Improving a Knowledge Base for Use in Proteomic Data Analysis

Jonathan L. Lustgarten1, Vanathi Gopalakrishnan1,2, William R. Hogan1,3, Shyam Visweswaran1,2

1Department of Biomedical Informatics and the 2Intelligent Systems Program
University of Pittsburgh
200 Meyran Ave, M-183, Pittsburgh, PA 15260, USA
3University of Pittsburgh Medical Center
Pittsburgh, PA, USA

JLL: jll47@pitt.edu, VG: vanathi@pitt.edu, WRH: wrh9@pitt.edu, SV: shv3@pitt.edu

Abstract

We have developed a knowledge base containing information linking experimentally validated m/z ratios to proteins that a user can query to retrieve candidate proteins corresponding to a m/z ratio of interest. In this paper, we describe an improvement to the knowledge base that allows a user to query for m/z ratios associated with a protein of interest.

1 Introduction

Several significant challenges remain in the analysis of high-dimensional data generated in mass spectrometry-based proteomic experiments. One goal of such experiments is to identify those proteins and peptides that are present with high intensity in the data. The chief challenge in the assignment of putative protein identification to an experimentally identified m/z ratio stems from the variability of that value. Typically, the m/z ratio corresponding to a protein varies due to several factors: the biofluid from which the sample is obtained (e.g., plasma, cerebrospinal fluid, tissue lysate, etc.) [Gopalakrishnan, et al., 2004], the mass spectrometry platform, and the occurrence of different forms of a protein resulting from post-translational modifications, alternative splicing and the existence of isoforms [Lustgarten, et al., 2008].

The researcher who needs to identify candidate proteins corresponding to a m/z ratio, typically, either searches the literature or online knowledge bases such as the UniProt [The UniProt, 2007] and the Expasy [Gasteiger, et al., 2003]. We have recently developed a knowledge base called the EPO-KB (Empirical Proteomic Ontology Knowledge Base) [Lustgarten, et al., 2008] containing information linking experimentally validated m/z ratios to proteins that was curated from the biomedical literature. The EPO-KB can be queried via a Web interface (http://www.dbmi.pitt.edu/EPO-KB) to retrieve proteins that have experimentally determined m/z ratios that are close (based on a distance score) to the user-specified m/z ratio. Thus, EPO-KB enables identification of candidate proteins corresponding to a m/z ratio of interest that can then be evaluated further by experimental methods such as immunochemistry.

A second purpose of generating proteomic data is to identify unique proteomic patterns such as a set of m/z ratios that discriminates well disease samples from healthy samples. Such analyses may be assisted by the identification and removal from the data of those m/z ratios that represent non-specific inflammatory proteins such as serum amyloid A. We have now added the ability to perform reverse look-ups in EPO-KB, i.e., identification of all m/z ratios that have been linked to a particular protein in the literature. We further describe this functionality below.

2 Enabling protein to m/z ratios search

To allow querying of EPO-KB for proteins, we needed a standardized nomenclature to identify proteins uniquely. We chose the UniProt knowledge base [The UniProt, 2007] which provides a unique identifier for each protein and also contains information such as the sequence, possible modifications, and the gene that produces the protein.

For reverse look-ups, EPO-KB can be queried by a user-specified UniProt identifier. This retrieves all m/z ratios in the knowledge base associated with the protein and includes m/z ratios associated with fragments, mutations, and post-translational modifications of the protein. The retrieved m/z ratios can further be filtered on the basis of mass spectrometry techniques and the sample biofluid.

3 Analysis of proteomic data using EPO-KB

We now illustrate with examples the utility of the two methods of querying EPO-KB. A primary use of EPO-KB is for biomarker (m/z ratio) identification in experimental spectra. The researcher may use the EPO-KB to retrieve candidate proteins for m/z ratios of interest or confirm the identity of already identified m/z ratios. For example, the top panel in the Figure shows a partial list of candidate proteins identified by EPO-KB for m/z ratio 13750.

Another use of EPO-KB is in the identification of m/z ratios associated with a protein of interest. As an example, a researcher may want to analyze known disease specific proteins; however, identifying which m/z ratios are linked to those proteins is difficult. In another example, a researcher may want to identify and filter out m/z ratios in...
Figure

Top: screenshot showing partial list of candidate proteins identified by EPO-KB for m/z ratio 13750. Bottom: screenshot showing partial list of m/z ratios identified by EPO-KB for serum amyloid A (UniProt identifier P02735).

<table>
<thead>
<tr>
<th>Table</th>
<th>Score</th>
<th>Protein</th>
<th>Protein Individual</th>
<th>Corresponding Mass To Charge</th>
</tr>
</thead>
</table>
| **TTR 21-147** | **3.5** | Transferrin | Has Associated Disease:
- Frontotemporal Dementia
- Mycosis Fungoides
- Psychosis
- Amyotrophic Lateral Sclerosis
- Renal Cell Carcinoma
- Diabetes - Type 2
- Chronic Lymphoid Malignancies
- Ending Amino Acid Position: 147
- Theoretical Molecular Weight: 13761.41
- Beginning Amino Acid Position: 21
- UniProt ID: P02735
- Gene Name: TTR
- Has Abbreviations: ATTR, TBPA, TTR, Prealbumin | **TTR 21-147** | **3.5** | Transferrin | Has Associated Disease:
- Frontotemporal Dementia
- Mycosis Fungoides
- Psychosis
- Amyotrophic Lateral Sclerosis
- Renal Cell Carcinoma
- Diabetes - Type 2
- Chronic Lymphoid Malignancies
- Ending Amino Acid Position: 147
- Theoretical Molecular Weight: 13761.41
- Beginning Amino Acid Position: 21
- UniProt ID: P02735
- Gene Name: TTR
- Has Abbreviations: ATTR, TBPA, TTR, Prealbumin |
| **SAA 19-122** | **88** | serum amyloid a protein | Has Associated Disease:
- Stroke
- Renal Cell Carcinoma
- Prostate Cancer
- Ending Amino Acid Position: 122
- Theoretical Molecular Weight: 11683.7
- Beginning Amino Acid Position: 19
- UniProt ID: P02735
- Gene Name: SAA1
- Has Abbreviations: SAA | **SAA 19-122** | **88** | serum amyloid a protein | Has Associated Disease:
- Stroke
- Renal Cell Carcinoma
- Prostate Cancer
- Ending Amino Acid Position: 122
- Theoretical Molecular Weight: 11683.7
- Beginning Amino Acid Position: 19
- UniProt ID: P02735
- Gene Name: SAA1
- Has Abbreviations: SAA |
| **SAA 21-122** | **88** | serum amyloid a protein | Has Associated Disease:
- Renal Cell Carcinoma
- Prostate Cancer
- Ending Amino Acid Position: 122
- Theoretical Molecular Weight: 11499.49
- Beginning Amino Acid Position: 21
- UniProt ID: P02735
- Gene Name: SAA1
- Has Abbreviations: SAA | **SAA 21-122** | **88** | serum amyloid a protein | Has Associated Disease:
- Renal Cell Carcinoma
- Prostate Cancer
- Ending Amino Acid Position: 122
- Theoretical Molecular Weight: 11499.49
- Beginning Amino Acid Position: 21
- UniProt ID: P02735
- Gene Name: SAA1
- Has Abbreviations: SAA |
the data that correspond to proteins that are known to be increased in concentration in the sample but are non-specific to the disease process being examined. In such cases, the researcher may use the EPO-KB to retrieve all m/z ratios in the knowledge base that correspond to a protein of interest. For example, the bottom panel in the figure shows a partial list of m/z ratios identified by EPO-KB for the protein serum amyloid A.

4 Future directions

We plan to expand the EPO-KB in several ways including the addition of the ability to search for diseases that will utilize a disease ontology with unique disease identifiers. In addition, we plan to add associated microarray and single nucleotide polymorphism data to the knowledge base.

Acknowledgments

We thank Henrik Ryberg and Chad Kimmel for their assistance in populating the knowledge base, and Gary Garvin for his assistance in programming the website. We thank the Department of Biomedical Informatics for providing server space for the EPO-KB. This work was funded by a training grant from the National Institutes of Health (#5 T15 LM007059 NLM).

References

