The impact of modeling the dependencies among patient findings on classification accuracy and calibration

Monti S, Cooper GF. The impact of modeling the dependencies among patient findings on classification accuracy and calibration. In: Proceedings of the Annual Symposium of the American Medical Informatics Association (1998) 592-596.  PMID:  9929288

We present a new Bayesian classifierfor computeraided diagnosis. The new classifier builds upon the naive-Bayes classifier, and models the dependencies among patient findings in an attempt to improve its performance, both in terms of classification accuracy and in terms of calibration of the estimated probabilities. This work finds motivation in the argument that highly calibrated probabilities are necessary for the clinician to be able to rely on the model's recommendations. Experimental results are presented, supporting the conclusion that modeling the dependencies among findings improves calibration.

Publication Year: 
1998
Faculty Author: 
Publication Credits: 
Monti S, Cooper GF.
AttachmentSize
PDF icon Monti.pdf894.36 KB
^