Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery

Balasubramanian JB, Gopalakrishnan V. Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery.World J Clin Oncol. 2018 Sep 14;9(5): 89-109. doi: 10.5306/wjco.v9.i5.98. PMID: 30254965. PMC ID: PMC6153126.

AIM: To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.

METHODS: Bayesian rule learning (BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks (BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRLp. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRLp to other state-of-the-art classifiers commonly used in biomedicine.

RESULTS: We evaluated the degree of incorporation of prior knowledge into BRLp, with simulated data by measuring the Graph Edit Distance between the true data-generating model and the model learned by BRLp. We specified the true model using informative structure priors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRLp caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve (AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor (EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRLp model. This relevant background knowledge also led to a gain in AUC.

CONCLUSION: BRLp enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data.

Publication Year: 
Publication Credits: 
Balasubramanian JB, Gopalakrishnan V