N) time, where N
is the number of samples.
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1 Introduction

In many real-world data mining applications, intelligent agents often must make decisions
under considerable uncertainty due to noisy observations, physical randomness, incomplete
data, and incomplete knowledge. Decision theory provides a normative basis for intelligent
agents to make rational decisions under such uncertainty. To do so, decision theory combines
utilities and probabilities to determine the optimal actions that maximize expected utility
[32]. The output in many of the machine learning models that are used in data mining
applications is designed to discriminate the patterns in data. However, such output should
also provide accurate (calibrated) probabilities in order to be practically useful for rational
decision-making in many real-world applications [1,9,13,36,38].

This paper focuses on developing a new nonparametric calibration method for post-
processing the output of commonly used binary classification models to generate accurate
probabilities. Informally, we say that a classification model is well-calibrated if events pre-
dicted to occur with probability p do occur about p fraction of the time, for all p. This concept
applies to binary as well as multi-class classification problems [34]. Figure 1 illustrates the
binary calibration problem using a reliability curve [7,24]. The curve shows the probabil-
ity predicted by the classification model versus the actual fraction of positive outcomes for
a hypothetical binary classification problem, where Z is the binary event being predicted.
The curve shows that when the model predicts Z = 1 to have probability 0.2, the outcome
Z = 1 occurs in about 0.3 fraction of the time. The curve shows that the model is fairly
well-calibrated, but it tends to underestimate the actual probabilities. In general, the straight
dashed line connecting (0, 0) to (1, 1) represents a perfectly calibrated model. The closer a
calibration curve is to this line, the better calibrated the associated prediction model. Devia-
tions from perfect calibration are very common in practice and may vary widely depending
on the binary classification model that is used [28].

Producing well-calibrated probabilistic predictions is critical in many areas of science
(e.g., determining which experiments to perform), medicine (e.g., deciding which therapy to
give a patient), business (e.g., making investment decisions), and many others. In data mining
problems, obtaining well-calibrated classification model is crucial not only for decision-
making, but also for combining output of different classification models [3,31,37]. It is also
useful when we aim to use the output of a classifier not only to discriminate the instances

Fig. 1 The solid line shows a 3
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but also to rank them [14,19,41]. Research on learning well-calibrated models has not been
explored in the data mining literature as extensively as, for example, learning models that
have high discrimination (e.g., high accuracy).

There are two main approaches to obtaining well-calibrated classification models. The
first approach is to build a classification model that is intrinsically well-calibrated ab initio.
This approach will restrict the designer of the data mining model by requiring major changes
in the objective function (e.g., using a different type of loss function) and could potentially
increase the complexity and computational cost of the associated optimization program to
learn the model. The other approach is to rely on the existing discriminative data mining
models and then calibrate their output using post-processing methods. This approach has the
advantage that it is general, flexible, and it frees the designer of a data mining algorithm from
modifying the learning procedure and the associated optimization method [26]. However,
this approach has the potential to decrease discrimination while increasing calibration, if
care is not taken. The method we describe in this paper is shown empirically to improve
calibration of different types of classifiers (e.g., LR, SVM, and NB) while maintaining their
discrimination performance.

Existing post-processing binary classifier calibration methods include Platt scaling [29],
histogram binning [39], isotonic regression [40], and a recently proposed method BBQ which
is a Bayesian extension of histogram binning [28]. In all these methods, the post-processing
step can be seen as a function that maps the outputs of a prediction model to probabilities
that are intended to be well-calibrated. Figure 1 shows an example of such a mapping.

In general, there are two main applications of post-processing calibration methods. First,
they can be used to convert the outputs of discriminative classification methods with no
apparent probabilistic interpretation to posterior class probabilities [29,31,36]. An example
is an SVM model that learns a discriminative model that does not have a direct probabilistic
interpretation. In this paper, we show this use of calibration to map SVM outputs to well-
calibrated probabilities. Second, calibration methods can be applied to improve the calibration
of predictions of a probabilistic model that is miscalibrated. For example, a naive Bayes (NB)
model is a probabilistic model, but its class posteriors are often miscalibrated due to unrealistic
independence assumptions [24]. The method we describe is shown empirically to improve
the calibration of NB models without reducing their discrimination. The method can also
work well on calibrating models that are less egregiously miscalibrated than are NB models.

2 Related work

Existing post-processing binary classifier calibration models can be divided into parametric
and nonparametric methods. Platt’s method is an example of the former; it uses a sigmoid
transformation to map the output of a classifier into a calibrated probability [29]. The two
parameters of the sigmoid function are learned in a maximum-likelihood framework using a
model-trust minimization algorithm [12]. The method was originally developed to transform
the output of an SVM model into calibrated probabilities. It has also been used to calibrate
other type of classifiers [24]. The method runs in O(1) at test time, and thus, it is fast. Its key
disadvantage is the restrictive shape of sigmoid function that rarely fits the true distribution
of the predictions [20].

A popular nonparametric calibration method is the equal frequency histogram binning
model which is also known as quantile binning [39]. In quantile binning, predictions are
partitioned into B equal frequency bins. For each new prediction y that falls into a specific
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bin, the associated frequency of observed positive instances will be used as the calibrated
estimate for P(z = 1|y), where z is the true label of an instance that is either O or 1. Histogram
binning can be implemented in a way that allows it to be applied to large-scale data mining
problems. Its limitations include (1) bins inherently pigeonhole calibrated probabilities into
only B possibilities, (2) bin boundaries remain fixed over all predictions, and (3) there is
uncertainty in the optimal number of the bins to use [40].

The most commonly used nonparametric classifier calibration method in machine learning
and data mining applications is the isotonic regression-based calibration (IsoRegC) model
[40]. To build a mapping from the uncalibrated output of a classifier to the calibrated prob-
ability, IsoRegC assumes the mapping is an isotonic (monotonic) mapping following the
ranking imposed by the base classifier. The commonly used algorithm for isotonic regression
is the pool adjacent violators algorithm (PAVA), which is linear in the number of training
data [2]. An IsoRegC model based on PAVA can be viewed as a histogram binning model [40]
where the position of the boundaries are selected by fitting the best monotone approximation
to the train data according to the ordering imposed by the classifier. There is also a varia-
tion of the isotonic-regression-based calibration method for predicting accurate probabilities
with a ranking loss [23]. In addition, an extension to IsoRegC combines the outputs gener-
ated by multiple binary classifiers to obtain calibrated probabilities [42]. While IsoRegC can
perform well on some real datasets, the monotonicity assumption it makes can fail in real
data mining applications. This can specifically occur when we encounter large-scale data
mining problems in which we have to make simplifying assumptions to build the classifica-
tion models. Thus, there is a need to relax the assumption, which is the focus of the current
paper.

Adaptive calibration of predictions (ACP) is another extension to histogram binning [20].
ACP requires the derivation of a 95% statistical confidence interval around each individual
prediction to build the bins. It then sets the calibrated estimate to the observed frequency of
the instances with positive class among all the predictions that fall within the bin. To date,
ACP has been developed and evaluated using only logistic regression as the base classifier
[20].

Recently, a new nonparametric calibration model called BBQ was proposed which is a
refinement of the histogram binning calibration method [28]. BBQ addresses the main draw-
backs of the histogram binning model by considering multiple different equal frequency
histogram binning models and their combination using a Bayesian scoring function [15].
However, BBQ has two disadvantages. First, as a post-processing calibration method, it
does not take advantage of the fact that in real-world applications a classifier with poor dis-
crimination performance (e.g., low area under the ROC curve) will seldom be used. Thus,
BBQ will usually be applied to calibrate classifiers with at least fair discrimination perfor-
mance. Second, BBQ still selects the position and boundary of the bins by considering only
equal frequency histogram binning models. A Bayesian nonparametric method called ABB
addresses the latter problem by considering Bayesian averaging over all possible binning
models induced by the training instances [27]. The main drawback of ABB is that it is com-
putationally intractable for most real-world applications, as it requires O (N?) computations
for learning the model as well as O (N?) computations for computing the calibrated estimate
for each of the test instances. !

This paper presents a new binary classifier calibration method called ensemble of near-
isotonic regression (ENIR) that can post process the output generated by a wide variety of

I Note that the running time for the test instance can be reduced to O(1) in any post-processing calibration
model by using a simple caching technique that reduces calibration precision in order to decrease calibration
time [27].
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Fig. 2 Calibration curves based on using 5 equal frequency bins when we use logistic regression, SVM,
and naive Bayes classification models for the binary classification task in the liver-disorder UCI dataset.
Considering the frequency of observations in the first and the second bin, we notice the violation of the
isotonicity assumption that is made by IsoReg in all the classification models. a Logistic regression. b Linear
kernel SVM. ¢ Naive Bayes

classification models. The essential idea in ENIR is to use prior knowledge that the scores
to be calibrated are in fact generated by a well-performing classifier in terms of discrimi-
nation. IsoRegC also uses such prior knowledge; however, it is biased by constraining the
calibrated scores to obey the ranking imposed by the classifier. In the limit, this is equivalent
to presuming the classifier has AUC equal to 1, which rarely happens in real-world applica-
tions. In contrast, BBQ does not make any assumptions about the correctness of classifier
rankings. ENIR provides a balanced approach that spans between IsoRegC and BBQ. In par-
ticular, ENIR assumes that the mapping from uncalibrated scores to calibrated probabilities
is a near-isotonic (monotonic) mapping; it allows violations of the ordering imposed by the
classifier and then penalizes them through the use of a regularization term. Figure 2 shows
the calibration curve of three commonly used binary classifiers trained on the liver-disorder
UCI dataset. The dataset consist of 345 total instances, and the final AUC is equal to 0.73.
The figure shows that the isotonicity assumption made by IsoRegC is violated comparing the
frequency of observations in the first and the second bins.

ENIR utilizes the path algorithm modified pool adjacent violators algorithm (mPAVA)
that can find the solution path to a near-isotonic regression problem in O (N log N), where N
is the number of training instances [35]. Finally, it uses the BIC scoring measure to combine
the predictions made by these models to yield more robust calibrated predictions.

We perform an extensive set of experiments on a large suite of real datasets, to show
that ENIR outperforms both IsoRegC and BBQ. Our experiments show that the near-isotonic
assumption made by ENIR is a realistic assumption about the output of classifiers, and unlike
the isotonicity assumption that is made by IsoReg, it is not biased. Moreover, our experiments
show that by post-processing the output of classifiers using ENIR, we can gain high calibra-
tion improvement, without losing any statistically meaningful discrimination performance.
Finally, we also compare the performance of ENIR with our other newly introduced binary
classifier calibration method, ELiTE [25].

The remainder of this paper is organized as follows. Section 3 introduces the ENIR
method. Section 4 describes a set of experiments that we performed to evaluate ENIR and
other calibration methods. Section 5 describes briefly our other newly introduced calibra-
tion model based on using an ensemble of linear trend filtering models and compares its
performance ENIR. Finally, Sect. 6 states conclusions and describes several areas for future
work.
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3 Method

In this section, we introduce the ensemble of near-isotonic regression (ENIR) calibration
method. ENIR utilizes the near isotonic regression method that seeks a nearly monotone
approximation for a sequence of data yi, ..., y, [35]. The proposed calibration method
extends the commonly used isotonic regression-based calibration by an approximate selective
Bayesian averaging of a set of nearly isotonic regression models. The set includes the isotonic
regression model as an extreme member. From another viewpoint, ENIR can be considered as
an extension to a recently introduced calibration model BBQ [28] by relaxing the assumption
that probability estimates are independent inside the bins and finding the boundary of the
bins automatically through an optimization algorithm.

Before getting into the details of the method, we define some notation. Let y; and z; define,
respectively, an uncalibrated classifier prediction and the true class of the i’th instance. In
this paper, we focus on calibrating a binary classifier’s output,? and thus, z; € {0, 1} and
yi € [0, 1]. Let D define the set of all training instances (y;, z;). Without loss of generality,
we can assume that the instances are sorted based on the classifier scores y;, so we have
y1 <y <--- < yy,where N is the total number of samples in the training data.

The standard isotonic regression-based calibration model finds the calibrated probability
estimates by solving the following optimization problem:

N
. .1
Piso = argmin 5 E (pi — zi)*
p€RN i=1

ey

S.t. p1L<--<pn
0<p <1 Vie{l,...,N},

where P, is the vector of calibrated probability estimates. The rationale behind this model
is to assume that the base classifier ranks the instances correctly. To find the calibrated
probability estimates, it seeks the best fit of the data that is consistent with the classifier’s
ranking. A unique solution to the above convex optimization program exists and can be
obtained by an iterative algorithm called pool adjacent violators algorithm (PAVA) that
runs in O(N). Note, however, that isotonic regression calibration still needs O (N log N)
computations due to the fact that instances are required to be sorted based on the classifier
scores y;. PAVA iteratively groups the consecutive instances that violate the ranking constraint
and uses their average over z (frequency of positive instances) as the calibrated estimate for
all the instances within the group. We define the set of these consecutive instances that are
located in the same group and attain the same predicted calibrated estimate as a bin. Therefore,
an isotonic regression-based calibration can be viewed as a histogram binning method [40]
where the position of boundaries are selected by fitting the best monotone approximation to
the training data according to the ranking imposed by the classifier.

One can show that the second constraint in the optimization given by Eq. 1 is redundant,
and it is possible to rewrite the equation in the following equivalent form:

N N-—1
A . 1
Piso = argmin_ 5 E (pi —z)* + A E (pi — pi+1)Vvi
pERN i=1 i=1 (2)

S.t. A =—+o00,

2 For classifiers that output scores that are not in the unit interval (e.g., SVM), we use a simple sigmoid

transformation f(x) to transform the scores into the unit interval.

_ 1
— l+4exp(—x)
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where v; = 1(p; > pi+1) is the indicator function of ranking violation. Relaxing the equality
constraint in the above optimization program leads to a new convex optimization program as
follows:

N N—1
Py = argm}in % Z(Pi —z)? + A Z(Pi — Di+DVi, 3)

PER i=1 i=1
where X is a positive real number that regulates the trade-off between the monotonicity of
the calibrated estimates with the goodness of fit by penalizing adjacent pairs that violate the
ordering imposed by the base classifier. The above optimization problem is known as the
near-isotonic regression problem [35]. It yields a unique solution p,, where the use of the

subscript A emphasizes the dependency of the final solution to the value of A.

The entire path of solutions for any value of A of the near isotonic regression problem can
be found using a similar algorithm to PAVA which is called modified pool adjacent violators
algorithm (mPAVA) [35]. mPAVA finds the whole solution path in O (N log N), and needs
O(N) memory space. Briefly, the algorithm works as follows: It starts by constructing N
bins, each bin containing a single instance of the train data. Next, it finds the solution path by
starting from the saturated fit p; = z;, that corresponds to setting A = 0, and then increasing
A iteratively. As the A increases the calibrated probability estimates p; ;, for each bin, will
change linearly with respect to A until the calibrated probability estimates of two consecutive
bins attain equal value. At this stage, mPAVA merges the two bins that have the same calibrated
estimate to build a larger bin, and it updates their corresponding estimate to a common value.
The process continues until there is no change in the solution for a large enough value of A
that corresponds to finding the standard isotonic regression solution. The essential idea of
mPAVA is based on a theorem stating that if two adjacent bins are merged on some value of
A to construct a larger bin, then the new bin will never split for all larger values of A [35].

mPAVA yields a collection of nearly isotonic calibration models, with the over fitted
calibration model at one end (P, _o = z) and the isotonic regression solution at the other
(Py=s., = Piso)» Where Lo is a large positive real number. Each of these models can be
considered as a histogram binning model where the position of boundaries and the size of
bins are selected according to how well the model trades off the goodness of fit with the
preservation of the ranking generated by the classifier, which is governed by the value of
A, (as A increases the model is more concerned to preserving the original ranking of the
classifier, while for the small A it prioritizes the goodness of fit).

ENIR employs the approach just described to generate a collection of models (one for
each value of X). It then uses the Bayesian Information Criterion (BIC) to score each of
the models.> Assume mPAVA yields the binning models M, M3, ..., Mt, where T is the
total number of models generated by mPAVA. For any new classifier output y, the calibrated
prediction in the ENIR model is defined using selective Bayesian model averaging [16]:

T
Score(M;)
Pz=1ly) =) ——————PE=1ly, M),
o 2_j=1 Score(M;)
where P(z = 1|y, M;) is the probability estimate obtained using the binning model M;
for the uncalibrated classifier output y. Also, Score(M;) is defined using the BIC scoring
function® [33].

3 Note that we exclude the highly overfitted model that corresponds to A = 0 from the set of models in ENIR.

4 Note that, as it is recommended in [35], we use the expected degree of freedom of the nearly isotonic
regression models, which is equivalent to the number of bins, as the number of parameters in the BIC scoring
function.
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Next, for the sake of completeness, we briefly describe the mPAVA algorithm; more
detailed information about the algorithm and the derivations can be found in [35].

3.1 The modified PAV algorithm

Suppose ata value of A we have N, bins, By, By, ..., By, . We canrepresent the unconstrained
optimization program given by Eq. 3 as the following loss function that we seek to minimize

N;—1

Ny
1
LB.X(Za P) = 5 § § (pB,' - Zj)2 + A E (PB,- - pBiJr])Uiv (4)
i=1

i=1 jeB;

where pp, defines the common estimated value for all the instances located at the bin B;.
The loss function Lp ; is always differentiable with respect to pp, unless two calibrated
probabilities are just being joined (which only happens if pp, = pp,,, for some i). Assuming
that pp, (1) is optimal, the partial derivative of L£p ; has to be 0 at pg, (1), which implies:

|Bi1ps, (1) — Y zj+ i —vii)) =0 fori=1... Ny )
JEB;

Rewriting the above equation, the optimum predicted value for each bin can be calculated
as:
2 je 3 = M+ Avic
|Bil

pe, (M) = fori =1,...,N, (6)

While PAVA uses the frequency of instances in each bin as the calibrated estimate, Eq. 6
shows that mPAVA uses a shrunken version of the frequencies by considering the estimates
that are not following the ranking imposed by the base classifier. In Eq. 5, taking derivatives
with respect to A yields:

pp, Vi1 — Vi
oA |B;|

, fori=1,..., Ny, @

where we set v9 = vy = 0 for notational convenience. As we noted above, it has been proven
that the optimal values of the instances located in the same bin are tied together and the only
way that they can change is to merge two bins as they can never split apart as A increases [35].
Therefore, as we make changes in A, the bins B;, and hence the values v; remain constant.
This implies the term agf L is a constant in Eq. refeq:slope. Consequently, the solution path
remains piecewise linear as A increases, and the breakpoints happen when two bins merge
together. Now, using the piecewise linearity of the solution path and assuming that the two
bins B; and B;4 are the first two bins to merge by increasing A, the value of ; ;1 at which
the two bins B; and B, will merge is calculated as:
ﬁBi ()‘) - ﬁBiH ()\)

Aijyl = ———————+ A fori=1,...Ny—1, 8)
aij+1 — a;

where a; = ag f L is the slope of the changes of pp, with respect to A according to Eq. 7. Using

the above identity, the A at which the next breakpoint occurs is obtained using the following
equation:

At = min A; ;41
! 9
I* = {ilAiiq1 = A"},
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where I* indicates the set of the indexes of the bins that will be merged by their consecutive
bins changing the 1.5 If A* < A, then the algorithm will terminate since it has obtained the
standard isotonic regression solution, and by increasing A none of the existing bins will ever
merge. Having the solutions of the near-isotonic regression problem in Eq. 3 at the break-
points, and using the piecewise linearity property of the solution path, it is possible to recover
the solution for any value of A through interpolation. However, the current implementation
of ENIR only uses the near-isotonic regression-based calibration models that corresponds to
the value of A at the breakpoints. The sketch of the algorithm is shown as Algorithm 1.

input D ={(y1.21),.... ON.2ZN)}

output : (1) a set of binning models My, ..., Mr,
(2) their corresponding scoring Sy, ..., ST
Invariant: Pairs are sorted based on y;
A <0
A¥ <« 0;
t < 1;
N)L = N;
fori < 1toN do
B; ={i};
Pi =2}
end

while A* = 1 do

Update the slopes a; using Equation 7;

Update merging values A; ;41 using Equation 8;

Compute A* and IT* using Equation 9;

if A* < A then

| terminate ;

end

fori < 1to N, do
/lupdate corresponding probability estimate as:
B, (W) = pp,(A) +a; x A* —1);

end

Merge appropriate bins as indicated in the set I* ;

Update number of bins N, ;

Store the corresponding calibration model in M;;

Store the score of the calibration model in S;;

A< A%
t<—t+1;
end
Algorithm 1: The modified pool adjacent violators algorithm (mPAVA) that yields a set of
near-isotonic-regression-based calibration models My, ..., Mt

4 Empirical results

This section describes the set of experiments that we performed to evaluate the performance of
ENIR in comparison with isotonic regression-based calibration (IsoRegC) [40], and a recently
introduced binary classifier calibration method called BBQ [28]. We use IsoRegC because
it is one of the most commonly used calibration models showing promising performance on
real-world applications [24,40]. Moreover, ENIR is an extension of IsoRegC, and we are
interested in evaluating whether it performs better than IsoRegC. We also include BBQ as

5 Note that there could be more than one bin achieving the minimum in Eq. 9, so they should be all merged
with the bins that are located next to them.
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a state-of-the-art binary classifier calibration model, which is a Bayesian extension of the
simple histogram binning model [28]. We did not include Platt’s method since it is a simple
and restricted parametric model and there are prior works showing that IsoRegC and BBQ
perform superior to Platt’s method [24,28,40]. We also did not include the ACP method
since it requires not only probabilistic predictions, but also a statistical confidence interval
(CD) around each of those predictions, which makes it tailored to specific classifiers, such as
LR [20]; this is counter to our goal of developing post-processing methods that can be used
with any existing classification models. Finally, we did not include ABB in our experiments
mainly because it is not computationally tractable for real datasets that have more than a
couple of thousand instances. Moreover, even for small size datasets, we have observed that
ABB performs similar to BBQ.

4.1 Evaluation measures

In order to evaluate the performance of the calibration models, we use 5 different evaluation
measures. We use accuracy (ACC) and area under ROC curve (AUC) to evaluate how well
the methods discriminate the positive and negative instances in the feature space. We also
utilize three measures of calibration, namely root mean square error (RMSE),6 maximum
calibration error (MCE), and expected calibration error (ECE) [27,28]. MCE and ECE
are two simple statistics of the reliability curve (Fig. 1 shows a hypothetical example of
such curve) computed by partitioning the output space of the binary classifier, which is the
interval [0, 1], into K fixed number of bins (K = 10 in our experiments). The estimated
probability for each instance will be located in one of the bins. For each bin, we can define
the associated calibration error as the absolute difference between the expected value of
predictions and the actual observed frequency of positive instances. The MCE calculates the
maximum calibration error among the bins, and ECE calculates expected calibration error
over the bins, using empirical estimates as follows:

K
MCE = max (lok — exl)

K

ECE=) Pk lox —exl,
k=1

where P (k) is the empirical probability or the fraction of all instances that fall into bin &, ey

is the mean of the estimated probabilities for the instances in bin k, and oy is the observed
fraction of positive instances in bin k. The lower the values of MCE and ECE, the better is
the calibration of a model.

4.2 Simulated data

For the simulated data experiments, we used a binary classification dataset in which the
outcomes were not linearly separable. The scatter plot of the simulated dataset is shown in
Fig. 3. We developed this classification problem to illustrate how IsoRegC can suffer from
a violation of the isotonicity assumption, and to compare the performance of IsoRegC with
our new calibration method that assumes approximate isotonicity. In our experiments, the
data are divided into 1000 instances for training and calibrating the prediction model, and

6 Note that, to be more precise, RMSE evaluates both calibration and refinement of the predicted probabilities.
Refinement accounts for the usefulness of the probabilities by favoring those that are either close to 0 or 1
[6,7].
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Fig. 3 Scatter plot of the simulated data. The two classes of the binary classification task are indicated by the
red squares and blue stars. The black oval indicates the decision boundary found using SVM with a quadratic
kernel (colour figure online)

1000 instances for testing the models. We report the average results of 10 random runs for the
simulated dataset. To conduct the experiments with the simulated data, we used two extreme
classifiers: support vector machines (SVM) with linear and quadratic kernels. The choice of
SVM with a linear kernel allows us to see how ENIR perform when the classification model
makes an over simplifying (linear) assumption. Also, to achieve good discrimination on the
circular configuration data in Fig. 3, SVM with a quadratic kernel is a reasonable choice (as
is also evidenced qualitatively in Fig. 3 and quantitatively in Table 1b). So, the experiment
using quadratic kernel SVM allows us to see how well ENIR performs when we use models
that should discriminate well.

As seen in Table 1, ENIR generally outperforms IsoRegC on the simulation dataset, espe-
cially when the linear SVM method is used as the base learner. This is due to the monotonicity
assumption of IsoRegC which presumes the best-calibrated estimates will match the ordering
imposed by the base classifier. When we use SVM with a linear kernel, this assumption is
violated due to the non-linearity of the data. Consequently, IsoRegC only provides limited
improvement of the calibration and discrimination performance of the base classifier. ENIR
performs very well in this case since it is using the ranking information of the base classifier,
but it is not anchored to it. The violation of the monotonicity assumption can happen in real
data as well, especially in large-scale data mining problems in which we use simple classifica-
tion models due to the computational constraints. As shown in Table 1b, even when we apply
a highly appropriate SVM classifier to classify the instances for which IsoRegC is expected
to perform well (and indeed does so), ENIR performs as well or better than IsoRegC.

4.3 Real data

We ran two sets of experiments on 40 randomly selected baseline datasets from the UCI
and LibSVM repositories7 [5,22]. Five summary statistics of the size of the datasets and the

7 The datasets used were as follows: spect, adult, breast, pageblocks, pendigits, ad, mamography, satimage,
australian, code rna, colon cancer, covtype, letter unbalanced, letter balanced, diabetes, duke, fourclass, german
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Table 1 Experimental results on SVM IsoReeC BBQ ENIR
a simulated dataset g

(a) SVM linear kernel

AUC 0.52 0.65 0.85 0.85
ACC 0.64 0.64 0.78 0.79
RMSE 0.52 0.46 0.39 0.38
ECE 0.28 0.35 0.05 0.05
MCE 0.78 0.60 0.13 0.12
(b) SVM quadratic kernel

AUC 1.00 1.00 1.00 1.00
ACC 0.99 0.99 0.99 0.99
RMSE 0.21 0.09 0.10 0.09
ECE 0.14 0.01 0.01 0.00
MCE 0.36 0.04 0.05 0.03

Table 2 Summary statistics of the size of the real datasets and the percentage of the minority class. Q1 and
Q3 defines the first quartile and thirds quartile, respectively

Min 01 Median Q3 Max
Size 42 683 1861 8973 581012
Percent 0.009 0.076 0.340 0.443 0.500

percentage of the minority class are shown in Table 2. We used three common classifiers,
logistic regression (LR), support vector machines (SVM), and naive Bayes (NB) to evaluate
the performance of the proposed calibration method. In both sets of experiments on real data,
we used 10 random runs of 10-fold cross validation, and we always used the train data for
calibrating the models.

In the first set of experiments on real data, we were interested in evaluating whether there
is experimental support for using ENIR as a post-processing calibration method. Table 3
shows the 95% confidence interval for the mean of the random variable X, which is defined
as the percentage of the gain (or loss) of ENIR with respect to the base classifier:

MEASUregNIR — MEasurmethod
X = , (10)

measuremethod

where measure is one of the evaluation measures AUC, ACC, ECE, MCE, or RMSE. Also,
method denotes one of the choices of the base classifiers, namely, LR, SVM, or NB. For
instance, Table 3 shows that by post-processing the output of SVM using ENIR, we are 95%
confident to gain anywhere from 17.6 to 31% average improvement in terms of RMSE. This
could be a significant improvement, depending on the application, considering the 95% CI
for the AUC which shows that by using ENIR we are 95% confident not to lose more than 1%
of the SVM discrimination power in terms of AUC (note, however, that the CI includes zero,

Footnote 7 continued

numer, gisette scale, heart, ijcnn1, ionosphere scale, liver disorders, mushrooms, sonar scale, splice, svmguidel,
svmguide3, coil2000, balance, breast cancer, leu, w1a, thyroid sick, scene, uscrime, solar, car34, car4 , protein
homology.
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Table 3 The 95% confidence interval for the average percentage of improvement over the base classifiers
(LR, SVM, NB) by using the ENIR method for post-processing

LR SVM NB
AUC [—0.008, 0.003] [—0.010, 0.003] [—0.010, 0.000]
ACC [0.002, 0.016] [—0.001, 0.010] [0.012, 0.068]
RMSE [—0.124, —0.016] [—0.310, —0.176] [—0.196, —0.100]
ECE [—0.389, —0.153] [—0.768, —0.591] [—0.514, —0.274]
MCE [—0.313, —0.064] [—0.591, —0.340] [—0.552, —0.305]

Positive entries for AUC and ACC mean ENIR is on average providing better discrimination than the base
classifiers. Negative entries for RMSE, ECE, and MCE mean that ENIR is on average performing better
calibration than the base classifiers

which indicates that there is not a statistically significant difference between the performance
of SVM and ENIR in terms of AUC).

Overall, the results in Table 3 show that there is not a statistically meaningful difference
between the performance of ENIR and the base classifiers in terms of AUC. The results
support at a 95% confidence level that ENIR improves the performance of LR and NB in
terms of ACC. Furthermore, the results in Table 3 show that by post-processing the output
of LR, SVM, and NB using ENIR, we can obtain dramatic improvements in terms of cali-
bration measured by RMSE, ECE, and MCE. For instance, the results indicate that at a 95%
confidence level, ENIR improved the average performance of NB in terms of MCE anywhere
from 30.5 to 55.2%, which could be practically significant in many decision-making and data
mining applications.

In the second set of experiments on real data, we were interested to evaluate the per-
formance of ENIR compared with other calibration methods. To evaluate the performance
of models, we used the recommended statistical test procedure by Janez Demsar [8]. More
specifically, we used the nonparametric testing method based on the Fr test statistic [18],
which is an improved version of Freidman nonparametric hypothesis testing method [11],
followed by Holm’s step-down procedure [17] to evaluate the performance of ENIR in com-
parison with other methods, across the 40 baseline datasets.

Tables 4, 5, and 6 show the results of the performance of ENIR in comparison with IsoRegC
and BBQ. In these tables, we show the average rank of each method across the baseline
datasets, where boldface indicates the best performing method. In these tables, the marker
*/® indicates whether ENIR is statistically superior/inferior to the compared method using
the improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance
level. For instance, Table 5 shows the performance of the calibration models when we use
SVM as the base classifier; the results show that ENIR achieves the best performance in
terms of RMSE by having an average rank of 1.675 across the 40 baseline datasets. The
result indicates that in terms of RMSE, ENIR is statistically superior to BBQ; however, it is
not performing statistically differently than IsoRegC.

Table 4 shows the results of comparison when we use LR as the base classifier. As shown,
the performance of ENIR is always superior to BBQ and IsoRegC except for MCE in which
BBAQ is superior to ENIR; however, this difference is not statistically significant. The results
show that in terms of discrimination based on AUC, there is not a statistically significant
difference between the performance of ENIR compared with BBQ and IsoRegC. However,
ENIR performs statistically better than BBQ in terms of ACC. In terms of calibration mea-
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Table 4 Average rank of the calibration methods on the benchmark datasets using LR as the base classifier

IsoRegC BBQ ENIR
AUC 1.963 2.225 1.813
ACC 1.675 2.663% 1.663
RMSE 1.925x% 2.625% 1.450
ECE 2.125 1.975 1.900
MCE 2.475% 1.750 1.775

Marker x/® indicates whether ENIR is statistically superior/inferior to the compared method (using an
improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance level)
Bold values indicate the best performing method in each row

Table 5 Average rank of the calibration methods on the benchmark datasets using SVM as the base classifier

IsoRegC BBQ ENIR
AUC 1.988 2.025 1.988
ACC 2.000 2.150 1.850
RMSE 1.850 2.475% 1.675
ECE 2.075 2.025 1.900
MCE 2.550% 1.625 1.825

Marker */® indicates whether ENIR is statistically superior/inferior to the compared method (using an
improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance level)
Bold values indicate the best performing method in each row

Table 6 Average rank of the calibration methods on the benchmark datasets using NB as the base classifier

IsoRegC BBQ ENIR
AUC 2.150 1.925 1.925
ACC 1.963 2.375% 1.663
RMSE 2.200x% 2.375% 1.425
ECE 2.475% 2.075% 1.450
MCE 2.563x% 1.850 1.588

Marker */® indicates whether ENIR is statistically superior/inferior to the compared method (using an
improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance level)
Bold values indicate the best performing method in each row

sures, ENIR is statistically superior to both IsoRegC and BBQ in terms of RMSE. In terms
of MCE, ENIR is statistically superior to IsoRegC.

Table 5 shows the results when we use SVM as the base classifier. As shown, the per-
formance of ENIR is always superior to BBQ and IsoRegC except for MCE in which BBQ
performs better than ENIR; however, the difference is not statistically significant for MCE.
The results show that although ENIR is superior to IsoRegC and BBQ in terms of discrim-
ination measures, AUC and ACC, the difference is not statistically significant. In terms of
calibration measures, ENIR performs statistically superior to BBQ in terms of RMSE and it
is statistically superior to IsoRegC in terms of MCE.

Table 6 shows the results of comparison when we use NB as the base classifier. As shown,
the performance of ENIR is always superior to BBQ and IsoRegC. In terms of discrimination,
for AUC, there is not a statistically significant difference between the performance of ENIR
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Table 7 Note that N and B are
the size of training sets and the
number of bins found by the Platt O(NT) o(l)
method, respectively. T is the

Training time Testing time

number of iterations required for Hist O(NlogN) O(log B)
convergence of the Platt method, IsoRegC O(NlogN) O(log B)
and M is defined as the total ACP O(Nlog N) O(N)
number of models used in the 5 5
associated ensemble model ABB O(N7) O(N7)
BBQ O(NlogN) O(MlogN)
ENIR O(NlogN) O(M log B)

compared with BBQ and IsoRegC; however, in terms of ACC, ENIR is statistically superior
to BBQ. In terms of calibration measures, ENIR is always statistically superior to IsoRegC.
ENIR is also statistically superior to BBQ in terms of ECE and RMSE.

Overall, in terms of discrimination measured by AUC and ACC, the results show that the
proposed calibration method either outperforms IsoRegC and BBQ, or has a performance that
is not statistically significantly different. In terms of calibration measured by ECE, MCE, and
RMSE, ENIR either outperforms other calibration methods, or it has a statistically equivalent
performance to IsoRegC and BBQ.

Finally, Table 7 shows a summary of the time complexity of different binary classifier
calibration methods in learning for AV training instances and the test time for only one instance.

5 An extension to ENIR

This section briefly describes an extension to ENIR model which is called an ensemble of
linear trend estimation (ELiTE) [25]. Figure 4 shows the main idea in developing ELiTE.
As shown, in all of the histogram binning-based calibration models—including quantile
binning (i.e., the equal frequency histogram binning), IsoRegC, Bayesian extensions to the
histogram binning such as BBQ and ABB, and also ENIR—the generated mapping function
is a piecewise constant function. The main idea of ELIiTE is to extend ENIR and other
binning-based calibration methods by using an ensemble of piecewise linear functions® as it
is shown in Fig. 4b.

Recall z; and y; are the true class of the i’th training instance and its corresponding
classification score, respectively. Without loss of generality, we assume the training instances
to be sorted in increasing order by their associate classification scores y;. Borrowing the term
“bin” from the histogram binning literature, we define each bin as the largest interval over the
training data with a uniform slope of change (e.g., Fig. 4b indicates that there are 6 bins in the
calibration mapping). ELiTE uses the ¢; (linear) trend filtering signal approximation method
[21] and poses the problem of finding a piecewise calibration mapping as the following
optimization program:

N
. 1
p=argmin = (p; — z)* + AVl (11)
pERN i=1

8 Itis possible to generalize ELiTE to obtain piecewise polynomial calibration functions; however, we have
noticed an inferior results when using piecewise polynomial degrees higher than 1, and we hypothesize it is
because of the overfitting to the training data.
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Fig. 4 The figure shows how
ELIiTE extends binning-based 1,1
calibration methods (e.g., ENIR) 1 re—

by using a piecewise linear
calibration mapping instead of a
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where p = (p1,..., pn) is the vector of calibrated probability estimates and the vector

v € RV~2 is defined as the second-order finite difference vector associated with the training
data’v; = % % Also, A is a penalization parameter that regulates the trade-off
between the goodness of fit and the complexity of the model by penalizing the total variance
over the slope of the resulting calibration mapping. Kim et al. used the shrinkage property
of the £; norm and showed that the final solution to the above optimization program p will
be a continuous piecewise linear function with the kink points occurring on the training data
[21].

ELiTE uses a specialized ADMM algorithm proposed by Ramdas and Tibshirani [30] and
a warm start procedure that iterates over the values of lambda by ranging equally in the log
space from Apax t0 Amax * 10~#, where Amax 1s the corresponding value of A that gives the
best affine approximation of the calibration mapping that can be computed in O (N), where
N is the number of training instances [21]. ELiTE uses the Akaike information criterion
with a correction for finite sample sizes (AICc) [4] to score each of the piecewise linear
calibration models associated with various values of the A. Finally, for a new test instance,

9 Note that an element of v is zero if and only if there is no change in the slope between two successively
predicted points.
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Table 8 Median of the difference between the performance of ELiTE and ENIR on the 40 baseline datasets

LR SVM NB

AUC 0.003 (0.001) 0.002 (0.009) 0.002 (0.001)
ACC 0.001 (0.032) 0.001 (0.348) 0.001 (0.806)
RMSE —0.001 (0.018) —0.001 (0.105) —0.001 (0.0619)
ECE —0.001 (0.055) —0.001 (0.077) —0.001 (0.295)
MCE —0.009 (0.001) —0.005 (0.001) —0.006 (0.001)
Run time 226/1808 225/2082 235/2056

Bold face indicates the differences that are statistically significant, based on using a Wilcoxon signed ranked
test at a 0.05 significance level. The numbers inside parentheses indicate the corresponding p value of the
test. The bottom row of the table shows the overall running time (RT) of ENIR versus ELiTE in minutes over
the 10-fold cross validation experiments of the real datasets, using a single core of a MacBook Pro with a 2.5
GHz Intel Core 17 CPU and a 16 GB RAM memory

ELiTE uses the AICc scores to run a selective Bayesian averaging and estimate the final
calibrated estimate [25].

Similar to ENIR, ELiTE is shown to perform superior to the commonly used binary classi-
fier calibration methods including Platt’s method, isotonic regression, and BBQ [25]. In this
section, we are interested to compare the performance of these two new calibration methods
in terms of the discrimination and calibration capability. Table 8 shows the results of a com-
parison between the performance of ENIR and ELiTE over the 40 real datasets used in our
previous experiments. A Wilcoxon signed rank test is used to statistically measure the signif-
icance of performance difference between ELiTE and ENIR. Median difference performance
of ELiTE and ENIR over the baseline datasets is reported along with the corresponding p
value of the test which is indicated in parentheses. The results show that there are some cases
that ELIiTE is statistically superior to ENIR. However, in terms of running time, ELiTE runs
more than eight times slower, on a MacBook Pro with a 2.5 GHz Intel Core i7 CPU and a 16
GB RAM memory, in comparison to the ENIR even though its running time complexity is
O(N log N) [25,30]. Also, note that the median of the difference between the performance
of ELiTE and ENIR is always very small (i.e., less than 0.01 in all cases).

6 Conclusion

In this paper, we presented a new nonparametric binary classifier calibration method called
ensemble of near-isotonic regression (ENIR) to build accurate probabilistic prediction mod-
els. The method generalizes the isotonic regression-based calibration method (IsoRegC) [40]
in two ways. First, ENIR makes a more realistic assumption compared to IsoRegC by assum-
ing that the transformation from the uncalibrated output of a classifier to calibrated probability
estimates is approximately (but not necessarily exactly) a monotonic function. Second, ENIR
is an ensemble model that utilizes the BIC scoring function to perform selective model aver-
aging over a set of near isotonic regression models that indeed includes IsoRegC as an extreme
member. The method is computationally tractable, as it runs in O (N log N) for N training
instances. It can be used to calibrate many different types of binary classifiers, including
logistic regression, support vector machines, naive Bayes, and others. Our experiments show
that by post-processing the output of classifiers using ENIR, we can gain high calibration
improvement in terms of RMSE, ECE, and MCE, without losing any statistically meaning-
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ful discrimination performance. Moreover, our experimental evaluation on a broad range of
real datasets showed that ENIR outperforms IsoRegC and BBQ (i.e. a state-of-the-art binary
classifier calibration method [28]).

We also evaluated the performance of ENIR in comparison with a newly introduced binary
classifier calibration method called ELiTE.'? Our experiments show that even though ENIR
is slightly inferior to ELiTE in terms of AUC and MCE measures, it runs overall (training
+ testing time) at least eight times faster than ELiTE over all of our experimental datasets.
Note that, it is possible to combine the near-isotonicity constraints and the piecewise linear
constraints of calibration mapping to build a calibration mapping that is both near-isotonic
and piecewise linear. This can be easily done by simply adding the near-isotonic constraint
to the ADMM constraint optimization program of ELiTE [25,30]. We leave this extension
as future work.

An important advantage of ENIR over Bayesian binning models (e.g., BBQ, and ABB)
is that they can be extended to a multi-class and multi-label calibration models similar to
what has done for the standard IsoRegC method [40]. This is an area of our current research.
We also plan to investigate theoretical properties of ENIR. In particular, we are interested to
investigate theoretical guarantees regarding the discrimination and calibration performance
of these calibration methods, similar to what has been proved for the AUC guarantees of
IsoRegC [10].
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