
Application Notes

A simple electronic medical record system designed for

research

Andrew J. King ,1,2 Luca Calzoni ,1 Mohammadamin Tajgardoon ,3

Gregory F. Cooper ,1,3 Gilles Clermont ,2 Harry Hochheiser ,1,3 and

Shyam Visweswaran 1,3

1Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 2Department of Critical Care

Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA and 3Intelligent Systems Program, University of Pittsburgh,

Pittsburgh, Pennsylvania, USA

Corresponding Author: Andrew J. King, 5607 Baum Blvd, Suite, 523, Pittsburgh, PA, 15206 USA (andrew.king@pitt.edu).

Received 8 November 2020; Revised 23 March 2021; Accepted 5 May 2021

ABSTRACT

With the extensive deployment of electronic medical record (EMR) systems, EMR usability remains a significant

source of frustration to clinicians. There is a significant research need for software that emulates EMR systems

and enables investigators to conduct laboratory-based human–computer interaction studies. We developed an

open-source software package that implements the display functions of an EMR system. The user interface

emphasizes the temporal display of vital signs, medication administrations, and laboratory test results. It is well

suited to support research about clinician information-seeking behaviors and adaptive user interfaces in terms

of measures that include task accuracy, time to completion, and cognitive load. The Simple EMR System is

freely available to the research community and is on GitHub.

Key words: electronic health records, open-source software, user–computer interface, human–computer interaction, eye-track-

ing

BACKGROUND

The user interfaces of electronic medical record (EMR) systems are

an assortment of legacy designs, billing requirements, and local cus-

tomizations. The resulting misalignment of clinical and electronic

workflow adds extraneous work and is a significant source of clini-

cian frustration.1,2 To remedy the ills of the EMR, greater attention

needs to be placed on understanding EMR use, design consequen-

ces,3 and potential improvements. Unfortunately, laboratory-based

research of clinician-EMR interactions is hampered by the combina-

tion of software unavailability, lack of customizability, and nondis-

paragement agreements (gag clauses).4 A need exists for an open-

source EMR system designed for research.

Existing open-source EMR software, like Vista and OpenMRS,5,6

are free and unrestricted by nondisparagement agreements but are

challenging to customize because they implement a range of EMR

core functions. Core functions—such as result and order management,

communication, clinical decision and patient support, and administra-

tive processes and reporting—increase the size and complexity of the

software’s codebase.7

Many of the core functions of full-fledged EMR systems are not

essential to investigators researching specific types of EMR interac-

tions. For example, an EMR system’s result and order management

views are sufficient to study patient data access patterns in the EMR

(information-seeking behaviors),8,9 user experience (cognitive load,

fatigue, acceptance),10,11 and task completion (time to task comple-

tion, the accuracy of task completion, unintended consequences).3,12

A lean EMR system designed for rapid customization and use by

investigators will fill a critical research need.

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 1

JAMIA Open, 4(3), 2021, 1–7

doi: 10.1093/jamiaopen/ooab040

Application Notes

https://orcid.org/0000-0002-9809-0563
http://orcid.org/0000-0002-4066-8617
https://orcid.org/0000-0003-2736-0199
http://orcid.org/0000-0002-9276-773X
http://orcid.org/0000-0002-0163-1379
https://orcid.org/0000-0001-8793-9982
https://orcid.org/0000-0002-2079-8684
https://academic.oup.com/
https://academic.oup.com/


We report on the development, functionality, and implementa-

tion of a simple EMR visualization tool, useful for exploring the

user interface designs and evaluations in laboratory settings. As an

open-source tool built from widely used open-source components,

this software package provides a starting point for several types of

EMR studies and, with further enhancements, could be extended to

satisfy additional types of research. By eliminating the software bar-

rier of conducting EMR research, we hope that more investigators

and students will work towards discovering ways of reducing the

cognitive burdens and time requirements of EMR use.

OBJECTIVE

To accelerate human–computer interaction research focusing on

EMR systems, we developed a Python package that emulates an

EMR system’s display functionalities. We describe its key features—

including details of the user interface, how to add patient records,

and its use in research—and suggest ways to contribute to this open-

source package.

METHODS

We implemented an EMR system designed for displaying patient

data in laboratory-based research studies. The EMR system, called

Simple EMR System, is built in Python using Bitnami Django.13

System components—including patient data, a user interface, and

experimental business logic—follow a model view controller (MVC)

architecture (see Figure 1).

MVC is a widely used software design pattern that provides a

framework for implementing a client–server software application.14

The model is an abstraction that allows data to be drawn from dif-

ferent data sources. To streamline adapting to different data sources,

the Simple EMR System relies on loading scripts that extract source

data for a specified number of patient encounters, transform the

data into JavaScript Object Notation (JSON) data structures, and store

the structures in JSON files (“demographics.json,” “observations.json,”

“medications.json,” and “note_panel_data.json”). When a patient’s re-

cord is requested at runtime, these files are loaded from a subdirectory

named after the patient’s encounter id.

The view is the presentation layer and constitutes the informa-

tion that is viewed by the user on the interface of the Simple EMR

System. The interface is implemented using the Django template lan-

guage, JavaScript, and various libraries (Bootstrap, jQuery, High-

stock). A set of JSON files are used to configure which panel of the

interface displays what data fields (“data_layout.json”); the display

group, display name, default y-axis range, and default normal

range for each observation field (“variable_details.json”); and, the

medication route and display name for each medication type

(“med_details.json”). Further customizations can be made by edit-

ing the Hypertext Markup Language template page, JavaScript, or

Cascading Style Sheet files (“case_viewer.html,” “emr_3.js,” or

“bs_3.css”).

The controller manages the flow of information between the

model and the view and the user’s workflow. In the Simple EMR

System, the controller is a combination of built-in Django functions

and Python scripts implementing business logic for determining

what content to serve to the client. By default, the workflow con-

tains four steps: study selection, user selection, case selection, and

case viewing. Studies are defined by creating a subdirectory in the

project’s “resources” directory and renaming it to a name that

ends with the suffix “_study” (e.g., “SimpleEMRSystem\resources\

demo_study\”). Within a study directory, users (i.e., participants)

are defined in a JSON file (“user_details.json”) along with the cases

they are assigned, the cases they completed, and the date they last

accessed the system. Cases assigned to a user must also be defined in

a separate JSON file (“case_details.json”), where each case has an

array of dictionaries that define how the case should be displayed

during the study (including details such as the minimum and maxi-

mum time-to-display, and the instructions to display to the user).

This data structure allows for complex workflows, for example,

simulating morning rounds on subsequent days by including two

dictionaries in the array: setting the first dictionary’s maximum

time-to-display to 8 AM during the first day of the patient encounter

and setting the second dictionary’s maximum time-to-display to 24

h later.

RESULTS

Simple EMR user interface
The Simple EMR System presents patient data temporally in four

scrollable columns (see Figure 2). From left to right, the first panel

contains vital signs, ventilator settings, and intake and output, the

second panel contains medication administrations, the third panel

contains laboratory test results, and the fourth panel contains clini-

cal notes and reports. The user interface includes interactive features

to make using the temporal representation tenable (see Figure 3).

For example, users adjust the displayed time range by click-and-

dragging start and endpoint markers on a timeline. The time adjust-

ments update all the temporal data plots to keep all displayed data

in sync. The plots have blue and peach regions to indicate the nor-

mal range (y-axis) and the most recent 24 h (x-axis), respectively.

When an individual measurement is clicked, a vertical dotted line is

placed at that time point on all plots. Further, the measurement

value appears in a pop-up box when the cursor hovers over a data

point.

LAY SUMMARY

A significant barrier limiting human–computer interaction research on electronic medical record (EMR) systems is a lack of

available software. Vendor-based EMR systems are often not available to faculty and—especially—student investigators.

Existing open-source options (e.g., VistA, OpenMRS) may be challenging to deploy, customize the user interface, or insert

deidentified/synthetic patient data. The Simple EMR System is an open-source Python package for visualizing EMR data in

laboratory-based research studies. Its web-based user interface is rapidly deployable and readily customizable. By lowering

the barrier for conducting EMR interaction studies, more investigators can work towards discovering methods for reducing

the burdens of EMR use and improving the quality of patient care.

2 JAMIA Open, 2021, Vol. 4, No. 3



The temporal design, layout, and interactive features were influ-

enced by feedback from critical care physicians across multiple itera-

tions of prototypes and research studies. The user interface has

features that enable data collection for research. For example, study

participants on reviewing patient cases can select relevant patient

data by toggling a checkbox associated with a data element (see Fig-

ure 3). The lower right-hand region of the user interface provides in-

struction and navigation areas customized for the research study

(see Figure 2). The system can be integrated with a low-cost eye-

tracking device, as we have done, mounted at the bottom edge of the

computer monitor.

The Simple EMR System software package with accompanying

documentation is freely available on GitHub at https://github.com/

ajk77/SimpleEMRSystem.

Patient cases
The Simple EMR System can be adapted to display patient data from

any source. Its default support is for SyntheticMass, that is, Synthea

CSV format.15 To preprocess cases for display on the Simple EMR

System, (1) download the source data and extract it into the

“resources” folder. (2) Adjust parameters, such as the input and out-

put directories, in the Synthea data loading script

(“loaddata_synthea.py”) and execute the script. (3) View details about

each processed case in “list_case_dicts.json.” (4) Select cases to use in

the study and add them to “case_details.json” and (5) assign them to

users in “user_details.json.” Finally, (6) adjust display groups, medica-

tion routes, display names, and display locations in

“variable_details.json,” “med_details.json,” and “data_layout.json.”

The data loading script must be adapted when using data from

other sources (e.g., MIMIC16 or an FHIR server17). If connecting to

an existing database, the Django Model API (application program-

ming interface) can be used to streamline querying. Preprocessing all

case data into JSON files is beneficial because it allows for faster

server response times and because investigators can edit the proc-

essed JSON files directly.

At the time of publication, two example studies are included in

the Simple EMR System repository: demo_study and synthea_study.

Demo_study includes three synthetic patient cases created by scram-

bling the contents of deidentified records from a larger set of

patients from a hospital’s Cerner EMR system. Synthea_study

includes 25 intensive care unit (ICU) encounters from the Synthea

COVID-19 data set (available at https://synthea.mitre.org/down-

loads).18

Example research use
The Simple EMR System initially supported the Learning EMR proj-

ect, where our goal was to build a data-driven method for prioritiz-

ing patient information in the EMR.19,20 The project trained

machine learning models to identify relevant patient data for physi-

cians browsing the EMR before morning rounds.21

We used the Simple EMR System to collect clinician

information-seeking behavior in two distinct ways: manually and

with eye-tracking. In manual data collection, a checkbox appears

next to the plot for each data field. The user toggles the checkbox to

select/deselect data fields of interest, and the system stores the list of

selected data fields in a text file.

Figure 1. Simple EMR Systems’ MVC architecture. Patient data are preprocessed to reduce load times. The case order and experimental conditions are managed

in the controller via configuration files. The layout of the user interface is dictated by templates and accompanying JavaScript code. Experimental results, such

as time to task completion or manual annotations of information-seeking behavior, are stored in text files.

JAMIA Open, 2021, Vol. 4, No. 3 3

https://github.com/ajk77/SimpleEMRSystem
https://github.com/ajk77/SimpleEMRSystem
https://synthea.mitre.org/downloads
https://synthea.mitre.org/downloads


For data collection via eye-tracking, a low-cost eye tracker is

mounted on the computer monitor’s lower bezel. The Simple EMR

System can be paired with a Tobii Eye Tracker 4C to capture both a

stream of eye-gaze coordinates and a stream of position coordinates

for what is displayed onscreen. An algorithm then automatically

maps eye-gaze to onscreen data elements to generate a list of what

the user was viewing.22,23 The scripts and accompanying documen-

tation for incorporating eye-tracking with the Simple EMR System

are freely available on GitHub (https://github.com/ajk77/EyeBrows-

erPy).

As part of the same work, we also used the Simple EMR System

to test different means of prioritizing patient information, including

selectively highlighting relevant patient data by changing some data

elements’ background color.

DISCUSSION

We developed an open-source EMR system designed for research.

The Simple EMR System fills a gap for investigators who need a

readily customizable EMR interface. It is well suited to support re-

search about clinician information-seeking behaviors and adaptive

user interfaces in terms of measures that include task accuracy, time

to completion, and cognitive load. Django’s MVC framework pro-

vides several advantages to investigators. The view provided by the

Django template language is easy to modify and quickly make

changes to the elements displayed on the screen. The model can be

bypassed if someone wishes to create patient cases in JSON format

directly, rather than customizing the data loading script. Finally, the

Python script and JSON files that control experimental parameters

(e.g., users, case assignments, and case workflow) can also be modi-

fied independently from either the view or model.

The Simple EMR System is limited to the display functions of an

EMR system. Although this limitation precludes it from being used

in research involving order entry or other more complex EMR activ-

ities, the simple code base makes adoption and modifications easier.

Compared to OpenMRS and VistA, the Simple EMR System is eas-

ier to deploy and customize for different experimental needs. Rapid

and iterative deployment can keep research projects moving and

enables A/B testing of many different interface layouts.

Investigators will find the Simple EMR System suitable where a

compact view of a complex patient record, like an ICU stay, is use-

ful. It is also particularly useful for displaying data such as physio-

logical measurements, laboratory test values, and medication

administrations in temporal plots. However, temporal plots may not

always be suitable and some investigators may want such data to be

displayed in tables as found in many commercial EMR systems.

While not currently supported, tables can be easily implemented in

HTML by editing the Django template (“case_viewer.html”). Cur-

rently, the Simple EMR System does not support the display of non-

patient data such as electronic messages among clinicians.

The Simple EMR System does not interact with vendor EMR sys-

tems currently in use in healthcare settings. Our goal in developing

this system was not to replicate an entire modern EMR but to offer

a simple and useful system for displaying patient data that mimics a

real EMR in important ways to support research in laboratory set-

tings. However, the open-source implementation provides a path to-

Figure 2. A screenshot of the user interface of the simple EMR system. Most patient data are shown using temporal plots. At the top in black, the interface shows

patient demographics and a time selector, which is used for adjusting the display range for the temporal data plots. The data plots are organized into four scrol-

lable columns. The left-most region shows vital signs, ventilator settings, and fluid intake and output. The next region shows medication orders organized by the

medication route. The third region shows laboratory test results, organized by panels (e.g., basic chemistry). On the data plots, the range of the x-axis is deter-

mined by the blue-selected region of the time selector at the top of the window. The final, right-most region shows clinical notes and reports, organized by type

(consultant, progress, operation, radiology, electrocardiogram, microbiology, procedures, and others). At the lower right-hand region is an instruction and navi-

gation region that can be customized for research.

4 JAMIA Open, 2021, Vol. 4, No. 3

https://github.com/ajk77/EyeBrowserPy
https://github.com/ajk77/EyeBrowserPy


Figure 3. Details of some of the features of the user interface of the Simple EMR System. The first panel shows the adjustable time range that applies to all tempo-

ral plots. The second panel shows details of a single temporal data element, such as platelet count. The third panel shows that laboratory test results are orga-

nized into panels that are clinically meaningful, that reference timepoints can be added to aid users when interpreting data across multiple columns, and that

individual measurements pop-up on cursor hover. The fourth panel shows data fields with checkboxes that are used to indicate selections.

JAMIA Open, 2021, Vol. 4, No. 3 5



ward integration with a vendor system, as the Python scripts, we

provide for loading of patient data might be modified to access a

vendor’s FHIR interfaces. Similarly, adapting the Simple EMR Sys-

tem to work within the SMART-on-FHIR framework is an exciting

direction for future work.24

The Simple EMR System does not require input data to be

mapped to any standardized terminologies. In the current implemen-

tation, problem lists, diagnoses, careplans, imaging studies, notes,

and reports are displayed under different tabs of the note panel

(right side of the screen). We welcome investigators to contribute to

the Simple EMR System. It is available under the GNU General Pub-

lic License v3.0. We list potential avenues for improvement in Table

1.

CONCLUSIONS

We developed a Simple EMR System and have made it available to

the research community. It provides a platform for EMR human fac-

tors research that can save investigators time by allowing for custom

EMR scenarios and interface layouts. Beyond accelerating our un-

derstanding of clinician perception and preferences when viewing

patient data, the system may lead to new ways of presenting patient

data that reduce the cognitive burden and alleviate some causes of

burnout. We welcome contributors to this open-source project.

Contributors
All authors contributed to the design of the Simple EMR System.

A.J.K. wrote all the software and led the authoring of the manu-

script. All authors made critical revisions to the manuscript and ap-

proved the final version for submission.

ACKNOWLEDGMENTS

We thank the many critical care fellows who participated in the Learning

EMR System studies and provided suggestions on how to improve the Simple

EMR System, Brandon McLaughlin for scheduling rooms to conduct studies,

and John Levander for introducing us to Bitnami Django Stack.

FUNDING

The research reported in this article was supported by the National Library of

Medicine of the National Institutes of Health under award numbers T15

LM007059 and R01 LM012095. The content is solely the responsibility of

the authors and does not necessarily represent the official views of the Na-

tional Institutes of Health.

Conflict of interest statement. None declared.

DATA AVAILABILITY

Data for interface demonstration is provided in the Simple EMR System

GitHub repository at https://github.com/ajk77/SimpleEMRSystem/tree/mas-

ter/resources.

REFERENCES

1. Kroth PJ, Morioka-Douglas N, Veres S, et al. Association of electronic

health record design and use factors with clinician stress and burnout.

JAMA Netw Open 2019; 2 (8): e199609.

2. Ruppel H, Bhardwaj A, Manickam RN, et al. Assessment of electronic

health record search patterns and practices by practitioners in a large inte-

grated health care system. JAMA Netw Open 2020; 3 (3): e200512.

3. Sittig DF, Wright A, Ash J, et al. New unintended adverse consequences of

electronic health records. Yearb Med Inform 2016; 25 (1): 7–12.

4. Adler-Milstein J, Thao C. Why real-world health information technology

performance transparency is challenging, even when everyone (claims to)

want it. J Am Med Informatics Assoc 2020; 27 (9): 1462–5.

5. Brown S, VistA —U. S. Department of Veterans Affairs national-scale

HIS. Int J Med Inform 2003; 69 (2–3): 135–56.

6. Mamlin BW, Biondich PG, Wolfe BA, et al. Cooking up an open source

EMR for developing countries: OpenMRS - a recipe for successful collab-

oration. AMIA Annu Symp Proc 2006; 2006: 529–33.

7. Institute of Medicine Committee on Data Standards for Patient Safety.

Key Capabilities of an Electronic Health Record System: Letter Report.

In: Aspden P, Corrigan JM, Wolcott J, et al., eds. Patient Safety: Achieving

a New Standard for Care. Washington, DC: National Academies Press;

2004: 430–70.

8. Kannampallil TG, Jones LK, Patel VL, et al. Comparing the information

seeking strategies of residents, nurse practitioners, and physician assistants

in critical care settings. J Am Med Inform Assoc 2014; 21 (e2): 249–56.

9. Kannampallil TG, Franklin A, Mishra R, et al. Understanding the nature

of information seeking behavior in critical care: implications for the design

of health information technology. Artif Intell Med 2013; 57 (1): 21–9.

10. Pollack AH, Pratt W. Association of health record visualizations with

physicians’ cognitive load when prioritizing hospitalized patients. JAMA

Netw Open 2020; 3 (1): e1919301.

11. Khairat S, Coleman C, Ottmar P, et al. Association of electronic health re-

cord use with physician fatigue and efficiency. JAMA Netw Open 2020; 3

(6): e207385.

12. Kumar A, Aikens RC, Hom J, et al. OrderRex clinical user testing: a ran-

domized trial of recommender system decision support on simulated cases.

J Am Med Inform Assoc. 2020; 27 (12): 1850–9.

13. Django Software Foundation. Django [Internet]. 2013. https://www.djan-

goproject.com/ Accessed May 12, 2021.

14. Krasner GE, Pope ST. A cookbook for using the Model-View-Controller

user interface paradigm in Smalltalk-80. J Object-Oriented Program

1988; 1 (3): 26–49.

15. Walonoski J, Kramer M, Nichols J, et al. Synthea: an approach,

method, and software mechanism for generating synthetic patients and

the synthetic electronic health care record. J Am Med Informatics Assoc

2018; 25 (3): 230–8.

Table 1. Community opportunities for contributing to the Simple EMR System

1. Include an out-of-the-box connection to alternative databases and data models (e.g., MIMIC-III, OMOP common data model)

2. Convert to a FHIR application.

3. Improve the stability of eye-tracking across environments.

4. Improve security so it can be used with live clinical data.

5. Convert to responsive HTML so that it renders attractively on different-sized devices.

6. Add interface layouts that mirror the “table of numbers” views of results and measurements that are the default view in commercial EMR sys-

tems.

Abbreviations: MIMIC-III: MEDICAL INFORMATION MART FOR INTENSIVE CARE III; OMOP: OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP; FHIR: Fast Healthcare

Interoperability Resources.

6 JAMIA Open, 2021, Vol. 4, No. 3

https://github.com/ajk77/SimpleEMRSystem/tree/master/resources
https://github.com/ajk77/SimpleEMRSystem/tree/master/resources
https://www.djangoproject.com/
https://www.djangoproject.com/


16. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible

critical care database. Sci Data 2016; 3 (2016): 160035.

17. HAPI FHIR [Internet]. http://hapi.fhir.org/ Accessed May 12, 2021.

18. Walonoski J, Klaus S, Granger E, et al. SyntheaTM Novel coronavirus

(COVID-19) model and synthetic data set. Intell Based Med 2020; 1–2

(November 2020): 100007.

19. King AJ, Cooper GF, Clermont G, et al. Using machine learning to selec-

tively highlight patient information. J Biomed Inform 2019; 100 (Decem-

ber 2019): 103327.

20. King AJ, Cooper GF, Hochheiser H, et al. Development and preliminary

evaluation of a prototype of a learning electronic medical record system.

AMIA Annu Symp Proc 2015; 2015: 1967–75.

21. King AJ, Cooper GF, Hochheiser H, et al. Using machine learning to pre-

dict the information seeking behavior of clinicians using an electronic

medical record system. Annu Symp Proc 2018; 2018: 673–82.

22. King AJ, Hochheiser H, Visweswaran S, et al. Eye-tracking for clinical deci-

sion support: a method to capture automatically what physicians are viewing

in the EMR. AMIA Jt Summits Transl Sci Proc 2017; 2017: 512–21.

23. King AJ, Cooper GF, Clermont G, et al. Leveraging eye tracking to priori-

tize relevant medical record data: comparative machine learning study. J

Med Internet Res 2020; 22 (4): e15876.

24. Mandel JC, Kreda DA, Mandl KD, et al. SMART on FHIR: a standards-

based, interoperable apps platform for electronic health records. J Am

Med Informatics Assoc 2016; 23 (5): 899–908.

JAMIA Open, 2021, Vol. 4, No. 3 7

http://hapi.fhir.org/



