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ABSTRACT

Objectives To assess the performance of a Bayesian case detector (BCD) for influenza surveillance and clinical diagnosis.

Methods BCD uses a Bayesian network classifier to compute the posterior probability of a patient having influenza based on 31 findings from

narrative clinical notes. To assess the potential for disease surveillance, we calculated area under the receiver operating characteristic curve

(AUC) to indicate BCD’s ability to differentiate between influenza and non-influenza encounters in emergency department settings. To assess

the potential for clinical diagnosis, we measured AUC for diagnosing influenza cases among encounters having influenza-like illnesses. We also

evaluated the performance of BCD using dynamically estimated influenza prevalence, and measured sensitivity, specificity and positive

predictive value.

Results For influenza surveillance, BCD differentiated between influenza and non-influenza encounters well with an AUC of 0.90 and 0.97

with dynamic influenza prevalence (P < 0.0001). For clinical diagnosis, the addition of dynamic influenza prevalence to BCD significantly

improved AUC from 0.63 to 0.85 to distinguish influenza from other causes of influenza-like illness.

Conclusions and policy implications BCD can serve as an influenza surveillance and a differential diagnosis tool via our dynamic prevalence

approach. It enhances the communication between public health and clinical practice.
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Introduction

Automated case detection applies criteria defined in a case
definition or a disease model to identify the existence of a sin-
gle individual with a disease, which finds its principle applica-
tions in disease surveillance and clinical decision support. In
disease surveillance, the application detects an individual with
a disease. In clinical decision support, it may aid diagnosis.
Availability of data is a prerequisite for automated case

detection in both disease surveillance and clinical decision
support; therefore, the range of applications of automated
case detection is shaped by data availability. Research on auto-
mated case detection occurs in three main data-based areas.
The first area exploits chief complaints, i.e. brief text-

ual descriptions characterizing the reason why a person
has sought medical attention, recorded by clinicians or

registration personnel.1–4 Sensitivity and specificity of case
detection based on chief complaints are poor, except when
the nosological definitions are broad enough to match the
precision with which patients tend to describe their reason
for encounter, e.g. ‘respiratory illness’. When analyzed tem-
porally and spatially, the counts of cases in these broad cat-
egories are helpful in tracking the relative level of disease
activities during epidemics and may provide early detection
of selected types of outbreaks, such as an outbreak of
cryptosporidiosis.5
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The second area exploits data from electronic laboratory
systems.6–12 For example, Public Health England’s (PHE’s)
Data Mart system monitors the weekly count of isolates of
respiratory pathogens from hospitals or specialist laborator-
ies when additional typing is required.13 There are two issues
with laboratory tests that can impact surveillance accuracy.
First, laboratory tests may have different sensitivities and
specificities.14 Those tests with low sensitivity and high spe-
cificity could lead to an underestimation of disease burden.
Second issue is the sampling incompleteness. Due to limited
resources, definitive laboratory testing is not always per-
formed for individual encounters.
The first two areas are the basis for many deployed public

health disease surveillance systems; but typically fall into two
extreme ends of the accuracy spectrum for case detection.
Systems using chief complaints usually have large population
coverage, but can only identify broad categories (e.g. noso-
logical symptoms) with poor diagnostic precision.15 Conversely,
electronic laboratory systems are able to detect specific diseases
(e.g. salmonella) with greater diagnostic precision, but the detec-
tion is restricted to the tested population. BioSense16 developed
by the Centers for Disease Control and Prevention and the
Electronic Clinical Laboratory Reporting System (ECLRS)
developed by the New York State Department of Health,9 are
examples of the two ends, respectively.
The third area, which is the focus of this paper, exploits

unstructured data in clinical notes, which are free-text notes
authored by treating clinicians in order to document patient
encounters. A key advantage of the clinical notes is that it is
rich in diagnostic information. Its main limitation is that
~80% of clinical information is locked within the free-text,
which must be analyzed by natural language processing
(NLP).17 An NLP parser can extract whether a patient had
or did not have a set of targetted clinical findings based on
what a clinician has written in a clinical note.
In contrast to automated case detection, there are several

manual case reporting systems. PHE uses sentinel physician
reporting of influenza-like illness (ILI) cases to monitor influ-
enza activity.13 The World Health Organization’s Global
Influenza Program uses case reporting to monitor virological
and epidemiological influenza trends around the world.18

Greaves19 summarized that an ideal surveillance system for
management of emerging infection would be accurate, timely,
electronic, use agreed on case definition(s), run continuously
for long periods, be able to detect local outbreaks or clusters
of cases, and easily used to follow up on cases and contacts.
Previous research on automated case detection of influ-

enza from clinical notes date back to studies by Elkin et al.20

and Tsui et al.21–24 Elkin applied logistic regression modeling
for influenza detection from emergency department (ED)

encounter notes processed by the Multithreaded Clinical
Vocabulary Server system. Tsui developed an automated
Bayesian case detector (BCD) that leverages free-text ED
notes to provide an estimated probability that a patient has
influenza given a set of NLP-extracted clinical findings.
BCD uses a Bayesian network (BN) model to represent a
diagnostic medical knowledgebase. An inference engine in
BCD assigns finding values extracted from an NLP parser
to a BN model and applies Eq. (1) to compute the posterior
probability of a disease given the disease’s prior probability.

P Djf1; f2;…; fnð Þ ¼
P f1; f2;…; fnjDð ÞP Dð Þ

P f1; f2;…; fnjDð ÞP Dð Þ þ P f1; f2;…; fnjD
� �

PðDÞ
(1)

where, the set ff1; f2;…; fng represents symptoms and signs
extracted from notes of each ED encounter, P(D) is a disease
prior probability (or prevalence), and ðP Dð Þ þ PðDÞ ¼ 1).
We previously built two Bayesian classifiers for influenza

case detection.23 A BN-expert classifier, defined by two
board-certified physicians, comprised 31 clinical findings.
This classifier had a near-Naive BN structure, assuming
conditional independence among findings given the disease,
except for the lab-confirmed influenza finding, which
depended on both disease and a nasal swab test order find-
ing. The conditional probability tables (CPTs) were elicited
to represent physicians’ subjective probabilities that express
the strength of dependence between findings and disease.
The second classifier, a BN-EM classifier, had the same

finding set and structure as the BN-expert classifier. To
incorporate both the experts’ subjective assessments and col-
lected data, we estimated the CPT of BN-EM classifier by
updating the CPT of the BN-expert classifier through the
Expectation-Maximization maximum a posteriori algorithm
applied to a large training dataset (468 influenza and 29 004
non-influenza encounters). Both two classifiers used a con-
stant influenza prior (P(D) = 0.1).
An initial study of BCD was conducted for influenza

detection using Topaz22,25,26, an NLP tool developed at the
University of Pittsburgh, and a high differentiation between
influenza cases and non-influenza controls drawn from a
low-influenza summer period was found (area under the
ROC curve (AUC) for BN-expert classifier: 0.96; AUC for
BN-EM classifier: 0.97).22 This study did not provide a
good indication of the performance of BCD for influenza
detection that we would expect in an operational ED setting,
since it did not sample non-influenza controls over the
course of the entire year in the test dataset. Moreover, it did
not evaluate whether BCD’s differentiation ability varies
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among different influenza priors, age groups and among
patients with ILI (e.g. patients having fever and a symptom
of cough or sore throat).27

The current study serves as an extension to our previous
study by expanding the analyses of BCD performance in
more realistic ED settings for public health surveillance
among different age groups, and clinical differential diagno-
sis between influenza and non-influenza ILI encounters. We
further compared case detection using ED notes with case
detection using chief complaints, and explored the use of
dynamic influenza priors (influenza priors changed over
time). We believe BCD is the first decision support system
that has the potential to support both public health surveil-
lance and clinical differential diagnosis. One use case for
BCD’s public health surveillance application would be to
provide influenza surveillance through reporting individual
posterior influenza probabilities, P(influenza|data of patienti)
and likelihoods, P(data of patienti|influenza), to a regional
disease surveillance agency or an outbreak detection system.
One use case for BCD’s clinical diagnosis application would
be to function like a rapid influenza test to support the deci-
sion of test-versus-treat recommendations for individual
patients.

Methods

We obtained ED encounter records from four hospitals at
the University of Pittsburgh Medical Center (UPMC) from
2008 to 2011. All the data were received through real-time
Health Level 7 (HL-7)28 communication.

Training dataset

The training dataset for the BN-EM classifier contained 468
PCR-confirmed cases of influenza (PCR+), which were
recorded between January 2008 and August 2010. The train-
ing dataset also contained 29 004 non-influenza controls,
which were recorded between July 2010 and August 2010,
excluding PCR-test positives. A training case consisted of
Topaz-extracted influenza findings from an ED note and
the binary diagnosis of PCR+ or not PCR+ .

Test dataset

We created a test dataset comprised of 176 PCR+ influenza
cases and 1 620 non-influenza controls between September
2010 and December 2011. To better reflect the general ED
population, controls were uniformly, randomly sampled
from all ED encounters with no positive PCR results, and
the sampling period included influenza seasons.

Study design

In this study, we evaluated the BCD with two core
components—Topaz and BN-EM classifier—for both dis-
ease surveillance and clinical decision support. Appendix A
describes details of the classifier model.
We measured BCD’s ability to detect PCR+ influenza

cases in the general ED population, as well as its detection
ability in each of the three age groups: children (ages 0–17),
younger adults (ages 18–64) and older adults (65 years and
older). To benchmark BCD’s performance against a pre-
dominant approach to automated case detection in public
health surveillance, we compared detection abilities and time
latencies of using ED notes (from clinicians captured in a
dictation system) with using chief complaints (from triage
nurses captured in a registration system). The time latency
was indicated by the time delay between the two data types
(ED notes and chief complaints); the time delay was defined
as the time difference between the receipt time of the chief
complaint of an ED encounter (t0) and the receipt time of
the earliest ED note associated with the encounter (t1), i.e.
time delay (Δt) = t1 − t0.
To assess BCD performance on a clinically relevant differ-

entiation task for clinical decision support, we evaluated
BCD’s differentiation abilities to identify influenza cases
among patients with ILI symptoms. We used clinical find-
ings extracted by Topaz to determine whether a patient has
ILI or not. Our previous study showed that Topaz extracts
fever (accuracy 0.91) and cough (1.0) with high accuracy, but
exhibits poor accuracy for sore throat (0.52).23 Among the
176 PCR+ influenza cases between September 2010 and
December 2011, there were 110 cases having ILI. Using
these influenza cases and randomly selected non-influenza
controls, we formed four test datasets with different influ-
enza prevalence in ILI population: 10% (dataset A: 110
influenza cases with ILI and 990 non-influenza ILI con-
trols), 20% (dataset B: 110 cases and 440 controls), 30%
(dataset C: 110 cases and 256 controls) and 50% (dataset D:
110 cases and 110 controls).
Previous BCDs used a fixed influenza prior of 0.1 in BNs

(i.e. P(D) = 0.1 and P D
� � ¼ 0:9 in Eq. (1)). To reflect the

changes of influenza prevalence over the course of a year
(i.e. P(D) and P D

� �
changed over time), we developed a

simple dynamic (influenza) prior, Pd(influenza), and mea-
sured its differentiation abilities. We estimated the influenza
prevalence on the encounter registration date by using the
proportion of PCR-confirmed influenza cases among all ED
encounters in the previous week (last 7 days), as shown by
Eq. (2). If there were no confirmed influenza cases in the
previous week, Pd(influenza) would be set to 0.
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Pd influenzað Þ ¼
number of PCR-confirmed influenza cases in the previous week

number of all ED encounters in the previous week

(2)

It is common for clinicians to record a positive influenza
test result in an ED note. To compare BCD’s differentiation
ability with laboratory tests’ diagnostic ability, we removed
encounters of which ED notes mentioned a lab order or a
confirmed lab result. We then calculated five sets of sensitiv-
ity, specificity and positive predictive values (PPV) by chan-
ging the probability threshold for classifying an ED
encounter with ILI symptoms into an influenza or a non-
influenza encounter.
We employed two standard metrics for estimating BCD’s

differentiation ability: the AUC and the Brier Skill Score
(BSS).29 AUC measures differentiation ability of a test for
correct classification of a disease (0.5 corresponding to a ran-
dom guess and 1 corresponding to a perfect differentiation).
BSS measures the difference between the score for the
(BCD) forecast and the score for the unskilled standard fore-
cast, e.g. persistently guessing a patient has or does not have
a disease, normalized by the disease prior of the dataset. BSS
ranges from negative infinity to 1. A BSS of 1 represents a
perfect forecast whereas a BSS of 0 or less represents an
unskilled forecast.

Results

This section presents the evaluation results of BCD applied
to influenza surveillance and clinical decision support.

Potential of BCD for disease surveillance

We evaluated BCD performance in influenza surveillance
for all ages and for individual age groups (Table 1).

BCD’s differentiation ability

Using 176 PCR-confirmed influenza cases and 1 620 ran-
domly selected non-influenza controls as the test dataset, the
AUC of BCD with BN-expert classifier and BN-EM classi-
fier were 0.82 (95% CI: 0.79–0.86) and 0.90 (95% CI:
0.87–0.93), respectively. These results indicate the ability of
BCD to detect influenza in general ED patients.
With dynamic priors, AUCs of the BN-expert and BN-

EM classifiers statistically significantly (P < 0.0001)
increased to 0.95 and 0.97, respectively. Figure S1 (available
online) shows the ROCs. Figure S2 (available online) shows
the adjusted ROCs by removing those weeks without

laboratory confirmed influenza cases, i.e. Pd(influenza) = 0,
demonstrating that the BCD using BN-EM classifier with
the input of ED notes and dynamic priors remained the
best performance in influenza season (AUC: 0.93, 95% CI:
0.90–0.95), compared with BCDs with other configurations.

BCD performance for three age groups

Table 1 summarizes the two Bayesian classifiers’ perform-
ance in overall population and individual age-group popula-
tions. Both of the two classifiers had significantly lower
performance in the older adults group compared with the
performance in the other groups.
Table S1 and Figures S3–S5 (available online) show the fre-

quency of influenza-related findings (extracted from ED notes
by Topaz) in different age groups in the test datasets.
Compared with adults (Figures S4 and S5), infant and children
were more likely to have signs and symptoms, such as fever,
chill, ILI and anorexia, and have nasal swab tests (Figure S3).
Compared with younger adults (Figure S4), older adults (65+)
were less symptomatic: they were less likely to have fever,
cough, headache and sore throat (Figure S5). Moreover, this
group had an almost equal likelihood of not having fever,
headache, fatigue, sore throat and wheezing in both influenza
cases and non-influenza controls. Therefore, it would be very
difficult to use the absence of clinical findings to rule out
influenza. This helps explain why the BCD did not have a
sound performance for these older patients (AUC = 0.63).

BCD performance when using chief complaints from

triage nurses

With the 1 796 encounters as a test dataset, we found that
classifiers using chief complaints from triage nurses had poor
differentiation ability (AUC = 0.62, 95% CI: 0.58–0.66),
which was significantly lower than classifiers using ED notes
(AUC = 0.90) (P < 0.0001). Among these 1 796 encounters,
1340 encounters (101 PCR+ influenza cases and 1 239 non-
influenza controls) did not have any influenza-related find-
ings extracted from their chief complaints.
Figures S1 and S2 show the ROCs of BN-EM and BN-

expert classifiers using chief complaints. With a dynamic
prior, the differentiation ability of BCD increased from 0.62
to 0.95 (95% CI: 0.93–0.96) (Figure S1). After we removed
those weeks without laboratory confirmed influenza cases,
the differentiation ability of the BCD with the input of chief
complaints and dynamic priors dropped from 0.95 to 0.83
(95% CI: 0.79–0.86) (Figure S2), which was still significantly
higher than the performance of BCD relying on a constant
prior and chief complaints (AUC = 0.62).
Based on the data received from UPMC through real-time

HL-7 communication, the median time for receipt of a chief
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complaint was 36 seconds while the median time for receipt
of an initial ED note was 6.44 h. The median time delay
between the receipt of a chief complaint and receipt of an
earliest ED note was 6.41 h. There was no statistically signifi-
cant difference between time delays for influenza encounters
(median of time delays: 6.01 h) and non-influenza encounters
(median of time delays: 6.46 h). The median length of ED
stays was 2.85 h in the test dataset. An ED note was nor-
mally available after the patient had been discharged.

Potential of BCD for clinical decision support

We evaluated BCD performance using the BN-EM classifier
for clinical decision support using a constant influenza prior
and dynamic influenza priors. Table 2 lists the AUCs of BCD’s
ability to distinguish influenza from other causes of ILI.
When we used a constant influenza prior that assumed

influenza prevalence to be 0.1 for the entire test period,
BCD had poor differentiation ability to detect influenza
among ILI encounters (AUC ranged from 0.56 to 0.60).
With dynamic priors, BCD’s differentiation ability was

greatly increased (AUC ranged from 0.86 to 0.88) (Table 2
and Figure S6). For BCD using dynamic priors, we further
calculated five sets of sensitivity, specificity and PPV for
each of the four datasets (Table 2) after removing encoun-
ters of which ED notes mentioned lab order or confirmed
lab results. Sensitivities and specificities varied slightly in the
test datasets with different prevalence, but PPV increased as
the influenza prevalence increased. When more than 30%
ILI visits were influenza cases, PPV reached above 0.6.

Discussion

Main finding of this study

Leveraging routinely collected electronic health records
(EHRs), BCD demonstrated potential for enhancing the
communication between public health and clinical practice.
For public health surveillance, BCD automatically captured
influenza cases from general ED encounters to facilitate
potential outbreak detection. The dynamic prior approach

can significantly improve conventional chief-complaint based
influenza surveillance.
For clinical decision support, BCD further enhanced dis-

ease differential diagnosis using dynamic priors (population
disease preference). It has potential to serve as a rapid test
like a decision support tool for test-versus-treat recommen-
dations for individual patients.
For influenza surveillance, BCD performed better using

narrative ED notes than using chief complaints.

What is already known on this topic

Current public health surveillance systems rely on manual or
automated case detection. Sentinel physician reporting of
ILI is one example of manual surveillance. There are three
areas of automated case detection: syndromic surveillance,
electronic lab reporting and state-of-the-art free-text based
disease surveillance.

What this study adds

This study introduced and evaluated BCD for influenza sur-
veillance and clinical decision support. BCD has potential to
improve disease surveillance. Compared with sentinel phys-
ician reporting, BCD significantly reduces the manual report-
ing burden and improves timeliness from weekly to (near)
real-time. Compared with syndromic surveillance using ED
chief complaints, BCD captures cases with a higher accuracy
by using NLP to extract more clinical findings from ED notes.
BCD reached a good differentiation ability (AUC between 0.9
and 0.95) to identify influenza from general ED encounters.
With the randomly selected controls across 18 months, we
expect to see similar performance in an operational ED set-
ting. Compared with electronic laboratory reporting that has a
small selective population, BCD has a much larger population
coverage (all hospital or ED encounters), and the coverage are
unlikely to be impacted by laboratory testing policies that may
change over the course of a year.
BCD is an automated case detection system. It employs a

probabilistic case definition (a BN) to represent patterns of

Table 1 Performance of BCD using two classifiers and two types of priors for disease surveillance in all and difference age groups.

Classifier Overall AUC (95% CI),

BSS [P(influenza) = 0.1]

Overall AUC (95% CI), BSS

[dynamic influenza prior]

Age-based AUC (95% CI), BSS [P(influenza) = 0.1]

Infants and children

[0–17 years old] n = 87

encounters

Adults [18–64 years old]

n = 1376 encounters

Older adults [65 years and

older] n = 333 encounters

BN-expert 0.82 (0.79–0.86), −0.422 0.95 (0.94–0.97), −0.422 0.87 (0.78–0.96), −2.660 0.86 (0.82–0.89), −0.276 0.59 (0.46–0.72), −0.664
BN-EM 0.90 (0.87–0.93), −0.043 0.97 (0.96–0.98), −0.043 0.94 (0.88–0.99), −1.495 0.94 (0.92–0.96), 0.087 0.63 (0.49–0.78), −0.415
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a disease’s symptoms and/or signs, which could be quickly
captured by either using machine learning algorithms or
experts’ clinical knowledge. BCD can further update a prob-
abilistic case definition when more cases become available
and when disease prevalence changes over time. Moreover,
BCD can serve as an automated, bi-directional communi-
cation channel between public health agencies (or regional
outbreak detection systems) and clinical practices, i.e. auto-
mated case reporting to public health agencies and auto-
mated delivery of disease prevalence to clinical practices.
Similar to the conventional case definition, BCD’s probabil-
istic case definition is portable across regions without the
concern of patients’ privacy. Additionally, the probabilistic
case definition takes disease prevalence into account, which
may vary across different regions.
Elkin et al.20 compared prediction performance between

narrative ED notes and chief complaints (available from a
section in ED notes as a surrogate of triage chief com-
plaints) and found an AUC increase from 0.65 to 0.76. We
did a similar comparison and found that the AUC signifi-
cantly increased from 0.62 to 0.95, and we used chief com-
plaints directly from triage nurses (instead of ED notes),
which are commonly collected by current syndromic surveil-
lance systems. Moreover, we measured the timeliness of ED
notes (6.44 h from an ED registration). The results indicated
that ED notes could be more timely for outbreak detection,
compared with lab confirmed reports in daily and weekly
ILI sentinel clinician reporting.
We demonstrated the performance of influenza case

detection increased after the use of dynamic priors, taking
seasonal changes into account. The daily prior was estimated
with the influenza prevalence in the previous week among
ED encounters. These priors can be readily calculated from

routinely collected EHRs and electronic laboratory reporting
required by EHR Meaningful Use, which is part of the
Affordable Care Act.30

With dynamic priors, the AUC of BCD using chief com-
plaints was significantly increased from 0.62 to 0.83.
Nationwide chief-complaint based influenza surveillance sys-
tems may benefit from our dynamic prior approach. Case
detection performance could be largely boosted by incorpor-
ating region-specific daily influenza prevalence, which may
be estimated based on the proportion of laboratory-
confirmed encounters in healthcare facilities that cover the
vast majority of the population residing in the region.
BCD has potential to function as a rapid test when inte-

grated with a clinical notes system. The sensitivity and speci-
ficity pairs (sensitivities: 60–90% and specificities: 75–87%)
using dynamic influenza priors indicate that BCD has com-
parable differentiation ability to a rapid test. Furthermore,
this study found that when influenza prevalence among ILI
encounters increased, the PPV increased, which indicates
that BCD can be used for clinical diagnosis during influenza
season to reduce false positives. Lee et al.31 showed that
point-of-care tests (costing U.S. $22) with sensitivity of 0.25
and specificity of 0.75 were economically dominant (cost less
and were more effective than doing nothing) for patients
aged 65–85 years with ILI for seasonal influenza when
prevalence of influenza is 0.2 or 0.3 among ILI patients.
Since BCD already achieved a sensitivity of 0.32 or more and
a specificity of 0.95 when prevalence of influenza is 0.2 or
0.3 among ILI patients (in all age groups), BCD can poten-
tially be more economically dominant than doing nothing for
senior patients even if we assume BCD costs $22 per estima-
tion, which would be far less in practice. In the future, we
can maximize the usability of the tool by embedding BCD

Table 2 Performance of BCD using BN-EM classifier to detect influenza among ILI encounters

Test datasets (prevalence,

number of influenza cases,

number of non-influenza

ILI controls)

Constant priora Dynamic priorb

AUC (95% CI) AUC (95% CI) (Sensitivity, specificity, positive predictive value)c

A: 10%, 110, 990 0.58 (0.53–0.63) 0.86 (0.84–0.89) (0.30,0.95,0.37), (0.60,0.85,0.28), (0.70,0.81,0.27), (0.80,0.79,0.27), (0.90,0.76,0.27)

B: 20%, 110, 440 0.60 (0.55–0.65) 0.88 (0.85–0.91) (0.34,0.95,0.60), (0.60,0.87,0.51), (0.70,0.83,0.48), (0.80,0.82,0.50), (0.90,0.79,0.49)

C: 30%, 110, 256 0.56 (0.50–0.62) 0.88 (0.84–0.91) (0.32,0.95,0.71), (0.60,0.85,0.61), (0.70,0.83,0.61), (0.80,0.82,0.62), (0.90,0.78,0.60)

D: 50%, 110, 110 0.56 (0.48–0.63) 0.86 (0.80–0.91) (0.24,0.95,0.81), (0.60,0.85,0.77), (0.70,0.81,0.76), (0.80,0.79,0.77), (0.90,0.75,0.76)

aWhen using a constant prior in Bayesian network classifier, we assumed that influenza prevalence was 0.1 over the course of a year.
bWhen using a dynamic prior in Bayesian network classifier, we used the proportion of PCR-confirmed influenza cases among all ED encounters in previous

week as the estimation of daily influenza prevalence.
cTo compare performance of BCD with clinical diagnostic tests, we removed encounters of which ED notes mentioned lab order or confirmed lab results.

We then calculated five sets of sensitivity, specificity and positive predictive values.
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into a dictation or report writing system such as PowerNote
in Cerner® to provide real-time decision support for clinicians
regarding test-or-treat recommendations prior to discharge.

Limitations of this study

This study did not show a viable change to current public
health practices. We did not study the workflow for public
health users to use BCD. In the future, a comprehensive
evaluation should be conducted by first presenting BCD to
users (e.g. public health officials) and conduct surveys and
usability testing in laboratory setting. After integrating BCD
into the workflow of public health agencies, we may admin-
ister post-deployments interviews and surveys to assess real-
world usage of the system.
We did not systematically compute economic costs, which

requires additional simulations.31 Potential future work
includes employing the Monte Carlo decision analytic com-
puter simulation models31 to conduct a comprehensive eco-
nomic comparison with point of care tests in both seasonal
and pandemic influenza scenarios for different patient ages
and different risks of hospitalization and mortality.
Another future direction is to explore integrating BCD

with hospital EHR systems and public health surveillance
systems. Close integration with an EHR system will allow
BCD to collect additional data types such as radiology notes,
medications, and laboratory results. Doing so would enable
BCD to add additional (e.g. respiratory) diseases such as
Respiratory Syncytial Virus to a predictive model for better
differential diagnosis based on additional clinical findings.
Enhanced communication with a public health surveillance
system will likely increase BCD performance by using
updated population disease prevalence, in addition to BCD’s
routine disease reporting to the surveillance system.

Conclusion

BCD has potential to serve as a tool for both public health sur-
veillance and clinical differential diagnosis. It has several advan-
tages—diagnostic ability, timeliness, employing a BN model as
a case definition, (near) real-time processing of EHRs and
facilitating outbreak detection. With dynamic priors, BCD can
further improve its performance in case detection and differen-
tial diagnosis. BCD has potential to serve as a communication
channel between public health agencies and clinical practice.
We recommend the Meaningful Use32 to include ED notes to
improve case detection accuracy.

Acknowledgments

We would like to thank our honest broker, Hoah-Der Su.
We thank reviewers of the Journal of Public Health for their
insightful suggestions and comments.

Funding

This research was funded by Grant R01LM011370 from the
U.S. National Library of Medicine. The content is solely the
responsibility of the authors and does not necessarily
represent the official views of the U.S. National Library of
Medicine or the U.S. National Institute of Health.

Conflicts of interest

None.

Contributors

FT and YY drafted the article. FT, YY and VR analyzed
data. GFC and MMW provided insights and revised the
article.

Supplementary data

Supplementary data are available at the Journal of Public
Health online.

References

1 Ivanov O, Gesteland PH, Hogan W Detection of pediatric respira-
tory and gastrointestinal outbreaks from free-text chief complaints.
AMIA Annu Symp Proc. 2003: 318–322. Date accessed: 4/12/2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480317/.

2 Wagner MM, Espino J, Tsui F et al. Syndrome and outbreak detec-
tion using chief-complaint data—experience of the Real-Time
Outbreak and Disease Surveillance project. Morb Mortal Wkly Rep
2004:28–31.

3 Chapman WW, Dowling JN, Wagner MM. Classification of emer-
gency department chief complaints into 7 syndromes: a retrospect-
ive analysis of 527,228 patients. Ann Emerg Med 2005;46(5):445–55.

4 Tsui F-C, Espino JU, Dato VM et al. Technical description of
RODS: a real-time public health surveillance system. J Am Med
Inform Assoc 2003;10(5):399–408.

5 Berger M, Shiau R, Weintraub JM. Review of syndromic surveil-
lance: implications for waterborne disease detection. J Epidemiol
Community Health 2006;60(6):543–50.

6 Panackal AA, M’ikanatha NM, Tsui F-C et al. Automatic electronic
laboratory-based reporting of notifiable infectious diseases at a large
health system. Emerg Infect Dis 2002;8(7):685–91.

7 Overhage JM, Grannis S, McDonald CJ. A comparison of the com-
pleteness and timeliness of automated electronic laboratory report-
ing and spontaneous reporting of notifiable conditions. Am J Public
Health 2008;98(2):344–50.

8 Effler P, Ching-Lee M, Bogard A et al. Statewide system of elec-
tronic notifiable disease reporting from clinical laboratories: com-
paring automated reporting with conventional methods. J Am Med
Assoc 1999;282(19):1845–50.

AUTOMATED INFLUENZA CASE DETECTION FOR PUBLIC HEATLH SURVEILLANCE AND CLINICAL DIAGNOSIS 7

Downloaded from https://academic.oup.com/jpubhealth/advance-article-abstract/doi/10.1093/pubmed/fdx141/4559110
by Falk Library of Health Sciences user
on 08 December 2017

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480317/


9 Chang H-G, Noonan-Toly C, Chen J-H, Backenson B. Early detec-
tion of possible outbreaks from electronic laboratory reports. Online
J Public Health Inform 2014;6(1):e131.

10 Vogel J, Brown JS, Land T et al. MDPHnet: secure, distributed shar-
ing of electronic health record data for public health surveillance,
evaluation, and planning. Am J Public Health 2014;104(12):2265–70.

11 Klompas M, McVetta J, Lazarus R et al. Integrating clinical practice
and public health surveillance using electronic medical record sys-
tems. Am J Prev Med 2012;42(6):S154–62.

12 CDC. Electronic Laboratory Reporting. Date accessed: 6/5/2017. http://
www.cdc.gov/ehrmeaningfuluse/elr.html (5 June 2017, date last accessed).

13 Public Health England. Sources of UK Flu Data: Influenza Surveillance in
the UK (Part of: Seasonal Influenza: Guidance, Data and Analysis and
Children’s Health. First published: 1/7/2014). Date accessed: 4/30/
2017. https://www.gov.uk/guidance/sources-of-uk-flu-data-influenza-
surveillance-in-the-uk.

14 WHO Global Influenza Programme. A Manual for Estimating Disease
Burden Associated With Seasonal Influenza. Date accessed: 4/30/2017.
http://www.who.int/influenza/resources/publications/manual_burden_
of_disease/en/.

15 Wagner MM, Moore AW, Aryel RM. Handbook of Biosurveillance.
Academic Press, Burlington, MA, USA, 2011.

16 Bradley CA, Rolka H, Walker D et al. BioSense: implementation of
a national early event detection and situational awareness system.
MMWR Morb Mortal Wkly Rep 2005;54(Suppl):11–9.

17 Kho AN, Rasmussen LV, Connolly JJ et al. Practical challenges in
integrating genomic data into the electronic health record. Genet Med
2013;15(10):772–8.

18 WHO. Influenza Surveillance and Monitoring. Date accessed: 4/30/
2017. http://www.who.int/influenza/surveillance_monitoring/en/.

19 Greaves F. What are the most appropriate methods of surveillance
for monitoring an emerging respiratory infection such as SARS?
J Public Health (Bangkok) 2004;26(3):288–92.

20 Elkin PL, Froehling DA, Wahner-Roedler DL et al. Comparison of
natural language processing biosurveillance methods for identifying
influenza from encounter notes. Ann Intern Med 2012;156(1_Part_1):
11–8.

21 Tsui F, Espino J, Sriburadej T et al. Building an automated Bayesian
case detection system. Paper Presented at: Conference of the International
Society for Disease Surveillance. ISDS, Park city, Utah, 2010.

22 Tsui F, Wagner M, Cooper G et al. Probabilistic case detection for
disease surveillance using data in electronic medical records. Online J
Public Health Inform 2011;3(3):1–17.

23 Ye Y, Tsui F, Wagner M et al. Influenza detection from emergency
department reports using natural language processing and Bayesian
network classifiers. J Am Med Inform Assoc 2014;21(5):815–23.

24 Pineda AL, Ye Y, Visweswaran S et al. Comparison of machine
learning classifiers for influenza detection from emergency depart-
ment free-text reports. J Biomed Inform 2015;58:60–9.

25 Harkema H, Dowling JN, Thornblade T et al. ConText: an algo-
rithm for determining negation, experiencer, and temporal status
from clinical reports. J Biomed Inform 2009;42(5):839–51.

26 Chu D. Clinical feature extraction from emergency department
reports for biosurveillance. Master’s Thesis. Department of Biomedical
Informatics, University of Pittsburgh, Pittsburgh 2007.

27 CDC. Overview of Influenza Surveillance in the United States. 2016.
Date accessed: 6/5/2017. https://www.cdc.gov/flu/weekly/
overview.htm.

28 HL7. Health Level Seven International. Date accessed: 4/12/2017.
http://www.hl7.org/.

29 Wilks DS. Statistical Methods in the Atmospheric Sciences; Vol. 100.
Academic Press, Kidlington, OX, UK, 2011.

30 Hinrichs SH, Zarcone P. The Affordable Care Act, meaningful use,
and their impact on public health laboratories. Public Health Rep
2013;128(2_suppl):7–9.

31 Lee BY, McGlone SM, Bailey RR et al. To test or to treat? An ana-
lysis of influenza testing and antiviral treatment strategies using eco-
nomic computer modeling. PloS one 2010;5(6):e11284.

32 CDC. Meaningful Use. Date accessed: 6/5/2017. https://www.cdc.
gov/ehrmeaningfuluse/introduction.html.

Appendix A

Description of the Bayesian Classifier Model
Unlike conventional case definitions with sets of diagnos-

tic rules, our Bayesian model processed probable cases
based on underlying statistics. It comprised 31 NLP-
extracted findings from ED notes, including abdominal
pain, anorexia, arthralgias, cervical lymphadenopathy, chest
pain, chill, conjunctivitis, cough, cyanosis, diarrhea, dyspnea,
fatigue, fever, headache, hemoptysis, hoarseness, influenza-
like illness, lab confirmed influenza, nasal swab order, mal-
aise, myalgias, nausea, pain on eye movement, photophobia,
pneumonia, rhinorrhea, sore throat, suspected influenza, vir-
al infection, viral syndrome and wheezing.23 Each of these
findings contributed to the influenza probability with a dif-
ferent weight in the format of conditional probabilities. For
example, the probability of an influenza case having nasal
swab order, P(nasal swab order|influenza) = 0.94, P(nasal
swab order|non-influenza) = 0.54.
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