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Abstract

Almost all of the existing algorithms for learning a causal

Bayesian network structure (CBN) from observational data

recover a structure that models the causal relationships that

are shared by the instances in a population. Although learn-

ing such population-wide CBNs accurately is useful, it is

important to learn CBNs that are specific to each instance

in domains in which different instances may have varying

causal structures, such as in human biology. For example, a

breast cancer tumor in a patient (instance) is often a com-

posite of causal mechanisms, where each of these individ-

ual causal mechanisms may appear relatively frequently in

breast-cancer tumors of other patients, but the particular

combination of mechanisms is unique to the current tumor.

Therefore, it is critical to discover the specific set of causal

mechanisms that are operating in each patient to understand

and treat that particular patient effectively.

We previously introduced an instance-specific CBN

structure learning method that builds a causal model for

a given instance T from the features we know about T

and from a training set of data on many other instances

[12]. However, that method assumes that there are no la-

tent (hidden) confounders, that is, there are no latent vari-

ables that cause two or more of the measured variables. Un-

fortunately, this assumption rarely holds in practice. In

the current paper, we introduce a novel instance-specific

causal structure learning algorithm that uses partial ances-

tral graphs (PAGs) to model latent confounders. Simula-

tions support that the proposed instance-specific method

improves structure-discovery performance compared to an

existing PAG-learning method called GFCI, which is not

instance-specific. We also report results that provide sup-

port for instance-specific causal relationships existing in real-

world datasets.

1 Introduction

Causal Bayesian networks (CBNs) have been used ex-
tensively for discovering causal knowledge from obser-
vational data [16, 20]. During the past few decades,
several algorithms have been developed to infer CBN
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structures from observational data. Almost all of the ex-
isting CBN structure learning approaches are intended
to discover a CBN structure that represents the causal
relationships that are shared by the instances in a pop-
ulation; we call such a model a population-wide CBN
model. However, in many domains, like human biology,
different instances of the population may have varying
causal structures.

For example, consider a complex disease like can-
cer in which each individual tumor in a patient (in-
stance) is derived by many distinct underlying causal
mechanisms. Each of these causal mechanisms may
appear relatively frequently in other patients, but the
joint set of mechanisms in the current patient’s tumor
is unique to that patient. Understanding and identifying
the particular set of causal mechanisms that are driving
a cancerous tumor in the current patient will likely lead
to more effective therapies for the current patient. A
population-wide CBN would at best recover the more
common causal mechanisms operating in a population
of tumors, and consequently, would fail to capture the
particular causal mechanisms that are deriving a tumor
in each patient. Instead of learning a single CBN model
for all the instances in a population, our goal is to con-
struct a specialized CBN structure for a given instance
(e.g., a patient) by leveraging the features (i.e., the vari-
able values) of the given instance and a training set of
data on many other instances; we call such a model an
instance-specific CBN model.

We previously introduced a fully Bayesian instance-
specific structure learning method, called IGES [12],
that searches the space of CBNs to build a model that
is specific to an instance T by guiding the search from
the features we know about T and from a training set
of data on many other instances. The IGES method
assumes that there are no latent confounders (i.e., it
makes the causal sufficiency assumption). However,
relying on the causal sufficiency assumption could be
a major drawback since this assumption is unrealistic
in many practical applications. In the current paper,
we introduce a novel instance-specific causal structure
learning algorithm that uses partial ancestral graphs
(PAGs) to learn CBNs that can model for the possi-
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bility of latent confounders. We hypothesize that such
an instance-specific learning approach will model the
causal relationships for T better than does a population-
wide one. We evaluate this hypothesis using simulated
and real data. The remainder of this paper first provides
related work in Section 2 and the relevant background
in Section 3. Section 4 describes the proposed instance-
specific structure learning method for CBNs that con-
tain latent confounders. Section 5 gives a quantitative
assessment of the method using simulated and real data.
Finally, Section 6 concludes the paper.

2 Related Work

A Bayesian network (BN) provides a compact repre-
sentation to encode the conditional independence con-
straints that hold among a set of variables, which re-
sults in modular parameterization of complex high-
dimensional systems. An ordinary BN structure, how-
ever, is unnecessarily strict, meaning that each inde-
pendence constraint is included in the BN structure
only when it holds for all combinations of values of
the variables involved. A more expressive form of con-
ditional independence, called context-specific indepen-
dence (CSI), was introduced in [1] to allow local struc-
tures in the conditional probability distributions of the
variables. A CSI relationship indicates that an inde-
pendence constraint holds between a child variable and
some but not necessarily all combinations of values of
its parents (e.g., if X ⊥⊥ Y |Z holds only when Z = 1,
then this means that P (X|Y,Z = 1) = P (X|Z = 1) but
P (X|Y,Z = 0) 6= P (X|Z = 0)).

A number of algorithms have been investigated to
build more flexible BN structures that are able to rep-
resent CSI relationships either implicitly (i.e., by us-
ing different representations of the conditional probabil-
ity distributions) or explicitly (i.e., by altering the BN
structure representation to encode CSI structures). One
of the earliest methods was introduced by [7] that aug-
ments a BN structure with tree-structured conditional
probability tables (CPTs). Later, [4] developed a more
generalized version using decision-graph CPTs. These
types of structured CPTs are used to partition the out-
come space of the parents of a variable to characterize
the regularities that exist in its CPT, which correspond
to CSIs. Recently, [23] used Boolean functions to de-
fine the interactions among the parents of a variable
to learn the local structures. [8] developed a graph-
based method that represents CSI relationships using
similarity networks and Bayesian multinets. Also, the
method in [14] learns multiple BNs jointly from mul-
tiple datasets using integer linear programming. [17]
introduced a modified representation of BNs to model
the CSI structures in a single BN model. This represen-

tation adds labels to the edges of a BN to specify the
contexts in which local structures exist; such graphs are
called labeled directed acyclic graphs (LDAGs). [10]
developed a constraint-based and an exact score-based
CBN structure learning algorithm for LDAGs.

The methods in the previous paragraph try to cap-
ture all possible local structures in a single model by
modifying either the representation of the graph struc-
ture or the local probability distributions. One major
drawback of these approaches is the computational com-
plexity overhead that the new representations add to
the CBN structure learning task, which is already an
NP-hard problem [2]. Additionally, none of these meth-
ods learns a CBN model that is specialized for a given
test instance (e.g., a given patient), which is the main
goal of the current paper. [13] introduced a distance
matching regularizer to learn instance-specific regres-
sion models for each instance. However, this method
learns a predictive model (not a CBN model), and it
does not specifically capture the CSIs.

We previously introduced a score-based instance-
specific CBN structure learning method, called IGES
[12]. The IGES method searches directly for a CBN
model that is tailored for a given test instance, rather
than searching for all (or at least many) possible
instance-specific models and then choosing the one that
matches the current test instance, which is generally
much more complicated. Recently, [5] introduced a
tumor-specific causal inference algorithm using bipar-
tite CBNs in which causes are at one level and effects
are at another. This method also assumes that each
effect variable has one and only one cause. Although
these assumptions are reasonable for that application,
they restrict generality of this method. Both IGES and
tumor-specific causal inference methods assume no la-
tent confounders among the variables. In this paper,
we introduce a novel method that can discover causal
graphs that model latent confounders.

3 Background

Directed acyclic graphs (DAGs) and their Markov
equivalence class (i.e., DAGs that have the same d-
separation properties [22]) are the canonical graphi-
cal models that qualitatively represent the causal re-
lationships among a set of variables when assuming
that the true causal graph does not contain any latent
confounders. This assumption is unrealistic and rarely
holds in practice. Partial ancestral graphs (PAGs) [18]
are graphical models that represent a Markov equiv-
alence class of DAGs in the presence of latent vari-
ables. Conditional independence relationships in PAGs
are represented using an expanded set of edge marks.
Figure 1b shows an example of a PAG that models the
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relationships among observed variables in the ground-
truth DAG given in Figure 1a, where A to E are mea-
sured variables and HBC is a latent variable. In Fig-
ure 1b, the subgraph B ↔ C represents that B and C
are both caused by one or more latent variables (i.e.,
they are confounded by a latent variable). The sub-
graph C → D represents that C is a cause of D. The
subgraph A ◦→ B represents that either A causes B,
A and B are confounded by a latent variable, or both.
Another edge possibility, which does not appear in the
example, is X ◦–◦ Y , which is compatible with the true
causal model having X as cause of Y , Y as a cause of
X, a latent confounder of X and Y , or some acyclic
combination of these three alternatives.

(a) The data-generating CBN G1.

(b) The ground-truth PAG G2 that is

learnable in the large sample limit.

Figure 1: The PAG in (b) is learnable in the large
sample limit from observational data generated by the
causal model in (a), where HBC is a latent confounder
and the other variables are measured.

Major types of algorithms for learning a causal
structure from observational data include score-based,
constraint-based, and hybrid approaches. Score-based
methods involve two main components: a scoring func-
tion and a search algorithm. Given a dataset of samples,
and possibly prior knowledge or belief, a score is derived
for each candidate causal structure, which reflects the
goodness of fit of the causal structure given the dataset.
The score is then incorporated into a search algorithm,
which is often a greedy heuristic, to find the highest
scoring causal structure in the hypothesis space of the
possible structures. A constraint-based causal structure
learning algorithm searches for an equivalence class of
causal structures (CBNs), all of which entail a particu-
lar set of conditional independence constraints that are
judged to hold in a dataset of samples, based on the

results of statistical independence tests applied to the
dataset. Constraint-based algorithms typically select a
sufficient subset of constraints to test. Finally, several
hybrid algorithms have been developed to combine the
strengths of constraint-based and score-based methods
in several ways.

In this paper, we use a variant of a hybrid causal
structure learning algorithm called GFCI [15] that
learns PAGs from data. In the following sections, we
provide an overview of GFCI and the Bayesian inde-
pendence test that we use to score constraints when
applying GFCI.

3.1 Greedy Fast Causal Inference (GFCI).
GFCI [15] is hybrid search algorithm that combines a
score-based method, called greedy equivalence search
(GES) [3], and a constraint-based method, called fast
causal inference (FCI) [21]. It does so because GES is
fast and effective at finding the variables that are di-
rectly dependent (i.e., have some type of edge between
them) and FCI is effective at determining the specific
edge to form a PAG. In the following paragraphs, we
first briefly describe the GES and FCI methods, and
then, we explain how these methods are combined in
GFCI.

GES performs a two-stage search over the space
of equivalence class of CBNs without latent variables
(i.e., patterns). During the forward phase, it adds sin-
gle edges to the current graph to generate the neigh-
bor states. It then greedily changes the current graph
with the neighbor state that leads to the greatest im-
provement in the score; this phase stops when no fur-
ther improvement can be achieved. Similarly, during
the backward phase, it removes single edges from the
current graph to generate all possible neighbor states
and replaces the current graph with the highest scoring
neighbor state; it continues until no further improve-
ment can be achieved and returns the resultant graph.
The Bayesian information criterion (BIC) score [19] is
often used to learn a CBN structure when variables
follow a Gaussian distribution and the BDeu score [9]
is frequently used for multinomial variables, although
other scores are possible. For more information about
this method see [3].

FCI is a two-phase algorithm that searches over
PAGs. FCI starts off with a fully connected undirected
graph. For each pair of adjacent variables X — Y , if
it finds a subset Z that makes X and Y independent
conditioned on Z (i.e., X ⊥⊥ Y |Z), it deletes the edge
and stores Z. In the second phase, it applies a set of
orientation rules to orient the endpoints based on the re-
sults of the first phase. As is typical of constraint-based
causal discovery algorithms, FCI outputs a single graph
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structure (PAG) and does not provide any information
about the uncertainty of the edges in the structure.

During the first step, GFCI applies GES to obtain
a CBN structure; the GES search replaces the adja-
cency search of the FCI algorithm. The graph obtained
from GES may contain extra edges and incorrect orien-
tations if the model includes latent confounders. In the
second step, GFCI uses the FCI algorithm to prune the
extraneous edges and correct the orientations by per-
forming a sequence of conditional independence tests,
similar to the orientation phase of FCI. The GFCI al-
gorithm outputs the correct PAG with probability 1.0
in the large sample limit, under assumptions [15]. How-
ever, GFCI still suffers from the same problem as most
constraint-based approaches: It outputs a single PAG
structure, without providing any quantification regard-
ing how likely it is to be correct, relative to alternative
PAGs. In the following section, we explain how to ad-
dress this problem, using a Bayesian method for scoring
independence constraints, which we introduced in [11].

3.2 Bayesian Scoring of Constraints. We pre-
viously introduced a hybrid PAG learning approach,
called Bayesian scoring of constraints (BSC) [11]. BSC
uses a Bayesian method to perform an independence
test (described below) that can be incorporated into any
search that requires independence testing (e.g., FCI or
GFCI), rather than using a frequentist significance test-
ing. We can compute the posterior probability of a PAG
as the joint posterior probability of all the independence
constraints that characterize that PAG [11], which is the
major advantage of the BSC method.

Let D be a dataset that is generated from a ground-
truth CBN model, and let r = (X ⊥⊥ Y |Z) be an
arbitrary conditional independence constraint, where X
and Y are variables of dataset D, and Z is a subset of
variables of D that excludes X and Y . The goal is to
determine whether this independence constraint holds
given D, using a Bayesian scoring method. Let Dr be
parts of D that are about r (i.e., data that corresponds
to X, Y , and Z). The posterior probability of r using
Bayes’ rule is as follows:

(3.1) P (r|Dr) =
P (Dr|r) · P (r)

P (Dr|r) · P (r) + P (Dr|r̄) · P (r̄)
.

Assuming that data are discrete, as we do in this pa-
per, we can use the BDeu score [9] for deriving marginal
likelihoods, i.e. P (Dr|r) and P (Dr|r̄), in Equation
(3.1). To derive P (Dr|r) (i.e., X is independent of Y
given Z), we score the BN structure that is shown in
Figure 2a, in which Z is a set of parents for X and Y .
Similarly, to compute P (Dr|r̄) (i.e., X and Y are depen-

dent given Z), we score the BN structure that is shown
in Figure 2b1. We assume that the prior probability of
the constraint being true versus not true in Equation
(3.1) is equally likely, and thus, we drop the terms P (r)
and P (r̄) in that equation.

(a) The BN structure that

corresponds to independence
(i.e., r = (X ⊥⊥ Y |Z)).

(b) The BN structure that cor-

responds to dependence (i.e.,
r̄ = (X 6⊥⊥ Y |Z)).

Figure 2: Independence and dependence structures that
are used to score a constraint.

4 Instance-Specific GFCI (IS-GFCI)

In this section, we describe a novel instance-specific
PAG structure learning algorithm that applies the idea
of instance-specific modeling to GFCI. Instance-specific
GFCI (IS-GFCI) takes as input a set D of observational
training instances and a test instance T , and it returns
as output an instance-specific PAG PAGIS. This algo-
rithm operates in two steps. In the first step (line 1 in
Algorithm 1), it applies the population-wide GFCI algo-
rithm (see Section 3.1) using the training set D. GFCI
initially learns a population-wide CBN. More particu-
larly, it learns an equivalence class of CBNs, which is
a CBN in which for some edges the orientation may
not be known, in which case the edge is represented
as undirected (e.g., X — Y ); such a generalized CBN
is called a pattern. We denote this CBN as PATpop.
Then, it performs additional conditional independence
tests to obtain a population-wide PAG, which we denote
as PAGpop; we denote the set of constraints that corre-
spond to PAGpop by rpop, which can be obtained from
PAGpop. In the second step (line 2 in Algorithm 1),
it applies GFCI with an instance-specific scoring func-
tion, called IS-Score, that we introduced in [12] (see
below) and a novel instance-specific BSC test, called
IS-BSC (see below), to find an instance-specific PAG,
PAGIS given D, T , and the population-wide models
(i.e., PATpop and PAGpop); we use the name GFCI2
to denote this application of GFCI. Algorithm 1 shows
the high-level procedure of IS-GFCI algorithm.

1We also considered all possible graph structures that corre-
spond to dependence and independence when scoring a constraint

r = (X ⊥⊥ Y |Z). On a selection of test cases, we found that it did

not have a major effect on the results. Therefore, we used these
two structures since it is simpler and more efficient for modeling

a constraint.
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Algorithm 1 IS-GFCI (D, T )

Input: dataset D, test case T
Output: A population-wide PAG PAGpop and an

instance-specific PAG PAGIS.

1: PATpop, PAGpop ← GFCI(D)
2: PATIS, PAGIS ← GFCI2(D, T , PATpop,

PAGpop)
3: return PAGpop and PAGIS

IS-Score is a Bayesian scoring function that is
decomposable at the parent-child level (i.e., it computes
the score for each variable X given its parents denoted
by set Z). IS-Score has two components for variable X.
The first component scores the instance-specific parents
of X, denoted by ZIS. To do so, IS-Score uses the
cases in data D that match the current test case T .
These cases are selected based on the values of ZIS in
T ; let j be this set of values, and let DZIS=j be the
instances that match T . IS-Score uses DZIS=j to score
[ZIS = j] → X. The second component scores the
population-wide parents of X, denoted by Zpop. IS-
Score uses the remaining instances in D (i.e., DZIS 6=j)
to score the population-wide model Zpop → X. The
overall score for variable X is the product of these two
scores. See [12] for a detailed description of the IS-Score
procedure. This score is used in performing a GES-like
greedy search, called IGES, which is described in detail
in [12].

The IS-BSC procedure (defined below) scores an

instance-specific independence constraint r
(X,Y )
IS =

(X ⊥⊥ Y |Z = j). In such a constraint, the conditioning
set Z takes specific values j that correspond to the val-
ues of Z in the given test case T . The basic idea behind
IS-BSC is to find those cases in D in which Z = j and

use them to score the instance-specific constraint r
(X,Y )
IS .

In essence, those instances in D form a cluster that are
similar to instance T in the context of Z = j; we use
that cluster to determine whether the independence con-
straint holds between (X,Y ). Since those instances are
being used to score this instance-specific constraint be-
tween (X,Y ), in order to avoid duplicate scoring, they
can no longer be used to also score the population-wide
constraints in rpop that contain independence queries
about variables (X,Y ) regardless of their conditioning

sets; let r
(X,Y )
pop denote this subset of constraints. There-

fore, the scores for constraints r
(X,Y )
pop must be adjusted

accordingly.
More specifically, let DZ=j denote the instances in

D in which Z = j and DZ 6=j denote the remaining
instances in D (line 1 in Algorithm 2). We use DZ=j to

score an instance-specific independence constraint of the

form r
(X,Y )
IS (line 3 in Algorithm 2). Then, we use DZ 6=j

to re-score the population-wide constraints r
(X,Y )
pop that

are about (X,Y ) (line 4 in Algorithm 2). The overall
score for r(X,Y ) is given as the product of the instance-

specific score of r
(X,Y )
IS and the population-wide scores of

r
(X,Y )
pop (line 5 in Algorithm 2). The following equation

derives the posterior probability of r(X,Y ) using this
method:

P (r(X,Y )|D) =

P (r
(X,Y )
IS |DZ=j) · P (r(X,Y )

pop |DZ 6=j) ,
(4.2)

where the computation of the terms on the right hand
side can be done as described in Section 3.2. Algorithm
2 provides pseudo-code for IS-BSC method.

Algorithm 2 IS-BSC(D, T , r
(X,Y )
IS , rpop)

Input: training dataset D, test case T , an instance-

specific constraint of the form r
(X,Y )
IS = (X ⊥⊥

Y |Z = j), a constraint set rpop from a
population-wide PAG

Output: the posterior probability of independence
constraint r(X,Y )

1: Derive DZ=j and DZ 6=j from D and the values j
of Z in T

2: Derive the constraints r
(X,Y )
pop ∈ rpop that are

about (X,Y )

3: P (r
(X,Y )
IS |DZ=j) ← Score the constraint r

(X,Y )
IS

using DZ=j

4: P (r
(X,Y )
pop |DZ 6=j) ← Score the constraints r ∈

r
(X,Y )
pop using DZ 6=j

5: P (r(X,Y )|D)← P (r
(X,Y )
IS |DZ=j) · P (r

(X,Y )
pop |DZ 6=j)

6: return P (r(X,Y )|D)

5 Experiments

This section describes the experimental methods and
results that we used to investigate the performance
of the instance-specific GFCI (IS-GFCI) versus GFCI,
which is a state-of-the-art, non-instance-specific PAG-
learning algorithm. To do so, we used both simulated
and real data, which are described below in Sections 5.1
and 5.2, respectively.

5.1 Simulation Experiments. To investigate the
performance of IS-GFCI versus GFCI, we conducted
simulation studies to generate data as follows.

1. We created random BNs with V = {10, 20} dis-
crete variables where each variable has 2, 3, or 4 cate-
gories, which is chosen randomly. The number of edges
are E = {2V, 4V, 6V }. To generate a BN, we first cre-

437
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/1

2/
21

 to
 1

30
.4

9.
20

6.
62

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



ate an arbitrary ordering of variables; then we randomly
add edges to BN in a forward direction until obtaining
the specified number of edges. The BNs generated in
this way have a power-law-type distribution over the
number of parents, with some variables having many
more than the average number of parents.

2. The BN structures were then parametrized
to include context-specific independence (CSI) in the
conditional probability tables of the variables that have
more than one parent, where any such variable includes
at least one CSI.

3. We randomly set L = 20% of variables to be
latent (i.e., hidden). These variables were chosen at
random from a list of all variables that are common
causes of two or more of the measured variables.

4. We used each BN and its parameters, to generate
a training dataset D with N = {500, 1000, 5000} cases
and a test dataset with M = {100} cases; we refer
to each instance in the test dataset as a case T . For
E = {2V, 4V, 6V }, the average fraction of variables that
exhibit CSI in the M = 100 instances of each simulated
test set are 0.28, 0.38, and 0.40, respectively.

5. We used the training dataset D generated in
step (4) to learn a population-wide BN structure using
the GFCI algorithm (Section 3.1). GFCI uses a score-
based (i.e., GES) and a constraint-based (i.e., FCI) in
its two steps. For GES, we used the BDeu score [9] with
prior equivalence sample size (PESS) of 1.0 to learn a
population-wide pattern PATpop. For the independence
testing used in FCI, we applied BSC (Section 3.2)
with 0.5 decision threshold (i.e., if P (r|D) ≥ 0.5 for
a constraint r = (X ⊥⊥ Y |Z), then BSC returns true for
r, otherwise, it returns false). The final output of GFCI
is a PAG model; we refer to this model as PAGpop.

6. For each test instance T , we used T and
the training dataset D generated in step (4) to learn
an instance-specific BN structure using the IS-GFCI
algorithm described in Section 4. Similar to GFCI,
IS-GFCI uses a score-based (i.e., IGES [12]) and a
constraint-based (i.e., FCI with IS-BSC independence
test) method in its two steps. For IGES, we used
PATpop, which is learned in the population-wide search,
as the population-wide model; also, we set PESS = 1.0
and the structure prior κ = 0.5, where 0 < κ ≤
1 is a penalty factor that is used when computing
the prior probabilities of the instance-specific CBN
structure; it penalizes the structural difference between
the population-wide and instance-specific CBNs (see
[12] for more details). For the FCI part, we used IS-BSC
with the constraints that correspond to PAGpop, which
is learned in the population-wide search; we also set
the decision point to 0.5 when performing independence
tests. The final output of IS-GFCI is a PAG model for

each test instance T ; we refer to this model as PAGIS.
7. Finally, we computed evaluation measures (de-

scribed below) to compare the structure recovery perfor-
mance of GFCI versus IS-GFCI. To do so, we obtained
the ground-truth PAG structure (steps 1-3) of each test
instance T considering the existing CSIs in T ; we refer
to this graph as PAGtruth. We compared PAGpop and
PAGIS versus PAGtruth for each test case and reported
the average of measures over M = 100 test cases.

For each simulation setting mentioned above, steps
(1) through (7) were repeated for 10 randomly generated
BNs and the performance results were averaged. The
evaluation measures we used include precision (P) and
recall (R) for edge adjacency and arrowhead orientation,
which are calculated as follows:

Adjacency P =
#correctly predicted adjacencies

#predicted adjacencies

Adjacency R =
#correctly predicted adjacencies

#true adjacencies

Arrowhead P =
#correctly predicted arrowheads

#predicted arrowheads

Arrowhead R =
#correctly predicted arrowheads

#true arrowheads

For precision and recall evaluation measurements, we
derived three subtypes: (1) using the subset of vari-
ables that include CSIs (denoted by IS subscript), (2)
using the remaining variables that do not include CSI
(denoted by other subscript), and (3) using all variables
(without a subscript).

Tables 2a, 2b, and 2c show the adjacency and
arrowhead P/R results (for all the three subtypes) for
the simulated BNs with V = {10, 20} variables and E =
{2V, 4V, 6V } edges, when using N = 500, N = 1000 and
N = 5000 cases, respectively. For N = 500, IS-GFCI
and GFCI perform similar in terms of adjacency P, but
adjacency R is often higher when using GFCI. However,
IS-GFCI performs better in terms of arrowhead P/R
for N = 500 (Table 2a). As Table 2b indicates, when
using N = 1000 training cases, IS-GFCI almost always
performs better in terms of adjacency and arrowhead
P/R for IS subtype, and overall. In this case, GFCI
performs slightly better in terms of these measures for
other subtype. Also, IS-GFCI almost always performs
better in terms of adjacency recall and arrowhead recall
with N = 5000 training samples.

We also used structural Hamming distance (SHD)
to compare the structural differences between PAGpop

and PAGIS versus PAGtruth. The SHD of each PAG
from PAGtruth includes three types of edge modifica-
tions: added, deleted, and reversed edges, where sum
of all these edge modifications is overall SHD; we call
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this strict SHD (S-SHD). We also defined a lenient ver-
sion of SHD (L-SHD), which allows general edges that
include circle endpoints to be compatible with their spe-
cializations. For example, the L-SHD between A ◦→ B
and A → B is 0 because these edges are compatible.
However, the L-SHD between A→ B and B ◦→ A is 1.

Table 1 shows the SHD results for the simulated
BNs with V = {10, 20} variables and E = {2V, 4V, 6V }
edges, using N = {500, 1000, 5000} cases. GFCI usually
performs better when using N = 500 cases. Both
methods performed similarly in terms of SHD when
using N = 1000 training samples; however, IS-GFCI has
better SHD performance than GFCI when the sample
size increases to N = 5000. In this case, the SHD
difference gets larger as the graph has more variables
and edges (e.g., V = 20, E = 80, and N = 5000 and
V = 20, E = 120, and N = 5000).

Table 1: Average strict SHD (S-SHD) and lenient SHD
(L-SHD) results over BNs with V variables and E edges.
The best results in each cell are shown in bold (the lower
the better).

N = 500 N = 1000 N = 5000
V , E Method S-SHD L-SHD S-SHD L-SHD S-SHD L-SHD

10, 20
IS-GFCI 10.88 9.21 9.41 7.17 8.91 6.66

GFCI 10.56 8.29 9.01 6.33 9.29 6.94

10, 40
IS-GFCI 17.03 13.98 16.93 12.95 15.74 11.46

GFCI 16.25 13.41 16.34 13.45 17.48 12.61

10, 60
IS-GFCI 18.44 15.39 17.50 13.43 19.95 14.06

GFCI 17.23 15.19 17.18 13.81 20.52 14.96

20, 40
IS-GFCI 25.25 21.38 24.22 19.46 22.04 17.14

GFCI 24.37 19.52 25.16 19.41 24.07 18.72

20, 80
IS-GFCI 52.42 45.99 50.10 42.96 49.09 39.63

GFCI 53.13 46.11 51.55 44.12 51.79 45.04

20, 120
IS-GFCI 67.47 60.61 66.12 58.24 62.83 52.00

GFCI 67.08 60.07 66.02 59.11 63.31 56.54

5.2 Real Data Experiments. We also evaluated
the proposed IS-GFCI method on multiple real-world
datasets from the UCI repository [6]. The datasets
we used were the Breast Cancer, Primary Tumor,
Lymphography, SPECT Heart, and Audiology datasets.
Table 3 shows the number of cases (N) and variables (V )
in each of these datasets. We performed leave-one-out
cross-validation on each of the datasets. For a given
dataset D, we selected a single instance T and used it
as the test instance; we used all the remaining instances
as the training set Dtrain. Given each T , we learned
an instance-specific PAGIS model for T using IS-GFCI.
We repeated this procedure for every instance in D. We
also learned a population-wide PAGpop model for all the
instances in D using GFCI.

Since we do not know the true causal relationships
in these datasets, we compare the average of structural
differences between PAGIS and PAGpop, which are
shown in Table 3. The results indicate that as the
data includes more variables, the structural differences

increase between PAGpop and PAGIS. Since we do not
know the true causal structures for the real datasets,
we cannot determine whether IS-GFCI or GFCI is
performing better in learning the causal structures. The
results do show, however, that instance-specific causal
structure frequently exists when we learn PAGs from
real-world data. In future studies, we plan to evaluate
the extent to which instance-specific causal structures
are correct when learning from real data for which the
true causal structure is known. The simulation results
reported above provide preliminary support that those
studies will be positive.

6 Conclusions

The instance-specific IGES method that we introduced
in [12] builds a causal model for a given instance
assuming causal sufficiency, but this assumption rarely
holds in practice. In the current paper, we introduced
an instance-specific PAG-learning algorithm called IS-
GFCI that outputs a PAG that is specific to a given
instance T (e.g, a patient) by guiding causal model
search based on the attributes of T . The approach we
used to develop IS-GFCI is quite general and can be
readily applied to develop an instance-specific version
of other graphical causal discovery methods.

The empirical results we obtained on simulated data
for discovering the instance-specific PAG structure of
each test instance T indicate that when fewer samples
are available (i.e., N = 500), IS-GFCI performs similar
to GFCI in terms of adjacency P, but better than GFCI
in terms of arrowhead P/R. However, IS-GFCI performs
better in terms of adjacency and arrowhead P/R when
the sample size increases to N = 5000. In terms of
SHD, we found that GFCI performs better when using
N = 500 training cases, where the differences are due
to missing edges by IS-GFCI. We conjecture that the
missing edges are weak enough to make instance-specific
detection difficult without more samples. In that
regard, we found that both methods perform similarly
when using N = 1000 cases, whereas IS-GFCI performs
better when the sample size increases to N = 5000.

The IS-GFCI method can be extended in numerous
ways, including the following: (a) develop an instance-
specific score to learn BN structures that contain other
types of variables (e.g., continuous or a mixture of
continuous and discrete variables), (b) develop more
informative structure and parameter prior probabili-
ties, and (c) extend the experimental evaluations. In
summary, the current paper provides support that the
IS-GFCI approach is a promising approach for dis-
covering instance-specific PAG structures relative to a
population-wide method, and thus, further investigation
of the approach is warranted.
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Table 2: Average adjacency and arrowhead precision (P) and recall (R) results over BNs with V variables and
E edges. We derived three subtypes for P/R measurements using: (1) the subset of variables that include CSIs
(denoted by IS subscript), (2) the remaining variables that do not include CSI (denoted by other subscript), and
(3) all variables (without a subscript). The best results in each cell are shown in bold.

(a) Results when using N = 500 training cases.

Adjacency Arrowhead
V , E Method PIS Pother P RIS Rother R PIS Pother P RIS Rother R

10, 20
IS-GFCI 0.94 0.98 0.96 0.42 0.33 0.34 0.24 0.36 0.38 0.10 0.05 0.04

GFCI 0.87 1.00 0.94 0.52 0.43 0.43 0.02 0.25 0.20 0.01 0.05 0.04

10, 40
IS-GFCI 0.89 1.00 0.93 0.36 0.30 0.31 0.10 0.20 0.15 0.10 0.10 0.10

GFCI 0.89 1.00 0.93 0.40 0.31 0.34 0.01 0.02 0.02 0.04 0.01 0.01

10, 60
IS-GFCI 0.94 1.00 0.96 0.31 0.26 0.28 0.23 0.19 0.22 0.21 0.04 0.10

GFCI 0.92 1.00 0.95 0.37 0.27 0.30 0.03 0.11 0.05 0.09 0.02 0.04

20, 40
IS-GFCI 0.78 0.97 0.90 0.35 0.36 0.36 0.35 0.68 0.63 0.18 0.19 0.17

GFCI 0.79 1.00 0.90 0.45 0.40 0.42 0.24 0.86 0.58 0.24 0.18 0.16

20, 80
IS-GFCI 0.86 1.00 0.92 0.26 0.23 0.24 0.51 0.65 0.60 0.22 0.11 0.12

GFCI 0.86 1.00 0.92 0.28 0.20 0.23 0.35 0.68 0.48 0.16 0.06 0.07

20, 120
IS-GFCI 0.90 0.99 0.93 0.23 0.16 0.19 0.52 0.50 0.50 0.23 0.07 0.09

GFCI 0.91 1.00 0.94 0.24 0.16 0.20 0.43 0.45 0.41 0.16 0.05 0.07

(b) Results when using N = 1000 training cases.

Adjacency Arrowhead
V , E Method PIS Pother P RIS Rother R PIS Pother P RIS Rother R

10, 20
IS-GFCI 0.93 0.99 0.96 0.52 0.46 0.48 0.32 0.50 0.50 0.25 0.15 0.18

GFCI 0.89 1.00 0.95 0.63 0.54 0.57 0.31 0.39 0.36 0.25 0.09 0.14

10, 40
IS-GFCI 0.86 0.99 0.92 0.39 0.38 0.37 0.21 0.34 0.31 0.20 0.19 0.20

GFCI 0.90 1.00 0.94 0.40 0.30 0.33 0.10 0.17 0.14 0.11 0.06 0.07

10, 60
IS-GFCI 0.83 1.00 0.92 0.36 0.36 0.36 0.22 0.31 0.23 0.18 0.13 0.14

GFCI 0.80 1.00 0.90 0.36 0.32 0.34 0.19 0.24 0.20 0.21 0.09 0.12

20, 40
IS-GFCI 0.85 0.95 0.90 0.44 0.45 0.43 0.61 0.73 0.70 0.34 0.26 0.26

GFCI 0.77 1.00 0.88 0.48 0.46 0.45 0.28 0.68 0.48 0.31 0.21 0.21

20, 80
IS-GFCI 0.86 0.98 0.90 0.33 0.23 0.27 0.42 0.64 0.57 0.27 0.13 0.15

GFCI 0.81 0.97 0.87 0.34 0.19 0.25 0.51 0.68 0.63 0.24 0.08 0.10

20, 120
IS-GFCI 0.87 0.97 0.91 0.24 0.18 0.21 0.41 0.55 0.50 0.23 0.09 0.11

GFCI 0.87 0.99 0.91 0.22 0.14 0.18 0.33 0.47 0.41 0.15 0.05 0.06

(c) Results when using N = 5000 training cases.

Adjacency Arrowhead
V , E Method PIS Pother P RIS Rother R PIS Pother P RIS Rother R

10, 20
IS-GFCI 0.92 0.96 0.95 0.64 0.50 0.56 0.54 0.52 0.65 0.48 0.34 0.38

GFCI 0.81 1.00 0.90 0.66 0.54 0.58 0.30 0.60 0.45 0.35 0.25 0.26

10, 40
IS-GFCI 0.87 0.99 0.91 0.53 0.43 0.48 0.30 0.41 0.38 0.42 0.28 0.30

GFCI 0.74 1.00 0.83 0.45 0.39 0.42 0.22 0.28 0.26 0.42 0.23 0.26

10, 60
IS-GFCI 0.85 0.99 0.92 0.43 0.41 0.42 0.18 0.30 0.27 0.29 0.24 0.24

GFCI 0.84 1.00 0.92 0.39 0.34 0.36 0.12 0.23 0.17 0.24 0.14 0.14

20, 40
IS-GFCI 0.90 0.98 0.94 0.50 0.56 0.52 0.49 0.78 0.72 0.46 0.35 0.34

GFCI 0.73 0.98 0.86 0.52 0.51 0.50 0.27 0.85 0.63 0.51 0.29 0.29

20, 80
IS-GFCI 0.89 0.98 0.93 0.42 0.35 0.37 0.49 0.72 0.63 0.41 0.26 0.28

GFCI 0.83 1.00 0.90 0.29 0.23 0.25 0.42 0.80 0.64 0.27 0.11 0.13

20, 120
IS-GFCI 0.88 0.98 0.93 0.33 0.27 0.30 0.51 0.64 0.59 0.39 0.18 0.21

GFCI 0.82 1.00 0.89 0.27 0.17 0.21 0.44 0.77 0.62 0.25 0.08 0.10
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Table 3: Average strict SHD (S-SHD) and lenient SHD (L-SHD) distance between PAGpop and PAGIS using
leave-one-out cross-validation on UCI datasets. N and V denote the number of cases and variables, respectively.

UCI dataset N V Added Removed Reoriented S-SHD L-SHD
Breast Cancer 286 10 0.60 1.70 1.51 3.81 2.30
Primary Tumor 339 18 4.47 0.83 2.14 7.43 5.57
Lymphography 148 19 5.41 1.81 2.62 9.84 7.40
SPECT Heart 267 23 10.08 2.84 13.77 26.69 12.93
Audiology 200 70 32.47 2.67 10.03 45.16 35.63
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