Binary classifier calibration using an ensemble of linear trend estimation

Naeini Pakdaman M, Cooper GF. Binary classifier calibration using an ensemble of linear trend estimation. In: Proceedings of the 2016 SIAM International Conference on Data Mining (2016) May;2016:261-269. doi: 10:1137/1.9781611974348.30.  PMID: 28357159 PMCID: PMC5367639

Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called ensemble of linear trend estimation (ELiTE). ELiTE utilizes the recently proposed 1 trend ltering signal approximation method [22] to find the mapping from uncalibrated classification scores to the calibrated probability estimates. ELiTE is designed to address the key limitations of the histogram binning-based calibration methods which are (1) the use of a piecewise constant form of the calibration mapping using bins, and (2) the assumption of independence of predicted probabilities for the instances that are located in different bins.

The method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus, it can be applied with many existing classification models. We demonstrate the performance of ELiTE on real datasets for commonly used binary classification models. Experimental results show that the method outperforms several common binary-classifier calibration methods. In particular, ELiTE commonly performs statistically significantly better than the other methods, and never worse. Moreover, it is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is practically O(N log N) time, where N is the number of samples.

Publication Year: 
Faculty Author: 
Publication Credits: 
Naeini Pakdaman M, Cooper GF
Publication Download: 
PDF icon Naeini_SIAM pub.pdf830.31 KB