Steroid receptor coactivator-1 can regulate osteoblastogenesis independently of estrogen

R.J. Watters a, b, c, *, R.J. Hartmaier a, b, 1, H.U. Osmanbeyoglu d, R.M. Gillihan e, J.M. Rae f, L. Liao g, K. Chen h, W. Li i, X. Lu j, S. Oesterreich a, b

a Women’s Cancer Research Center, University of Pittsburgh Cancer Institute, Magee Women’s Research Institute, Pittsburgh, PA, USA
b Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
c Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
d Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
e Department of Dermatology, University of Florida, Gainesville, FL, USA
f Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
g Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
h Institute for Academic Medicine & Department of Cardiovascular Sciences, The Methodist Hospital Research Institute, Houston, TX 77030, USA
i Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
j Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Article info
Article history:
Received 2 September 2016
Received in revised form 4 March 2017
Accepted 4 March 2017
Available online 7 March 2017

Keywords:
NCOA1
SRC-1
Estrogen receptor
Bone

Steroid receptor coactivator-1 (SRC-1), a well-studied coactivator of estrogen receptor (ER), is known to play an important and functional role in the development and maintenance of bone tissue. Previous reports suggest SRC-1 maintains bone mineral density primarily through its interaction with ER. Here we demonstrate that SRC-1 can also affect bone development independent of estrogen signaling as ovariectomized SRC-1 knockout (SRC-1 KO) mouse had decreased bone mineral density. To identify estrogen-independent SRC-1 target genes in osteoblastogenesis, we undertook an integrated analysis utilizing ChIP-Seq and mRNA microarray in transformed osteoblast-like U2OS-ER a cells. We identified critical osteoblast differentiation genes regulated by SRC-1, but not by estrogen including alkaline phosphatase and osteocalcin. Ex vivo primary culture of osteoblasts from SRC-1 wild-type and KO mice confirmed the role of SRC-1 in osteoblastogenesis, associated with altered ALPL levels. Together, these data indicate that SRC-1 can impact osteoblast function in an ER-independent manner.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Bone is an integral and highly specialized tissue that maintains a role in many important bodily functions such as structural support, protection of other organs (Datta et al., 2008), mineral storage (Confavreux, 2011), endocrine response (Oldknow et al., 2015; Manolagas et al., 2013; Fukumoto and Martin, 2009), and hematopoiesis (Kansara et al., 2014; Shen and Nilsson, 2012). The strength and structural integrity of bone is maintained by a dynamic process involving the two key components of active bone resorption by osteoclasts and construction of new bone by osteoblasts (Teitelbaum, 2007; Boyle et al., 2003; Manolagas, 2000). The estrogen receptor α (ERα) is a major transcription factor involved in female-specific organ development and function (Heldring et al., 2007). Its role in breast cancer is well studied with the development of selective estrogen receptor modulators (SERMs) like tamoxifen or raloxifene and is one of the best examples for the effectiveness of targeted therapies (Vogel, 2009). However, ERα is also critically important in estrogen (E2) signaling in non-sex-organs such as bone (Khosla et al., 2012). The importance of estrogen signaling in bone is best represented by (i) the high prevalence of osteopenia/osteoporosis in post-menopausal women (Manolagas et al., 2013) and (ii) the success of estrogen replacement therapy and SERMs in preventing post-menopausal bone mineral density (BMD) loss (Powers et al., 1996). ERα regulates a nearly unique set of genes in the U2OS osteoblast-like...
osteosarcoma cell line compared to breast cancer cells (Krum et al., 2008) and it is hypothesized that tissue specific cohorts of coregulators are critical in determining the downstream targets of ERα (Shang and Brown, 2002).

ERα coregulators are proteins that bind to and modulate the activity of ERα (McKenna and O’Malley, 2002a; McKenna and O’Malley, 2002b). Steroid receptor coactivator-1 (SRC-1), also known as nuclear receptor coactivator-1 (NCOA1), is a coregulator of ERα (Johnson and O’Malley, 2012), and has been shown to increase transcriptional activity of ERα in many tissues, including bone (Hartmaier et al., 2012). In addition to ERα, SRC-1 has been documented to enhance transcriptional activity for progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, and retinoid x receptor (Onate et al., 1995). SRC-1 can also determine whether tamoxifen acts as an agonist or antagonist (Shang and Brown, 2002). Clinically, this translates to high SRC-1 levels associated with decreased disease free survival after tamoxifen therapy (Shang and Brown, 2002).

Interestingly, SRC-1 null mouse models revealed that SRC-1 is critical in the hormone response in the uterus, prostate, and bone (Xu et al., 1998; Modder et al., 2004). With respect to bone development, loss of SRC-1 can result in osteopenia with high bone turnover in trabecular bone under porosis (Yamada et al., 2004). SRC-1 has also been demonstrated to play a major role in estrogen response and is associated with maintenance of bone mineral density and tamoxifen resistance in breast cancer (Xu et al., 1998; Yamada et al., 2004; Hartmaier et al., 2012). In particular, SRC-1 protects against osteopenia and osteoporosis (Yamada et al., 2004). SRC-1 has also been demonstrated to act independently of ER. In particular, ADAM22, a non-protease member of the ADAM family of disintegrins, was found to be an ER-independent target of SRC-1 (McCartan et al., 2012). Thus, SRC-1 plays a major role in tissue specific estrogen signaling, particularly in the bone. Despite this, the molecular mechanisms underlying the role of SRC-1 in bone remain unknown. Critical questions remain unanswered such as what are the SRC-1 dependent target genes in bone and if SRC-1 can act independent from ERα to mediate bone development and maintenance.

Understanding the mechanism of SRC-1 dependent and independent E2 signaling in bone will provide a better understanding of the biology underlying osteoporosis. Thus, we undertook an effort to integrate the ERα & SRC-1 cistromes with the E2 and SRC-1 regulated transcriptomes to identify high confidence E2-independent and E2-dependent, SRC-1 target genes involved in important processes in bone. From our SRC-1 KO mouse model, we find that SRC-1 regulates a number of genes critical in osteoblast differentiation independent of ERα furthering our understanding of the complex and multifaceted role of SRC-1 in bone development and maintenance.

2. Materials and methods

2.1. Treatment of SRC-1 knockout (KO) mice

Generation of the SRC-1 KO mice has been previously described (Xu et al., 1998; Modder et al., 2004). Animals were housed in a temperature-controlled room with a daily 12-h light/12-h dark schedule and fed a standard laboratory chow diet (Laboratory Rodent Diet 5001; PMI Feeds, Richmond, VA). Pups were genotyped at 21–28 days of age by PCR as previously described (Xu et al., 1998). All procedures for these mice were approved by the Institutional Animal Care and Use Committee. SRC-1 KO and wild-type (WT) litter-mates were divided into sham operated or ovariectomized with supplementation of slow-release placebo or E2 pellets delivering 25 µg/60-day E2 pellet (Innovative Research of America), based on an average body weight of 25 g (n = 6–13 per group). After 60 days of treatment, mice were euthanized and specific tissues harvested. The uterus was excised and weighed and the lumbar spines (L1-L4) were harvested and bone mineral density (BMD) analyzed.

2.2. Bone densitometry

BMD from the cancellous bone of lumbers (L1-L4) was assessed utilizing microcomputed tomography (µCT) using the 40 Micro CT scanner after 60 days of respective treatments. Endosteal envelope regions of interest were defined on the vertebral bodies of L1-L4 vertebrae starting 100 µm away from the vertebral endplates. Bone was segmented from the background using a global threshold of .3 g/cc. The majority of samples were scanned at 16 µm resolution. Due to technical limitations, a subset of samples was scanned at 10.5 µm resolution. This subset was distributed across all treatment and genotype groups and final BMD measurements were not significantly different due to this technical modification (data not shown).

2.3. Chromatin immunoprecipitation-sequencing studies with ERα and SRC-1

Chromatin immunoprecipitation assays were performed as described before (Shang et al., 2002; Malik et al., 2010). Briefly, U2OS-ERα cells (supplied by TC Spelsberg, Mayo Clinic), maintained as described previously (Monroe et al., 2003), were plated at 3.0 × 10^5 in a 15 cm dish and incubated with 10 nM E2 or vehicle control for 45 min. Supernatant was collected and split into ERα, SRC-1, and IGR fractions and antibodies specific for ERα (Santa Cruz, HC-20) and SRC-1 (Santa Cruz: M341) added and incubated overnight at 4 °C while rotating. Protein G-sepharose beads were incubated with samples for 1 h at 4 °C while rotating. Agarose beads were pelleted by centrifugation at 1000xg for 1 min. Beads were washed at room temperature 5X with wash buffer and eluted with 1% SDS, 100 mM NaHCO3 then heated to 65 °C for 4 h with periodic vortexing. DNA was then purified with the QiAquick Spin Kit (Qiagen). 100 ng of input DNA were used for library preparation and samples were sequenced via the Illumina Genome Analyzer. Reads were aligned to hg18 human genome with ELAND software with default parameters. ER and SRC-1 peaks were called using MACS (Zhang et al., 2008) using p-value cut-off 10^-8 and 10^-5 respectively. ChiPpeakAnno (Zhu et al., 2010) was used to associate each peak to its nearest gene in the human genome. ChiP-seq data is accessible through GEO (GSE26110).

2.4. Microarray platform and analysis

U2OS-ERα cells (supplied by TC Spelsberg, Mayo Clinic) (2 × 10^5) were cultured in 6-well plates in appropriate culture medium. The cells were then transfected with 50 nM siRNA using Lipofectamine2000 (Invitrogen). The medium was switched to IMEM + 5% CSS the next day and the cells were treated with vehicle (EtOH) or estrogen (E2) for 3 h. The following siRNAs were purchased from Dharmacon: ON-TARGETplus Non-Targeting pool (D-001810-10), and ON-TARGETplus SRC-1/NCOA1 SMARTpool (L-005196-00). RNA was isolated using Qiagen RNeasy kit and run on an Affymetrix Human Gene 1.0 ST array. Affymetrix CEL files of the microarray experiments were processed using the “affy” package and differential expression was assessed using the “limma” package (Smyth, 2004) of the Bioconductor Suite (http://www.bioconductor.org/). The threshold for detecting differential expression was set at p-value < 0.01 and q-value < 0.05. Microarray data is accessible
through GEOArchives (GSE90548). Ingenuity Pathway Analysis (Qiagen) was utilized to analyze the functional pathways altered via SRC-1 regulation.

2.5. Bone marrow isolation and osteoblast differentiation and alkaline phosphatase assay

Osteoblasts were isolated and differentiated from the long bones of adult mice. Animals were euthanized at 6–8 weeks of age with inhalation of CO2. After euthanization, mice were rinsed in 70% EtOH and placed in a petri dish. Limbs were removed and cut in half at the joint. Skin and soft tissue were removed from bones with a razor blade and then ends were cut off of each bone. Individual bones were placed inside a 0.6 ml tube with a hole in the bottom, which was placed inside a 1.5 ml collection tube. Bones were centrifuged at 13,000 x g for 30 s in order to pellet the bone marrow in the larger collection tube. The bone marrow pellets were resuspended in 1 ml cold PBS and subsequently strained through a 70 μm (micron) cell strainer in to a tube containing 10 ml of ascorbic acid-free α-MEM (Gibco, Life Technologies). Growth and differentiation of the osteoblast cultures were done as previously described (Orriss et al., 2012) with some modifications. Cells were pelleted and plated in a T-75 flask, followed by culturing for 1 week with media changes every 2–3 days until cells reached near confluency. Cells were then scraped and reseeded at a density of 5 x 10⁴ per well in a 12-well plate. Osteoblast differentiation was induced in these confluent cells using α-MEM with 10% fetal bovine serum, 50 μg/ml ascorbic acid (Sigma), and 2 mM 2-glycerol phosphate (Sigma). Media were replaced every 2–3 days for 2 weeks. Osteoblast differentiation was qualitatively assessed with alkaline phosphatase staining kit (86R-KT, Sigma). Whole-field images were taken of wells at 10X magnification on the Olympus Stereocope SZX16. Quantification of images (n = 3 per sample) was then performed in Image J (NIH) and results averaged.

2.6. qRT-PCR study of target genes in ex vivo cultures

qRT-PCR was performed using the BioRad CFX 384 machine. Mouse osteoblasts were isolated and differentiated as described above. RNA was extracted (GE Illustra) from cells after 5 and 10 days of treatment with 50 μg/ml ascorbic acid (Sigma), and 2 mM 2-glycerol phosphate (Sigma). 1 μg of total RNA per sample was used to synthesize the first strand cDNA using iScript reagent (Biorad) in a total volume of 20 μl. Amplification of triplicate cDNA template samples for the target genes and their primers were performed with denaturation for 15 min at 95 °C, followed by 45 cycles of denaturation at 94 °C for 15 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s. Values were normalized to Hypoxanthine Phosphoribosyltransferase 1 (HPRT) mRNA. PCR analysis was performed on each cDNA in triplicate and each condition represents the average from RNA isolated from at least 3 mice. All primers were supplied by IDTDNA (Supplemental Table 1).

2.7. Statistical analyses

Error bars represent SEM based on the average of the technical replicates from each mouse as referenced in the figure legends. The baseline comparison between the SRC-1 WT and KO mice was determined by Student’s t-test, *P < 0.05, **P < 0.005, ***P < 0.0005 with appropriate post-test corrections as stated in figure legends. 2-way ANOVA with Sidak’s multiple comparisons test was utilized to determine significant differences between vehicle (Veh) and E2 treatments in both non-targeting (NT) and siSRC-1 groups.

3. Results

3.1. SRC-1 is required for normal bone mineral density

Previous studies have published on the loss of SRC-1 on BMD in two different knock-out animal models (Modder et al., 2004, 2008; Yamada et al., 2004). We utilized the same mouse model as previously published by Modder et al. (2004, 2008), but with two critical modifications: (1) we performed ovariectomy at 8 weeks of age before bones are finished fully developing and (2) utilized 25 μg/60-day slow release E2 pellets as published previously by Yamada et al. (2004). Intriguingly, we observed a decrease in bone mineral density in the lumbar without modulation of hormone levels (i.e. sham ovariectomy) (Fig. 1A). Further, after adjustment for this difference in baseline BMD, WT and KO mice responded identically to E2 (Fig. 1B). In agreement with previous reports, no difference was seen in uterine weight at baseline (Shang and Brown, 2002) (Fig. 1C), indicating that the unexpected BMD result was not due to a technical error. Given the effect of SRC-1 on bone in the absence of estrogen, we set out to identify ER-independent targets of SRC-1 in bone cells.

3.2. SRC-1 regulates critical osteoblast genes independent of estrogen

We utilized the previously established U2OS-ERα osteoblast-like cell line model (Krum et al., 2008; Monroe et al., 2003) to identify SRC-1 target genes in the absence and presence of E2. To identify direct SRC-1 target genes, we used an approach combining genome-wide ChIP-seq and gene expression studies.

We first identified genomic regions occupied by SRC-1 and ERs by utilizing ChIP-Seq. We observed extensive ERα binding across the genome. In total, 63,686 ERα binding sites were identified (Fig. 2A). A majority of the ERα binding sites previously reported in a dox inducible ERα U2OS cell line (Krum et al., 2008) and many of the ERα binding sites reported in MCF-7 were identified (Carroll et al., 2005) (Supplemental Fig. 1). We also identified 6007 SRC-1 binding sites and as expected, the majority of these sites overlapped with ERα binding sites (Fig. 2A), confirming that ERα is a dominant nuclear receptor partner for SRC-1 in this cell line model. However, ~40% of SRC-1 binding sites did not overlap with ERα binding sites, suggesting that SRC-1 can be recruited to binding sites independent of ERα.

Gene expression array analysis identified genes regulated by estrogen and/or SRC-1. Overlap of data from ChIP-seq and gene expression array allowed identification of direct targets, and two examples are shown in Supplementary Fig. 2 (ISG20 and C3). Interestingly, and in agreement with the finding of ERs-independent recruitment of SRC-1 to genomic binding sites, SRC-1 regulated genes were largely distinct from E2 regulated genes in U2OS-ERα cells (Fig. 2B). This indicates that although SRC-1 directly binds to many genomic regions in conjunction with ERα, SRC-1 does not appear to be required for E2 regulation of these target genes. Instead, some of the transcriptional regulatory potential of SRC-1 in U2OS-ERα cells appears to be independent of E2, thus corroborating our in vivo results. Thus, in order to identify direct gene regulation of SRC-1 independent of ER, we next performed expression array analysis after targeting SRC-1 levels with siRNA and treating with E2 (Fig. 2C). Many regulated genes are involved in ossification and bone development including well-known osteoblast differentiation markers, such as TNSF11B, ALPL, LIF, and HMOX1 (Fig. 2D). In particular, ALPL is a common clinical marker for assessment of bone metabolism and formation (Seibel, 2005). Three out of four SRC-1-regulated genes shown in Fig. 2D show significant estrogen response (TNSF11B, LIF, HMOX1); however,
3.3. Ex vivo data demonstrates that loss of SRC-1 decreases differentiation of osteoblasts

In order to understand how loss of SRC-1 affects the levels of bone mineral density under normal physiological conditions, we harvested bone marrow from both SRC-1 WT mice and KO mice at baseline conditions. As expected, SRC-1 levels are clearly absent in the SRC-1 KO mouse at both days 5 and 10. Both SRC-2 and SRC-3 levels showed a trend of increased expression in the SRC-1 KO mice compared to WT but this was not significant (Supplemental Fig. 3). This may indicate some low level compensation of the other SRCs for SRC-1, which has previously been demonstrated in cancer (Tien et al., 2009). Given the identification of osteoblast differentiation genes in our gene expression analysis, we focused our studies on osteoblast phenotypes. Specifically, we identified genes regulated by SRC-1 and not E2 and ERs (p < 0.05) that are known to play important roles in the growth of bone tissue, size of bone, and function of differentiation and proliferation of osteoblasts via Ingenuity Pathway Analysis (Supplemental Table 2).

Alkaline phosphatase (ALPL) staining is a classical assay to test for differences in osteoblast differentiation potential and an important determinant of bone formation as mentioned previously. Ex vivo osteoblast differentiation assay revealed SRC-1 KO bone marrow cells produce significantly less ALPL staining compared to WT bone marrow cells (Fig. 3A–B), thus this indicates that osteoblast function in SRC-1 KO mice could be impaired through a reduction in osteoblast differentiation potential. To further confirm these findings, we examined the expression of genes critical for osteoblast differentiation. A strong but non-significant decrease was observed in ALPL expression levels further supporting the ALPL staining results (Fig. 3C) while Osteocalcin OCN was found to be significantly decreased in SRC-1 KO bone marrow cells after 5 days of differentiation (Fig. 3D).

4. Discussion

Our study indicates that the BMD of SRC-1 KO mice are lower in baseline conditions but the response of these KO mice to E2 was similar to WT mice. This is in contrast to previous reports (Yamada et al., 2004; Modder et al., 2004). Potentially these differences are a result of variables that differed between the three studies, particularly age at ovariectomy and E2 dose. Similar to Yamada and colleagues (Yamada et al., 2004), we found that loss of SRC-1 resulted in high bone turnover and osteopenia under normal physiological conditions and that response to E2 supplementation was extremely impaired. Modder and colleagues (Modder et al., 2004) did not observe any effect at baseline with loss of SRC-1, however, they did obtain a minimal response to E2 in ovariectomized SRC-1 KO mice. Our dose of E2 was similar to that used in Yamada and colleagues, while the age of our mice at 8-weeks was the youngest out of all three studies. We chose to use the mice at 8-weeks of age because this is the time that C57bl/6 mice reach sexual maturity and the growth of bones begins to slow (Jilka, 2013). As a result, we believe this age provides the best baseline before endogenous systemic estrogens rise and that this effect is lost at later time points. However, since we did not measure estradiol levels in the mice used in our study, we cannot fully exclude the possibility of some remaining low levels of estradiol that might activate ER.

Nevertheless, our ChIP-Seq and expression array profiling revealed numerous SRC-1 regulated genes that were not dependent on E2 signaling, providing further evidence for E2-independent on the right). To study the effect of SRC-1 on bone biology in more detail, we next examined primary osteoblast cultures from SRC-1 KO and WT mice for differences in osteoblast function.

this estrogen regulation is only significantly affected for one of those genes (HMOX1) (two-way ANOVA). For the other genes, the effect of SRC-1 is seen on baseline expression (i.e. in the absence of ligand). Importantly, we identified many SRC-1-target genes that were not regulated by estrogen, yet were significantly altered after SRC-1 knockdown; the top 25 induced and repressed genes are shown in Fig. 2E. Many of those genes play important roles in normal bone biology and pathophysiology (highlighted in Fig. 2E,
action of SRC-1. This included classic osteoblast regulatory genes such as ALPL and osteocalcin (OCN). Importantly, although we were able to identify previously known ERα binding sites and E2 regulated genes, genes most critical for osteoblast differentiation and function were largely independent of ERα and E2. Further analysis of these SRC-1 regulated genes in Ingenuity Pathway Analysis also revealed those important in connective tissue development under the biological functions pathway, which included important functions such as size of bone (ALPL, CAV1, CD40, LIF), differentiation of bone (JAG1, NOTCH2, CSF2, SPP1) and proliferation of osteoblasts (TNFRSF11B, TGFBR1/2, IGF1R). This could account for the loss of BMD observed in both the sham-treated and ovariectomized mice for the SRC-1 KO genotype compared to SRC-1 WT mice, as there is a lack of functional osteoblasts to form bone. This was further supported by ex vivo differentiation and gene expression studies. Together, these data demonstrate that SRC-1 has a major role on bone development independent of E2 signaling. OCN is produced solely by osteoblasts and assists in the mineralization process of bone by binding to hydroxyapatite, thus it is often used as a biomarker for bone formation (Naylor and Eastell,
Therefore, we demonstrate that loss of SRC-1 clearly affects bone formation rates by altering the ability of the osteoblasts to secrete ALPL and OCN, which are two key factors in osteoblastogenesis. Although it is not currently clear which nuclear receptor(s) that SRC-1 is acting through, it is clear that SRC-1 is a critical regulator in bone development. Several studies in the literature demonstrate that Vitamin D receptor (VDR) readily recruits SRC-1 to bind to the OCN promoter after stimulation with Vitamin D3, in order to enhance bone specific gene transcription (Carvallo et al., 2007; Kim et al., 2005; Zhang et al., 2003). PPARγ has also been shown to suppress osteoblastogenesis and activates osteoclastogenesis, thereby decreasing bone formation while sustaining or increasing bone resorption (Wan, 2010). SRC-1 is a known coactivator of PPARγ in the adipose tissue (Puigserver et al., 1999). Interestingly, our array studies revealed altered expression of PPARγ upon SRC1 knockdown (data not shown), and thus it would be of interest to determine whether a PPARγ-SRC-1 complex plays a role in bone biology. Clearly, additional studies are necessary to fully understand ER-dependent and ER-independent role of SRC-1 in normal bone biology and pathophysiology.

Grant support

This project was funded in part by the NIGMS (5R01GM099143-04) to JR, the NIDDK (7R21DK082825-02) to SO, and the Department of Defense (BC123242) to RJW.

Disclosure statement

The authors have nothing to disclose.

Acknowledgements

Expression data was generated from the BCM Genomic and RNA Profiling Core. ChIP-Seq was done at the MD Anderson Sequencing and Microarray Facility. Micro CT at BCM was done in the Micro CT Core and at Pitt in the Stem Cell Research Center. Histomorphometry was done at the MD Anderson Bone Histomorphometry Core.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.mce.2017.03.005.

References

220–227.

