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a b s t r a c t

Outbreaks of infectious diseases such as influenza are a significant threat to human health. Because there
are different strains of influenza which can cause independent outbreaks, and influenza can affect demo-
graphic groups at different rates and times, there is a need to recognize and characterize multiple out-
breaks of influenza. This paper describes a Bayesian system that uses data from emergency
department patient care reports to create epidemiological models of overlapping outbreaks of influenza.
Clinical findings are extracted from patient care reports using natural language processing. These findings
are analyzed by a case detection system to create disease likelihoods that are passed to a multiple out-
break detection system. We evaluated the system using real and simulated outbreaks. The results show
that this approach can recognize and characterize overlapping outbreaks of influenza. We describe sev-
eral extensions that appear promising.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Influenza is a contagious viral disease that spreads around the
world in seasonal epidemics. It causes 3–5 million severe illnesses
and 250,000–500,000 deaths annually. It also causes considerable
health care costs and lost productivity [1]. There is a clear need
for accurate, timely predictions of influenza outbreaks for hospi-
tals, public health officials, and business [2].

This paper describes a Multiple Outbreak Detection System
(MODS) that detects and characterizes overlapping outbreaks of
influenza. MODS is part of a framework for disease surveillance
developed by our group [3–5]. In this framework, a natural lan-
guage processing system extracts signs and symptoms from the
full text of emergency department (ED) patient care reports. These
extracted features are combined with laboratory values and passed
to a Case Detection System (CDS) that infers a probability distribu-
tion over the diseases each patient may have. For each patient, this
distribution is expressed as a set of likelihoods of the patient’s data.
MODS searches a space of outbreak models and scores each model
according to the probability of the findings of each patient in the
ED given the model. Models are weighted and combined to make
predictions. See Fig. 1.
There has been significant prior work in the detection and char-
acterization of outbreaks of influenza [6–10]. The work reported
here differs from much of the prior work in three important ways.
First, we address the problem of detecting and characterizing mul-
tiple, overlapping outbreaks. These are commonly due to separate
type A and type B infections, but may also be caused by multiple
introductions of the same influenza strain, the spread of an influ-
enza strain in different demographic groups, or different strains of
influenza [1,11–14]. Second, we do not rely on simple counts.
Instead, for each patient, CDS produces a set of likelihoods of that
patient’s evidence given the diseases he or she may have. This is
more robust than a posterior probability. While the posterior prob-
ability of influenza given fever and cough in a particular patient will
change if it is summer, the peak of an influenza outbreak, or the
days following an anthrax attack [15], the likelihood of fever and
cough given influenza is relatively stable. Finally, we explicitly
account for Non-Influenza Influenza-Like Illnesses (NI-ILI) which are
clinically similar to influenza and can also display outbreak activity.

2. Material and methods

2.1. Evidence

As stated above, MODS is part of an end-to-end system that
starts with the full text of emergency department patient care

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2017.08.003&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2017.08.003
mailto:jma18@pitt.edu
http://dx.doi.org/10.1016/j.jbi.2017.08.003
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin


ED Patient
Care Reports NLP CDS MODS Predictions

Fig. 1. End-to-end framework for outbreak detection and characterization.
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reports. These reports contain a record of the patient assessment,
past medical history, and history of present illness. To model out-
breaks of influenza, these can be more informative than just chief
complaints [16]. In this section, we describe how these reports are
processed to support outbreak detection and characterization.

The text of each patient care report is parsed to extract 79 find-
ings (such as abdominal pain, cough, and fever) that were deemed
by experts to be relevant to the diagnosis of influenza and
influenza-like illnesses. Thus, each report is converted into a set
of 79 features. Each feature can take the values present (the corre-
sponding finding is explicitly mentioned, e.g. ‘‘the patient is cyan-
otic.”), absent (the finding is denied, e.g. ‘‘the patient denies chest
pain.”), or missing (the finding is not mentioned in the text). Four
pre-coded features, age, respiratory panel ordered, laboratory result
available, and laboratory positive influenza are then added to the
Table 1
Features extracted from reports with NLP plus precoded findings. Precoded findings
are in italics. ‘‘AC” or ‘‘SLC” indicate if finding was used in CDS for Allegheny County or
Salt Lake City.

abdominal distress lab testing ordered (influenza) (AC)
abdominal pain lab testing ordered (rsv) (SLC)
abdominal stress lab testing ordered (panel) (SLC)
abdominal tenderness malaise
abnormal chest radiograph

findings
myalgia (AC)

acute onset nasal flaring
anorexia nausea
apnea (SLC) nonproductive cough (AC)
arthralgia non-specific cough (other cough) (AC, SLC)
barking cough other abnormal breath sounds
bilateral acute conjunctivitis other pneumonia (AC)
bronchiolitis (AC) paroxysmal cough
bronchitis pharyngitis diagnosis
cervical lymphadenopathy pharyngitis on exam
chest pain poor feeding
chest wall retractions poor antipyretics response
chills productive cough
conjunctivitis rales
crackles reported fever (AC, SLC)
croup respiratory distress (SLC)
cyanosis rhonchi
decreased activity rigor
diarrhea runny nose
dyspnea seizure
grunting sore throat
headache staccato cough
hemoptysis streptococcal pharyngitis
highest measured

temperature (SLC)
stridor

hoarseness stuffy nose
hypoxemia (AC, SLC) tachypnea (SLC)
ill-appearing (AC) toxic appearance
infiltrate upper respiratory infection
influenza-like illness (AC) viral pneumonia
lab order (nasal swab) (AC, SLC) viral syndrome (AC)
lab positive adenovirus vomiting
lab positive enterovirus weakness or fatigue
lab positive hmpv wheezing
lab positive influenza (AC, SLC) age (AC, SLC)
lab positive parainfluenza respiratory panel ordered (AC, SLC)
lab positive rhinovirus laboratory result available (AC, SLC)
lab positive RSV laboratory positive influenza (AC, SLC)
lab positive strep A
text-based 79 findings. Thus, each report is converted to a set of
83 features. These features are listed in Table 1.

Two site-specific case detection systems were built, one for
Allegheny County and one for Salt Lake City. Each case detection
system was automatically constructed from training data using a
machine learning algorithm that performs feature selection fol-
lowed by the construction of a Bayesian network using the selected
features. Based on this process, the Bayesian network for Allegheny
County contains 17 of the original 83 features, and the network for
Salt Lake City contains 15. (The selected features are marked in
Table 1 with ‘‘AC” or ‘‘SLC.”) Each case detection system is a Baye-
sian network that represents the conditional probability distribu-
tion of findings and disease state (flu, NI-ILI, or other). This
distribution can provide the probability of that patient’s findings
given their assumed disease state. That is, PðEðp; dÞjfluÞ,
PðEðp; dÞjNI-ILIÞ, and PðEðp; dÞjotherÞ where Eðp; dÞ denotes the find-
ings for patient p on day d. (Note that Eðp; dÞ consists of 17 findings
for each patient in Allegheny County and 15 findings for each
patient in Salt Lake City due to feature selection.) These likeli-
hoods—PðEðp; dÞjfluÞ; PðEðp; dÞjNI-ILIÞ, and PðEðp; dÞjotherÞ for each
patient—are passed to MODS.

Note that MODS does not classify patients as flu, NI-ILI, or other,
and does not use simple evidence counts. Rather, it derives likeli-
hoods that represent the extend to which a patient’s findings are
more or less likely given flu, NI-ILI, or other. This is in keeping with
our Bayesian approach which seeks to build a model that best
explains the data.

To summarize, we start with the full text of ED patient care
reports. We use NLP to extract 79 features from each report, add
four additional pre-coded features (including the result of a labora-
tory test), to represent each patient as a set of 83 features. We then
use a case detection system to produce three likelihoods
(PðEðp; dÞjfluÞ; PðEðp; dÞjNI-ILIÞ, and PðEðp; dÞjotherÞ) for each patient.
Thus, the dataset given to MODS after preprocessing consists of
three likelihoods for each patient. Additional details are provided
in Appendix A.

Although MODS does not categorically classify patients, we can
count ILI (influenza-like illness) patients by selecting cases with
findings that include fever and (cough or sore throat). Although
MODS does not use this information, it can provide a convenient
way to visualize the data. Fig. 2 shows the number of emergency
department ILI cases counted in this way for Allegheny County
during the 2009–2010 influenza season, and Fig. 3 shows the num-
ber for Sale Lake City during the 2010–2011 influenza season. We
include this plot on graphs in this paper.
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Fig. 2. ED ILI cases for Allegheny County 2009–2010 influenza season.
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Fig. 3. ED ILI cases for Salt Lake City 2010–2011 influenza season.
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2.2. Modeling outbreaks

An outbreak of influenza is a chain of infections that starts when
a few individuals infect the general population, the infection
spreads evenly and steadily through the population until the num-
ber of infected individuals reaches a peak, then decreases and
finally trails off. More generally, an outbreak may be caused by dif-
ferent strains of influenza that are introduced into different demo-
graphic groups at different times. That is, multiple chains of
infection, each with its own start time.

2.2.1. SEIR models
A SEIR model [17] divides the population into four compart-

ments: Susceptible individuals who have no immunity to the dis-
ease, Exposed and Infected individuals who are not yet contagious,
Infectious individuals who have the disease and can transmit it,
and Recovered individuals who are immune. When an outbreak
begins, every individual is assigned to one compartment and move
from compartment to compartment according to difference
equations.

A SEIR model is defined by seven parameters. R0 (the Basic
Reproduction Number) is the average number of people an infec-
tious person would infect if they were introduced into a population
of totally susceptible individuals, Latent Period is the average time
from initial contact with an infected person to when a person
becomes infectious, and Infectious Period is the average time an
individual is infectious and can transmit the disease. Also, Initial
Susceptible, Initial Exposed, Initial Infectious, and Initial Recovered
are the initial numbers of people assigned to the corresponding
compartments on the first day of the outbreak when the popula-
tion is initially infected.

Given the parameters of a SEIR model, we can compute the
number of people in the Susceptible, Exposed and Infected, Infectious,
and Recovered compartments each day using a set of difference
equations [17].

2.2.2. Modeling multiple outbreaks of influenza
MODS includes three kinds of influenza models corresponding

to no outbreak, one chain of infections, and two chains of
infections:

� A Zero Outbreak Model is defined by b, a baseline level of infec-
tious influenza cases in the general population. We denote the
zero outbreak model with hbi.

� A Single Outbreak Model is defined by a baseline level of infec-
tious influenza cases in the general population, a start day,
and a SEIR model. Given a baseline level of infectious influenza
cases b, a start day s, and a vector of SEIR parameters k, we
denote the single outbreak model with hb; s; ki. Note that
hb; s; ki has a total of nine parameters: a baseline level of
influenza, the start day, and the vector k of seven SEIR
parameters.
� A Double Outbreak Model is defined by a baseline level of infec-
tious influenza cases in the general population, a start day and
SEIR parameters for the first outbreak, and a start day and SEIR
parameters for the second outbreak. Given a baseline level of
infectious influenza cases b, a start day s and a vector of SEIR
parameters k, and a second start day t and vector of SEIR param-
eters �c, we denote the double outbreak model with hb; s; k; t; �ci.
Note that hb; s; k; t; �ci has a total of seventeen parameters: the
baseline level of infectious influenza cases, two start days, and
two vectors of seven SEIR parameters each.

A single outbreak model hb; s; ki is intended to model the intro-
duction on day s of an infection that spreads according to the SEIR
model defined by the parameters k. Likewise, a double outbreak
model hb; s; k; t; �ci is intended to model the introduction on day s
of an infection that spreads according to the SEIR model defined
by the parameters k, and a second infection introduced on day t
that spreads according to the SEIR model defined by the parame-
ters �c. We often denote an influenza model by I rather than write
out hbi; hb; s; ki, or hb; s; k; t; �ci.

If I is a zero, single, or double outbreak model of influenza, it
determines IðdÞ, the number of infectious influenza cases in the
general population on day d, in the following ways:

� If I is a zero outbreak model hbi, then IðdÞ ¼ b is constant.
� If I is a single outbreak model hb; s; ki, then IðdÞ is b plus the
number of infectious influenza cases in the general population
on day d predicted by the SEIR model k starting on the start
day s.

� If I is a double outbreak model hb; s; k; t; �ci, then IðdÞ is b, plus
the number of infectious influenza cases in the general popula-
tion on day d predicted by the SEIR model k starting on its start
day s, plus the number of infectious cases in the general popu-
lation on day d predicted by the SEIR model �c starting on its
start day t.

That is, we compute IðdÞ by adding b, plus the number of infec-
tious influenza cases predicted by the first SEIR model (if there is
one), plus the number of infectious influenza cases predicted by
the second SEIR model (if there is one). The number of infectious
influenza cases predicted by each SEIR model is the number of
cases in its Infectious compartment, which can be computed with
a set of difference equations, as mentioned above. Note that we
make the simplifying assumption that there is a constant, baseline
level of infectious influenza cases (b) in the general population.

2.2.3. Influenza in the general population and the emergency
department

MODS searches a space of outbreak models. For each model I
considered, IðdÞ is the number of infectious influenza cases in
the general population on day d predicted by the model. However,
only a fraction of these cases go to an ED. We rely on the scaling
factor h which is the probability that someone who is infectious
with influenza will actually go to a emergency department (ED)
on any given day. In general, we do not know h exactly, so we inte-
grate over a range of values. However, we do assume it is constant
for the duration of an outbreak.

2.2.4. Accounting for non-influenza influenza-like illness
Clinically, it is difficult or impossible to distinguish influenza

from a variety of Influenza-Like Illnesses (ILI). Most kinds of ILI are
viral—such as respiratory syncytial virus (RSV) and parainfluen-
za—but some other diseases and toxic exposures also cause
influenza-like symptoms. In most years, influenza is present in
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only a minority of ILI cases, but may account for 50–60% of ILI cases
at the peak of an epidemic [18]. Because some kinds of ILI are con-
tagious and exhibit outbreak activity [17], it is important to distin-
guish them from true influenza in order to accurately predict and
characterize outbreaks of influenza. We rely on the use of labora-
tory tests, such as the polymerase chain reaction (PCR) test, to dis-
tinguish influenza from NI-ILI. Because laboratory tests are ordered
for relatively few patients, we have developed a technical approach
to calculate NðdÞ, the expected number of NI-ILI cases in the ED on
each day d. The details of our method are described in Appendix B.

2.2.5. Evaluating models
Let E be all of the evidence available to the system, EðdÞ the evi-

dence from day d; Eð1 : dÞ the evidence from days 1 through d, and
Eðp; dÞ the evidence from patient p on day d. CDS represents the
joint probability distribution of findings and diseases, so we can
find PðEðp; dÞjfluÞ; PðEðp; dÞjNI-ILIÞ, PðEðp; dÞjotherÞ, the probability
of a patient’s findings given influenza, NI-ILI, or some other diagno-
sis (such as appendicitis and trauma).

We evaluate a model I by how well it explains the data—that is,
the probability of the data given I . Since I predicts the number of
influenza cases in the population—but the data is drawn from hos-
pitals—h (the fraction of people infectious with influenza who will
go to an ED) plays a role. We do not know h precisely, but our belief
in its value is uniform over an interval ½hl; hu�. Thus, given data
Eð1 : dÞ, we evaluate a model I with:

PðEð1 : dÞjIÞ ¼ 1
ðhu � hlÞ

Z hu

hl

PðEð1 : dÞjI ; hÞdh ð1Þ

We also need to account for the effect of NI-ILI on the data.
Appendix B shows how to construct a function NðdÞ that estimates
the number of NI-ILI patients in the ED each day d and shows:

PðEð1 : dÞjI ; hÞ ¼
Yd
d0¼1

PðEðd0ÞjIðd0Þ;Nðd0Þ; hÞ ð2Þ

Iðd0Þ is the number of cases of infectious influenza in the gen-
eral population predicted by the model I on day d0. Section 2.2.2
describes how Iðd0Þ is computed. Nðd0Þ is the number of NI-ILI
patients in the ED given by the model of NI-ILI. If we assume that
given I ;N , and h the probability of each patient’s evidence is inde-
pendent of the other patients, we have:

PðEðdÞjIðdÞ;NðdÞ; hÞ ¼
Y

p2ptsðdÞ
PðEðp; dÞjIðdÞ;NðdÞ; hÞ ð3Þ

Putting all of this together gives:

PðEð1 : dÞjIÞ

¼ 1
ðhu � hlÞ

Z hu

hl

Yd
d0¼1

Y
p2ptsðd0Þ

PðEðp; d0ÞjIðd0Þ;Nðd0Þ; hÞdh ð4Þ

We estimate the probability that an arbitrary ED patient has
influenza as h � IðdÞ=jptsðdÞj and the probability he has NI-ILI as
NðdÞ=jptsðdÞj (where ptsðdÞ is the number of ED patients on day
d), so:

PðEðp;dÞjIðdÞ;NðdÞ; hÞ ¼ PðEðp;dÞjfluÞðh � IðdÞ=jptsðdÞjÞ
þ PðEðp;dÞjNI-ILIÞðN ðdÞ=jptsðdÞjÞ
þ PðEðp;dÞjotherÞððjptsðdÞj � ðh � IðdÞ
þ N ðdÞÞÞ=jptsðdÞjÞ

ð5Þ
Although Eq. (4) is a closed-form equation involving only the

variable h, we have no practical way to integrate it. However, given
values for IðdÞ, NðdÞ and h, we can evaluate the expression inside
the integral, so we approximate the integral with:
PðEð1 : dÞjIÞ

� 1
ðhu � hlÞ

1
n

Xn
i¼1

Yd
d0¼1

Y
p2ptsðd0 Þ

PðEðp;d0ÞjIðd0Þ;Nðd0Þ; hiÞ ð6Þ

where h1; . . . ; hn are randomly and uniformly drawn from ½hl; hu�.

2.3. Detection and characterization

2.3.1. Detecting outbreaks
Let Z; S, and D be the propositions that zero, one (single), or

two (double) outbreaks of influenza will occur during the year
(365 days starting from day 1). Let Zd; Sd, and Dd be the proposi-
tions that zero, one, or two outbreaks of influenza start on or before
day d. We want to find PðZdjEð1 : dÞÞ; PðSdjEð1 : dÞÞ, and
PðDdjEð1 : dÞÞ. That is, the probability that zero, one, or two influ-
enza outbreaks have already begun given the evidence so far. Using
Bayes Rule we obtain:

PðZdjEð1 : dÞÞ ¼PðEð1 : dÞjZdÞPðZdÞ=PðEð1 : dÞÞ ð7Þ
PðSdjEð1 : dÞÞ ¼PðEð1 : dÞjSdÞPðSdÞ=PðEð1 : dÞÞ ð8Þ
PðDdjEð1 : dÞÞ ¼PðEð1 : dÞjDdÞPðDdÞ=PðEð1 : dÞÞ ð9Þ

where PðEð1 : dÞÞ is the standard normalizing term.
First, we will derive PðZdÞ; PðSdÞ, and PðDdÞ. Zd claims that no

outbreak will start on or before day d, but zero, one, or two may
start later. If f ðsÞ is the probability that an outbreak will start on
day s, then:

PðZdÞ ¼PðZdjZÞPðZÞ þ PðZdjSÞPðSÞ þ PðZdjDÞPðDÞ ð10Þ

¼PðZÞ þ
X365

s¼ðDþ1Þ
f ðsÞ

 !
PðSÞ þ

X365
s¼ðDþ1Þ

f ðsÞ
 !2

PðDÞ ð11Þ

The first term expresses the fact that the probability that no
outbreaks start on or before day d given no outbreaks start at all
is one. The second term expresses the fact that the probability that
no outbreaks start on or before day d given one outbreak will occur
during the year is the probability that outbreak begins after day d.
The third term expresses the fact that the probability that no
outbreaks start on or before day d given two outbreaks will occur
during the year is the probability that both outbreaks begin after
day d.

Dd claims that two outbreaks of influenza start on or before day
d. This logically rules out Z and S. Since there are exactly two out-
breaks and both begin on or before day d we have:

PðDdÞ ¼PðDdjZÞPðZÞ þ PðDdjSÞPðSÞ þ PðDdjDÞPðDÞ ð12Þ

¼
Xd
s¼1

f ðsÞ
 !2

PðDÞ ð13Þ

Finally, by simple probability theory, we know PðSdÞ ¼
1� ðPðZdÞ þ PðDdÞÞ.

We introduce some notation that we will need here and in the
next section. Given a baseline level of influenza b, there is exactly
one zero-outbreak model, which we denote by hbi. A baseline level
of influenza b, a start day s, and SEIR model parameters k specify a
one-outbreak model, which we denote by hb; s; ki. A baseline level
of influenza b, start days s and t, and SEIR model parameters k and �c
specify a two-outbreak model, which we denote by hb; s; k; t; �ci.

Now, we will derive PðEð1 : dÞjZdÞ; PðEð1 : dÞjSdÞ, and
PðEð1 : dÞjDdÞ. We assume that the baseline level of influenza b is
fixed. There is only one zero-outbreak model hbi so
PðEð1 : dÞjZdÞ ¼ PðEð1 : dÞjhbiÞ. For each start day d, we need to inte-
grate over a continuum of one-outbreak outbreak models:



Table 2
SEIR parameter ranges.

Parameter Minimum Value Maximum Value

S 0:5 � population 1:0 � population
E 0 0
I 1 100
R0 1.1 3.0

Latent Period 1 4
Infectious Period 1 8
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PðEð1 : dÞjSdÞ

¼
Xd
s¼1

f ðsÞPd
i¼1f ðiÞ

 !Z
k
PðEð1 : dÞjhb; s; kiÞpðkÞdk

" #
ð14Þ

Likewise, we need to integrate over two-outbreak models to
obtain:

PðEð1 : dÞjDdÞ

¼
Xd
s¼1

Xd
t¼1

f ðsÞf ðtÞPd
i¼1f ðiÞ

� �2
Z
kc
PðEð1 : dÞjhb; s; k; t; �ciÞpðkÞpð�cÞdk�c

2
64

3
75

ð15Þ

In these equations, pð�Þ is a probability density function over
SEIR model parameters. Note that we assume the double outbreak
start dates are independent of one another, although this assump-
tion can be relaxed.

If we assume that start days and SEIR model parameters are
uniformly distributed over their ranges, we can estimate the inte-
grals in Eqs. (14) and (15) as follows:

PðEð1 : dÞjSdÞ � 1
dN

Xd
s¼1

XN
n¼1

PðEð1 : dÞjhb; s; kniÞ ð16Þ

PðEð1 : dÞjDdÞ � 1

d2N

Xd
s¼1

Xd
t¼1

XN
n¼1

PðEð1 : dÞjhb; s; kn; t; �cniÞ ð17Þ

where N is a large integer to determine enough points to estimate
the integral, and the kn and �cn are randomly and uniformly selected
from their ranges.

These two equations perform model averaging. Consider Eq.
(16) to estimate the probability of Eð1 : dÞ given the assumption
of one outbreak. For each possible start day, it randomly selects
N single-outbreak models and computes the posterior probability
of the evidence for each of those models and averages their predic-
tions. We perform similar operations for zero and two outbreaks
and combine the results using Eqs. (7)–(9) to find the probability
of zero, one, or two outbreaks given Eð1 : dÞ.

2.3.2. Characterizing outbreaks
Given evidence Eð1 : dÞ, MODS predicts zero, one, or two out-

breaks have started by day d depending on whether
PðZdjEð1 : dÞÞ; PðSdjEð1 : dÞÞ, or PðDdjEð1 : dÞÞ (derived in the previ-
ous section) is greatest.

We also want to know the expected number of influenza cases
on day d0 given Eð1 : dÞ. In general, d0

> d since we want to project
into the future beyond the evidence we have already collected.
(We can have d0 6 d, however, if we want to assess what has hap-
pened to date.) If fluðd0Þ is the number of influenza cases on day d0,
then:

Eðfluðd0ÞjEð1 : dÞÞ ¼ Eðfluðd0ÞjZd; Eð1 : dÞÞPðZdjEð1 : dÞÞ
þ Eðfluðd0ÞjSd; Eð1 : dÞÞPðSdjEð1 : dÞÞ
þ Eðfluðd0ÞjDd; Eð1 : dÞÞPðDdjEð1 : dÞÞ

ð18Þ

That is, we can find the expected number of influenza cases
predicted by the zero-outbreak model, one-outbreak models, and
two-outbreak models separately and combine them in a weighted
sum.

We already know how to compute PðZdjEð1 : dÞÞ; PðSdjEð1 : dÞÞ,
and PðDdjEð1 : dÞÞ. The other terms can be expanded as
follows:
Eðfluðd0ÞjZd; Eð1 : dÞÞ ¼ hbiðd0Þ ð19Þ
Eðfluðd0ÞjSd; Eð1 : dÞÞ

¼
Xd
s¼1

f ðsÞPd
j¼1f ðjÞ

Z
k
hb; s; kiðd0Þpðhb; s; kijSd; Eð1 : dÞÞdk

" #
ð20Þ

Eðfluðd0ÞjDd; Eð1 : dÞÞ

¼
Xd
s¼1

Xd
t¼1

"
f ðsÞf ðtÞPd
j¼1f ðjÞ

� �2
Z
kc
hb; s; k; t; �ciðd0Þpðhb; s; k; t; �cijDd;

Eð1 : dÞÞdkc
#

ð21Þ

where hbiðdÞ; hb; s; kiðdÞ and hb; s; k; t; �ciðdÞ are the number of influ-
enza cases predicted by each of the models on day d. Of course,
hbiðdÞ ¼ b is a constant function.

Finally, if we apply Bayes’ rule, assume all start days are equally
likely, assume the density functions are uniform, then we can
approximate the integrals in Eqs. (20) and (21) with:

EðfluðdÞjSd; Eð1 : dÞÞ

� 1
d

Xd
s¼1

XN
n¼1

hb; s; kniðdÞ PðEð1 : dÞjhb; s; kniÞPN
m¼1PðEð1 : dÞjhb; s; kmi

" #
ð22Þ

EðfluðdÞjDd; Eð1 : dÞÞ

� 1

d2

Xd
s¼1

Xd
t¼1

XN
n¼1

hb; s; kn; t; �cniðdÞ PðEð1 : dÞjhb; s; kn; t; �cniÞPN
m¼1PðEð1 : dÞjhb; s; km; t; �cmi

" #

ð23Þ

where the kn km; �cn, and �cm are randomly and uniformly selected.
Again, these equations perform model averaging. Consider Eq.

(22) to estimate the number of infectious on day d given Eð1 : dÞ
and the assumption of one outbreak. For each possible start day
s 6 d it randomly selects N single-outbreak models. For each of
these models, it computes the number of infectious people pre-
dicted by the model times the probability of the model, then it
computes the expected number of infectious on day d over these
models that start on day s. The outer sum computes the expected
number of infectious on day d over all the possible start days.
We perform similar operations for zero and two outbreaks and
combine the results using Eq. (18) to find the expected number
of infectious.

2.4. Algorithmic methods

2.4.1. Prior probabilities and parameters
Population is the number of people in the region being moni-

tored. S; E, and I are the initial values of Susceptible, Exposed, and
Infectious. Latent Period and Infectious Period are expressed in terms
of days. We set the prior probabilities for zero, one, or two out-
breaks in the next year to be 0.1, 0.8, and 0.1, respectively. To gen-
erate a SEIR model of influenza we randomly and uniformly select
parameters from Table 2. We also eliminate models with duration
more than 180 days.



Positive lab tests
ED ILI Cases

Probability of two outbreaks
Probability of one outbreak

Probability of zero outbreaks

an
d

E
D

IL
I

C
as

es
P
os

it
iv

e
P

C
R

T
es

ts

P
ro

ba
bi

lit
y

180
160
140
120
100
80
60
40
20
0

4/13/12/11/112/111/110/19/18/17/16/1

1

0.8

0.6

0.4

0.2

0

Fig. 4. Probability of zero, one, or two outbreaks for Allegheny County 2009–2010
influenza season.
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2.4.2. Implementation
We now describe the overall operation of MODS. Given evi-

dence Eð1 : dÞ for days 1 through d, MODS creates the baseline
model, 10,000 single-outbreak models with start day on or before
day d, and 10,000 double-outbreak models with start days on or
before day d. MODS then computes the probability of Eð1 : dÞ given
each of these models. It then computes the posterior probability of
zero, one, or two outbreaks given Eð1 : dÞ. It uses the same models
to compute the expected number of infectious on each day through
the rest of the year. Note that models are evaluated using evidence
from on or before day d to find their probabilities given Eð1 : dÞ. The
models are then projected into the future and their predictions
combined according to how well they performed on evidence in
the past. The complexity and runtime of MODS are described in
Appendix C.
Table 3
Predictions for Allegheny County and HHS Region 3 2009–2010 season.

Date Predicted Number
of Outbreaks

Local Peak
Offset

Regional Peak
Offset

8/1/2009 zero
9/1/2009 one �13 �15
10/1/2009 one +3 +1
11/1/2009 one +2 0
12/1/2009 one +2 0
1/1/2010 one +5 +3
2/1/2010 one +4 +2
3/1/2010 one 0 �2
3/31/2010 one +6 +4
3. Results

3.1. Experiments with real outbreaks

We applied MODS to clinical data from patient care reports in
Allegheny County, Pennsylvania during the 2009–2010 influenza
year and reports from Salt Lake City, Utah during the 2010–2011
influenza year. The ED data we monitor capture about 62% of
patients in Allegheny County and 55% of patients in Salt Lake City.
We estimated that approximately 1% of people infectious with
influenza in the general population will visit an ED [4]. Baseline
levels of influenza, NI-ILI, and other diseases were estimated from
the summer months when there were no outbreaks.

We evaluated MODS’ predictions both locally and regionally.
Locally, we compared MODS’ predictions to a seven day central
moving average of the daily number of positive PCR tests in the
monitored ED’s. We will refer to the peak day of this moving aver-
age as the ‘‘local peak.” Regionally, we compared MODS’ predic-
tions to the weekly totals of laboratory confirmed cases of
influenza reported by the CDC’s FluView system [19] for HHS
Region 3 which includes Pennsylvania and HHS Region 8 which
includes Utah.1 We will refer to the Wednesday of a week with a
maximum number of confirmed cases as the ‘‘regional peak.” (We
selected a specific day of the week in order to compare the local
and regional peaks.)

Fig. 4 shows the probability of zero, one, or two outbreaks com-
pared to the number of positive PCR tests performed in the moni-
tored ED’s, and the expected number of influenza cases, for
Allegheny County from June 1, 2009 to March 31, 2010. Table 3
compares MODS’ predictions to the local and regional peaks for
Allegheny County during the same period. For instance, the row
labeled ‘‘10/1/2009” means that on October 1 MODS predicted
one influenza outbreak with a predicted peak three days after
the local peak and one day after the regional peak. (There was a
single local peak on October 18 and a single regional peak on Octo-
ber 20. These are essentially identical since the regional dates have
only one week of precision.) Fig. 5 shows MODS’ predictions on
September 1, October 1, November 1, and December 1 with local
PCR counts for comparison.

Fig. 6 shows the probability of zero, one, or two outbreaks com-
pared to the number of positive PCR tests performed in the moni-
tored ED’s for Salt Lake City from June 1, 2010 to May 31, 2011.
Table 4 compares MODS’ predictions to the local and regional
peaks for Salt Lake City during the same period. For instance, the
row labeled ‘‘2/1/2011” means that on February 1 MODS predicted
1 Region 3 is composed of Delaware, District of Columbia, Maryland, Pennsylvania,
Virginia, and West Virginia. Region 8 is composed of Colorado, Montana, North
Dakota, South Dakota, Utah, and Wyoming.
two influenza outbreaks. The first predicted peak was two days
before the first local peak and the second predicted peak seven
days after the second local peak. Also, the first predicted peak
was five days before the first regional peak and the second pre-
dicted peak four days after the second regional peak. (There were
two local peaks on December 25, 2010 and February 19. 2011,
and two regional peaks on December 28, 2010 and February 22,
2011. These are essentially identical since the regional dates have
only one week of precision.) Fig. 7 shows how MODS’ predictions
evolve during the month of January when it first detects a second
outbreak.
3.2. Experiments with synthetic outbreaks

Simulated outbreaks were generated by instantiating models of
influenza outbreaks in the population with data from actual
patient cases. To populate these simulated datasets we relied on
the results of the polymerase chain reaction (PCR) test, a definitive
indicator of influenza, to create three sets of patients:

� Influenza patients with a positive PCR test. Patients for this set
were selected based on a positive PCR test result, but that test
result was not included in the findings or computation of the
likelihood.

� NI-ILI patients with a high probability of ILI but a negative PCR
test. Again, patients for this set were selected based on the neg-
ative PCR test result, but that test result was not included in the
findings or computation of the likelihood.

� Other patients from summer months with a low probability of
ILI and no PCR test ordered.

Note that some patients in the Influenza set have a higher like-
lihood of NI-ILI and some patients in the NI-ILI set have a higher
likelihood of influenza since the only definitive piece of informa-
tion (the result of the PCR test) has been excluded. This reflects
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Fig. 5. Evolution of predictions for Allegheny County 2009–2010 influenza season.
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the fact that influenza and NI-ILI patients can have similar
presentations.

We instantiate a model by assuming that each infectious case of
influenza in the model goes to an ED with probability 0.01 (based
on our estimate that 1% of the population with influenza will visit
an ED). Thus, for each infectious case of influenza in the model we
add a random element of Influenza to the test data with probability
0.01. Likewise, we assume that each day there are 10,000 NI-ILI
cases and 50,000 other cases, each of whom go to a monitored
ED with probability 0.01. Thus, for each of these cases we add a
random element of NI-ILI or Other to the test data with probability
0.01. For instance, if a model predicts 1000 infectious influenza
cases on day d, then the instantiation will contain approximately
10 Influenza, approximately 100 NI-ILI, and approximately 500
Other cases for day d as determined by binomial distributions.

Thus, these simulated outbreaks are simulated in the sense that
the set of cases with influenza was determined by a model, but real
in the sense that each patient case used real data from a confirmed
case of influenza.

Table 5 summarizes the performance of MODS on 100 randomly
generated single-outbreak datasets. We generated 100 single-
outbreak models by randomly and uniformly selecting parameters
from Table 2, instantiated each model as described above, and ran
MODS on each one for each day from the start of the outbreak to its
peak. The row starting with ‘‘0.100” represents the performance of
MODS on the day when 0.100 of the total outbreak cases have
occurred. This day will vary since the outbreaks were randomly
generated, but the average number of days to the peak was 18,
the average probability an outbreak was occurring was 1.00, and
the mean error of estimating the peak was +10 (ten days after
the actual peak).

To understand MODS’ ability to recognize a second peak we
conducted a set of experiments with two identical outbreaks with
peaks that ranged from 5 to 65 days apart. Table 6 summarizes the
results of these experiments. For instance, column 35 says that for
a synthetic double outbreak with peaks 35 days apart, MODS began
to predict with probability P0.50 a second future peak 0.56 of the
distance from the first peak to the second (about twenty days after
the first peak and fifteen days before the second peak). MODS was
unable to distinguish peaks only five days apart.



Table 4
Predictions for Salt Lake City 2010–2011 season.

Date Predicted Number of Outbreaks First Local Peak Offset Second Local Peak Offset First Regional Peak Offset Second Regional Peak Offset

8/1/2010 zero
9/1/2010 zero
10/1/2010 zero
11/1/2010 one �17 �20
12/1/2010 one �8 �11
1/1/2011 one +6 +3
1/10/2011 one �2 �5
1/20/2011 two �6 �3 �9 �6
2/1/2011 two �2 +7 �5 +4
3/1/2011 two �4 +2 �7 �1
4/1/2011 two +3 +12 0 +9
5/1/2011 two +6 +1 +3 �2
5/31/2011 two +6 +7 +3 +4
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Fig. 7. Evolution of predictions for Salt Lake City 2010–2011 influenza season.

Table 5
Results of evaluation on 100 simulated single outbreaks.

Fraction of
Outbreak Cases

That Have
Occurred

Mean
Number of
Days Until

Peak

Mean Posterior
Probability an
Outbreak is
Occurring

Mean Error of
Estimating
Peak Day

0.001 55 0.09 �146
0.010 38 0.93 0
0.100 18 1.00 +10
0.250 9 1.00 +8
0.500 0 1.00 +6
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3.3. IRB approval

The research protocol was approved by both institutional IRBs
(University of Pittsburgh PRO08030129 and Intermountain Health-
care 1024664). All the research patient data were de-identified.

4. Discussion

4.1. Experimental results

Tables 5 and 6 demonstrate how well MODS was able to predict
actual single and double outbreaks. MODS’ ability to predict single



Table 6
Discriminating one or two outbreaks.

Days Between Peaks 5 15 25 35 45 55 65
Tipping Point – 1.00 0.66 0.56 0.56 0.54 0.55
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influenza outbreaks is consistent with our prior work [4]. The dou-
ble peak predicted by MODS from the Salt Lake City 2010–2011
data is intriguing. The Utah Public Health Laboratory tracks positive
influenza laboratory tests broken down by type. Positive influenza
A tests peaked around January 1 and positive influenza B tests
peaked around February 26 [20]. These dates are close to the peaks
predicted by MODS as shown in Fig. 8. This is noteworthy given
that MODS did not have test information that distinguished A from
B, but was able to recognize separate A and B outbreaks.
4.2. Limitations

The work reported here has several limitations. These stem
from our basic assumptions, our use of SEIR models, and computa-
tional limitations.

We assume there is a constant, baseline number of influenza
cases, b, in the general population throughout the year. We derive
this number using data from summer months. However, the base-
line varies daily and throughout the year. We could avoid this
assumption by integrating over the range of values of b in Eqs.
(14) and (15) each day. However, we do not believe this will affect
the results since the baseline level is very small compared to out-
break levels.

We assume that the basic context of an outbreak remains fixed
for its duration. However, in reality, weather and humidity, immu-
nization programs, and shifting populations can affect how an out-
break proceeds [21]. These concerns can be addressed by allowing
the basic parameters of models to change over time. We also
assume that h (the probability that a person in the general popula-
tion who has influenza will go to an ED) is constant throughout the
outbreak. In fact, it can change daily based on several factors, such
as media reports. We can address this by integrating over a range
of values for h each day in Eq. (4) instead of just once over the entire
outbreak period (essentially by moving the integral to after the
daily product). However, we would want to model some depen-
dency in h from one day to the next.

We rely on the mass action principle that any two individuals in
the population are equally likely to come in contact with each
other. Although this is a common simplifying assumption, it
ignores the fact that children are more likely to contact other chil-
dren in the classroom and adults are more likely to contact adults
at work. We can address this assumption by using stratified mod-
els [17] that maintain separate compartments for different demo-
graphic groups. More generally, since our framework only relies on
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specifying a model of influenza by a set of numeric parameters, we
can explore different kinds of models (including stochastic models)
that better capture the dynamics of actual outbreaks.

Although the theory described above can be extended to any
number of outbreaks, we have limited MODS to only two, primarily
due to computational limitations. Although the two-outbreak
restriction is sufficient to model the type A and type B waves of
influenza that often occur, it ignores more complicated situations
with multiple introductions of single or multiple strains. The size
of the search space grows exponentially with the number of out-
breaks considered. The simple Monte Carlo algorithm used here
is unlikely to scale to the larger, more complex search space
(although we might be able to handle three outbreaks by using a
high-performance computer and switching to SIR models to elim-
inate some variables). Properly addressing this will require more
sophisticated search algorithms.
4.3. Further work

The approach to outbreak detection and characterization
described in this paper is flexible. We will briefly describe several
possible extensions.

Incorporating different sources of data. Emergency department
patient care reports are a rich source of information about out-
breaks in the general population, but they are limited. Only a small
fraction of people with influenza seek care in an emergency
department, the hospitals we monitor are urban and suburban so
many rural areas are invisible to us, and different demographic
groups may seek ED care at different rates, skewing our data.
Although no single source of data is without limitations or bias,
we can correct for some of their individual shortcomings by com-
bining them. The Bayesian framework described here provides a
principled way to do this. Suppose that our evidence consists of
two sets of data, E1 and E2. For instance, E1 may be emergency
department reports and E2 may be daily counts of internet searches
related to influenza [9]. If we assume that E1 and E2 are indepen-
dent given the level of ILI in the population, we have
PðE1E2jI ;NÞ ¼ PðE1jI ;NÞPðE2jI ;NÞ. The first term can be evalu-
ated using Eq. (4). The second term can be evaluated similarly if
we know how many people with ILI will search for information about
influenza on the internet each day. We can get a first-order approx-
imation to that quantity by relying on previous serological studies
to determine the total number of people affected by influenza dur-
ing one season [22] and internet search records to determine the
number of influenza-related searches during an outbreak and
non-outbreak periods.

Modeling influenza A and B separately. MODS first detected a sec-
ond outbreak in the Salt Lake City 2010–2011 data on January 20.
However, positive influenza B laboratory tests began to appear
much earlier. MODS can be extended to recognize the second out-
break much sooner than it did. CDS can model influenza A and B as
separate diseases. The presence of a subtyped laboratory test can
distinguish A or B definitively and clinical presentation can also
help distinguish them [23]. Given separate likelihoods for influenza
A and B, MODS can model them as separate outbreaks. With these
changes, we believe that MODS will be able to recognize the sec-
ond outbreak much sooner than it did.

Efficient computational methods. The theory described here can
be extended to any number of outbreaks. However, building a
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practical system that can model complex multiple outbreaks will
require more sophisticated algorithms.

Robust prediction of the effect of an intervention. MODS does not
select a single most likely model and base its predictions on it.
Rather, it entertains a set of plausible models, assigns a probability
to each of them, then computes the expected trajectory of an out-
break based on a combination of the probabilities and predictions
of all of the models. It is noncommittal. However, when public
health officials are faced with an outbreak they often commit to
a model they believe best describes the outbreak and design an
intervention based on it [11,12,24,25]. This is fraught with danger
since they must make a decision with huge public health, eco-
nomic, and political risk based on limited evidence early in an out-
break [2]. We propose a different approach: instead of picking a
single outbreak model, use all of the models, project the effect of
an intervention against each model in the set, and predict the
interventions’ efficacy with the expected outcome based on the
models’ probabilities that were computed before the intervention.

5. Conclusions

We described a framework for the detection and characteriza-
tion of multiple, overlapping outbreaks of influenza from ED
patient care reports. We also described the implementation and
evaluation of a system capable of detecting and characterizing
two overlapping outbreaks. We believe that the results reported
here show that the approach we describe is sufficient to detect
and characterize overlapping outbreaks. Further work will includes
investigating more sophisticated models of multiple outbreaks,
data that can distinguish separate outbreaks, and more efficient
computational methods.
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Appendix A. CDS

The data consist of the full text of emergency department
patient care reports collected at two sites: the University of Pitts-
burgh Medical Center in Allegheny County (AC), Pennsylvania and
Intermountain Healthcare in Salt Lake City (SLC), Utah. There are
approximately 300–600 patient care reports each day at each site.
A patient care report may consist of the union of several separate
documents filed during the patient’s stay in the ED or shortly there-
after. We ignore administrative delays and assume the entire set of
documents is available when the patient is discharged from the ED.

Each report is processed by a site-specific parser to extract a
set of 79 findings that were identified by expert clinicians as
potentially relevant to influenza like illness. The parsers are
implemented using Topaz 2.0 [5] and apply pattern-matching
and deduction rules to extract clinical findings. The input to each
parser is a patient care report. The output is a set of clinical find-
ings. Findings that are not found and extracted from the text are
given the value ‘‘M” for missing. After the text of the report has
been processed, the patient’s age and three laboratory results
are added to the set of findings, for a total of 83 findings (see
Table 1).

Two site-specific case detection systems were created for AC
and SLC using the following procedure at each site [26]. Training
datasets were created at each site using ED encounters between
January 1, 2008 and May 31, 2010. Cases with a positive influenza
lab test were labeled flu, cases with a negative influenza lab test
were labeled NI-ILI, and other cases were labeled other. Features
were selected based on information gain. Then, a Bayesian network
(CDS) was constructed for each site using the K2 algorithm [27].
Thus, each CDS is a Bayesian network that represents the condi-
tional probability distribution of the findings and disease state
(influenza, NI-ILI, or other). Given the findings of a particular
patient, Eðp; dÞ, the appropriate CDS (AC or SLC) can produce likeli-
hoods PðEðp; dÞjfluÞ, PðEðp; dÞjNI-ILIÞ, and PðEðp; dÞjotherÞ. That is,
the likelihood of that patient’s findings given they have influenza,
non-influenza influenza-like illness (NI-ILI), or some other condi-
tion (such as appendicitis and trauma). MODS uses these likeli-
hoods to evaluate models.

Table 1 shows the 79 features parsed from the text of patient
care reports, plus age and the added laboratory variables. The
annotation ‘‘AC” means that the feature was used in the CDS for
Allegheny County, and the annotation ‘‘SLC” means that the feature
was used in the CDS for Salt Lake City.

Appendix B. Modeling NI-ILI

We model NI-ILI with a Bayesian time-series. On the first day,
we start with a prior probability distribution over the fraction of
ED patients with NI-ILI PðNI � ILI1 ¼ xÞ for x ¼ 0:00;0:01;0:02; . . . ;
1:00. (For instance, PðNI � ILI1 ¼ 0:20Þ is the probability that 20%
of the ED patients on day 1 have NI-ILI.) Each day, d, we update
our probability distribution for NI-ILI with the available lab results
using the following equation:

PðNI � ILId ¼ xj�d;	dÞ

¼ Pð�d;	djNI � ILId ¼ xÞPðNI � ILId ¼ xÞP1:00
y¼0:00Pð�d;	djNI � ILId ¼ yÞPðNI � ILId ¼ yÞ

ðB:1Þ

where �d and 	d are the number of positive and negative tests on
day d. It is likely that clinicians are more or less likely to order a
lab test for a given patient as an outbreak progresses, so we simply
assume that the relative rate of lab tests given influenza or NI-ILI,
Pðlab orderedjfluÞ=Pðlab orderedjNI-ILIÞ, is a constant c. Estimating
the number of influenza patients in the ED with h � IðdÞ, we have
(by the binomial theorem):

Pð�d;	djNI � ILId ¼ xÞ

¼ �d þ	d

	d

� �
xjptsðdÞj

xjptsðdÞj þ ch � IðdÞ
� �	d ch � IðdÞ

xjptsðdÞj þ ch � IðdÞ
� ��d

ðB:2Þ
That is, Pð�d;	djNI � ILId ¼ xÞ is the probability that �d of the

lab tests ‘hit’ influenza patients and 	d of the lab tests ‘hit’ NI-ILI
patients. Then, each day we update our beliefs by
PðNI � ILIdþ1 ¼ xÞ ¼ PðNI � ILId ¼ xj�d;	dÞ. Finally, we define NðdÞ
to be the expected number of NI-ILI patients in the ED on day d:

NðdÞ � jptsðdÞj
X

x2f0:0;0:1;...;1:0g
xPðNI � ILId ¼ xÞ ðB:3Þ

Note that N is computed day-by-day, updating our beliefs each
day using only laboratory tests from the previous day and earlier,
so NðdÞ depends only on Eð1 : d� 1Þ.
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Given data Eð1 : dÞ, we need PðEð1 : dÞjI ; hÞ to evaluate a model
I , where h is the fraction of infectious influenza cases we expect to
go to an ED on any given day. We can expand this as follows:

PðEð1 : dÞjI ; hÞ ¼PðEðdÞjEð1 : d� 1Þ; I ; hÞ ðB:4Þ

 PðEðd� 1ÞjEð1 : d� 2Þ; I ; hÞ
� � � ðB:5Þ

 PðEð1ÞjI ; hÞ

However, each day d EðdÞ does not depend on all of the evidence
from previous days or the entire model I , but only NðdÞ and IðdÞ,
so we have:

PðEð1 : dÞjI ; hÞ ¼
Yd
d0¼1

PðEðd0ÞjIðd0Þ;Nðd0Þ; hÞ ðB:6Þ
Appendix C. Complexity and runtime

The overall operation of MODS is to generate a model of influen-
za, create its corresponding model of NI-ILI, and evaluate the pair
against the data. Then, repeat this for several thousand models.
After the models have been created and evaluated, the expected
number of infectious cases each day is computed. To generate a
model of influenza, MODS randomly and uniformly selects param-
eters from the ranges in Table 2. A model can then be generated in
OðDÞ time where D is the number of days in the dataset being ana-
lyzed. Generating NI-ILI models requires a preprocessing step to
count the number of positive and negative lab tests each day. This
is done once in time OðDPÞ, where P is the average number of
patients per day. For each model of influenza, creating its corre-
sponding NI-ILI model requires us to evaluate Eq. (B.1) for each
day and each value of n. This can be done in time OðDcnctÞ where
cn is the number of values of n and ct is the average number of
lab tests administered each day. Finally, we compute NðdÞ from
Eq. (B.3) in time OðDÞ. Thus, generating M influenza/NI-ILI models
takes time OðDP þMðDþ DcnctÞÞ. We can evaluate an influenza/
NI-ILI model in time OðchDPÞ, where ch is the number of discrete
values of h and P is the average number of patients per day, by
implementing Eq. (6) in the obvious way. We speed this up by pre-
computing and caching values of PðEðdÞji;nÞ where i and n are dis-
cretized fractions of ED patients with influenza or NI-ILI. If cd is the
number of discrete values we can precompute the cache in time
OðDPc2dÞ then evaluate each model in time OðDÞ. Thus, scoring M

models takes OðDPc2d þMDÞ time. After all the models have been
created and evaluated we update the expected number of influenza
cases in time OðMDÞ for M models. Putting all of this together, a
single run of MODS takes OðDP þMðDþ DcnctÞ þ DPc2dþ
MDÞ ¼ OðMDcnct þ DPc2dÞ Typically, D is 365, P is about 500, cd is
400, M is about 100,000, ch is three to five, cn is 100, ct is about
100. Creating the caches for the Allegheny County and Salt Lake
City takes about six hours for each dataset, and running MODS
takes about four hours on each dataset, when run on a single
1.6 GHz processor. The synthetic experiments were run on a
high-performance cluster of 64 2.3 GHz processors with shared
memory. It took about twelve hours to create and analyze 100 sim-
ulated single outbreaks, and about five hours to create and analyze
60 simulated double outbreaks.
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